International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 9 Issue 91 2021 | PP. 35-42

Numerical Minimal Distance between Two Arbitrary
Catenaries in 3D Space

Jinnan Ni
Olive Tree International Academy, BFSU 311199, Hangzhou, PR China

Abstract

Catenary fixed by two points is a curve which looks like a parabola but actually it is not. In this
paper, we are interested in specifying the minimal distance between two catenaries in the 3D space via
numerical optimization. Such a minimal distance plays an important role in many real-world
applications, such as the high-voltage power transmission engineering. We first derive the catenary
function for arbitrary hanging points in the 3D space based on the idea of balance of the tension
force. Then, we give the mathematical formula for computing the minimal distance, which concerns a
minimization problem and can be solved efficiently by existing optimization solvers. Numerical results are
given to illustrate that the mathematical formula is flexible tohandle two representative situations.
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l. Introduction

A catenary is the shape that a rope or chain will naturally converge to, when suspended at its
two ends. It is not a coincidence that the name catenary itself comes from the Latin catenariawhich indeed
means chain. The following is a brief history of catenary. In the late 17th century, Hooke identified the
shape of catenary with that of an inverted arch. Not long after, in response to a challenge proposed by
Jacob Bernoulli, the solution of the catenary was found independently by Johann Bernoulli, Huygens, and
Leibniz [2]. In the mid-19th century, the catenaries were recognized to be solutions of a broader dynamical
problem: determining the shape equilibria of a moving string subjected to a uniform body force. This was
perhaps first recognized by a Tripos examiner in 1854 and Routh incorporated the factin a mechanics
text [9]. By that time, the discovery had also been made by Airy (Astronomer Royal) and Thomson (Lord
Kelvin), whose impetus to study this problem was the massive failure of the first attempt to lay
transatlantic telegraph cable [1, 10].

Nowdays, applications of catenary spans widely. For example, after the events occurring at the
Ronan Point apartment building in London, the Murrah Federal Building in Oklahoma

City, and the World Trade Center in New York City, progressive collapse (the extensive or
complete collapse of a structure) resulting from the failure of one or a small number of structural
components has become a focus of research efforts and design considerations. Retrofitting cable is one
method to enhance existing frames or replace the post-mechanism beam load resistance. The cables are
located linearly along the beam geometry and are affixed at beam supports and the crucial mathematical
tool for modeling the shape of the cables, which is catenary [5]. There is also application of catenary in
thermo-mechanical industry. Experts in this industry want to improve the energy efficiency of
compressors. Thus, they are objective to propose an alteration in the geometry of a hermetic reciprocating
compressor using a catenary curve, which will be applied in all the surfaces of the compressor cylinder
block and will reduce the consumption of energy [3]. Other interesting research about catenary can be
found in [4,8].

Here, we are interested the high-voltage power transmission engineering, for which the shape of
the transmission line between two pylons is a typical catenary. The shape is determined by the hanging
locations and the length of the cable. There are two important quantities for the catenary in this filed.
First, the minimal distance between a single cable and the ground. Second, the minimal distance between
two arbitrary cables in 3D space. These two minimal distances are the crucial issues for safety
consideration in practice. The first distance was already extensively studied and mathematical
formulas and softwares are available in literature. But the research for the second minimal distance is rare.
In this paper, by using the optimization tool in Matlab, we determine the minimal distance between
arbitrary catenaries in the 3D space (i.e., the real-world situation). The basic method isto model the
catenary in a plane (i.e., in the 2D space) and then transform it to a 3D space. The minimal
distance is then computed by the fmincon command in Matlab with the distance function between any
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two points located on the catenaries.

The rest of the paper is organized as follows. In Section 2, we present the details for constructing
the function for the catenary via the idea of force balance. In Section 3, we present the mathematical
formula for computing the minimal distance between two arbitrary catenaries in the 3D space. Some
numerical results are also given in this section. Finally,we conclude this paper in Section 4.

1. The catenary function
In this section, we present the mathematics for the catenary. There are many different
approaches for deriving the function of a catenary and here we introduce a simple one based
on force balance. The derivation of the catenary function needs the following mean-value
theorem.

Lemma 1 ( [7]) Let f(2) be a differentiable function in the interval z € (a,b). Then, for
any z € (a,b) and any zy € (a,b) sufficiently close to z, it holds that

f(2) = f(z0) + f'(20) (2 — 20) + 0((2 — 20)?).
i.e., f(z) = f(20) + f'(20)(2 — 20).

Based on Lemma 1, for ¢ =~ 0 we have

ViTe=

1+ (27 11_“ )e+o(eg)=1+§+o(c9).

ie., v1+ec~ 14 3. Such a simple approximation will be used frequently in the following.

e=0

2.1 Force balance analysis for the catenary in 2D

In this subsection, we try to establish the catenary function in 2D (i.e., in a plane), by using
the balance relationship for the force at an arbitrary point along the catenary. Then, in
the next subsection we describe the catenary function in a real 3D space. For convenience,
we suppose the left hanging point of the catenary is fixed on the y-axis as shown in Figure
2.1. In this figure, we pick a point x, at which we suppose the tension force is T'(z) and the
height of the catenary is y(z). The direction of the tension force is denoted by an angle 64
with the horizontal line. Similarly, with a small increment dx for x, we suppose the tension
force and the height of the catenary at = + dx is T'(z + dx) and y(z + dz), respectively.
The direction of the tension force at = + dr is denoted by an angle #5 with the horizontal
line. In the following, we denote by p the mass per unit length of the catenary and by g the
acceleration of gravity.

ylax + dx) |

y(x)

0, (=
T(x)*

Figure 2.1: The illustration of the tension force and the coordinates of the catenary.
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We now explore the relationship between the tension force T(z) and the height y(x),
which consists of the following 3 steps.

e Step-1. The balance of the horizontal and vertical forces at = and = + dr leads to the
following two equations

T(x + dz)cos(fs) = T(x) cos(f1),

gpdz (2.1)

T'(x +dz)sin(fs) = T'(x)sin(61) + cos(f1)

Squaring and adding the two equations in (2.1) gives

T?(x 4+ dz) =~ T?(z) + 2T (x)gp tan (6, )dz.
By using Lemma 1 it holds T'(z 4+ dz) ~ T'(z) + T"(z)dz. Therefore,
T? (x4 dx) = T?(x) + 20 (2)T" (z)dz + (T"(z)) d2? = T?(z) + 27 (z)T" () dz.
This implies
T?(z) + 2T (2)T’ (z)dz ~ T?(z) + 2T (z)gptan(fy )dz = T'(z) ~ gptan(fy) = gpy' (z).

To get the mathematical model of the eatenary, we simply regard T'(z) = gpy'(x), which
after integration leads to

T(z) = gpy(z) + ey, (2.2)

where ¢y is free constant. This is the first important relationship between T'(x) and y(z).

e Step-II. Starting from the point (z,y(z)) on the catenary, a small increase of x leads
to a linear increase of y(z) with horizontal angle ¢1. Hence, it holds

dy
() = == = tan(0y). 2.3a
v(@) = L = tan(oy) (232)

Similarly, starting from the point (z + dr,y(x + dr)) on the catenary, a small increase of
the = + dz leads to a linear increase of y(z + da) with horizontal angle #3. Therefore

Y (x + dz) = tan(fs). (2.3b)
Becase in(61) in(62)
~ sin(6; _ sin(6s
tan(f) = cos(0y)’ tan(f) = cos(fy)’
we have
G2 02
Lt tan?(@) =1+ 5200 _ L ey — e i)

cos2(fy)  cos2(fy) cos(fy)  cos2(fa)’
This, together with (2.3a) and (2.3b), gives
1 1 1 1

= = , cos(fy) = = )
V1+tan?(0) /14 (¥'(2))? (62) V1+tan?(6y) /14 (¥ (z +dx))?

Now, substituting cos(f1) and cos(fs) into the first equation in (2.1), we have

cos(f1)

T(x) _ T(x+dz)
VI+W@)?  V1+ W +dn)?

By Lemma 1 (i.e., the mean-value theorem), it holds

(2.4)

v (x+dr) = ¢ (z) +dey”’(z), T(z+dx) = T(z) + dzT"(x).
In (2.4), replacing y'(z + dz) and T(x + dz) by these two approximations leads to

T) __ T@+deT()
VI+H (@) 1+ (Y(x) +dry’(z))?

(2.5)
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By using Lemma 1 again, the following approximation holds if z is close to z

1 1 1 1 2z — 20 1 ( z — zo)
= -+ — x — 2 = — ES 1— . 2.6
Vz JZo ( 226%) ( 0) /Zo 22§ WED 220 (2.6)
In (2.5), because dzx is a small quantity it holds

1 1

VIt W@ +dey(@P 1+ @)+ 2dzy @)y (@) + dz2 [y ()]
1

S Vit W@t 2day @y (@)

Applying (2.6) to (2.7) with z = 1 + [/ (2)]? + 2dxy’(z)y” (z) and zp = 1 + [y'()]? leads to

(2.7)

1 - 1 (1 2= zo)
V14 (2)]? +2dzy (2)y”(z) 1+ [ (2)]? 229
_ 1  dzy' (x)y" ()
I+ @) (1 1+ [y/(x)]? ) '

Substituting this into (2.7) gives

1 - 1 (l _ dzy/(z)y" ()
VIt () +dey” (@) 1+ [ ()] L+ [ (=) /-

This together with (2.5) leads to

T(x) ~ L(z) +dzT"(z) 1— dzy' (x)y"(x)

Vi+ @ (@)?  Vi+ @ (2)? 1+ (v'(x))?

_ T(z) +daT"(x) T (x)[dry’ (x)y" (z)] a2 T'(x) [y (x)y" (z)]
VI1I+ ()2 1+ (@(x)?] 1+ (v(x))? [T+ (@' ()21 + (¥ (x))?

T(x) g T T@ @)y (@)

VItTw@?  CVITw@? L@@V @2

where we have dropped the dz2-term. We therefore obtain the following relationship

Ty @)y (@)]  THz) v @)
I+w@E@)T T 1+@@)7%

T'(z) =

Now, by noticing

T'(x) y(z)y"(z)

(o6 7@ = T3 14 Gy — a0eelt + /@)

we have 0
(log T(x))" = 5(log[l + (v'(x))’])". (2.8)

Integrating both sides of (2.8) gives logT(x) + ¢ = %log[l + (¥ ()2, ie.,
2log T'(z) + 2¢2 = log[1 + (v'(x))?]. (2.9)
Exponentiating both sides of (2.9) leads to
218 T(@)+2e2 _ (logll+(' ()] o 2T2(2) = 1 + (' (2))2, (2.10)

where c3 = e°2,
Now, the two relationship (2.2) and (2.10) gives the follow equations for T'(x) and y(z)

{2(;2 RO S
In (2.11), substituting the first equation into the second one leads to
calopy(z) +ed” = 14 (v (),
i.e.,
1+ (¥'(2))* = a®[y(x) + A%, (2.12)
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where a = e3gp and h = ;—L. This is a differential equation about y(z) and its solution y(z)
is classically known and is given by

y(zr) = &cosh[o:(:c +b)] —h, (2.13)

where b is a free constant and cosh(-) is the hyperbolic cosine function defined by

e* e~ %

cosh(z) = 5

Step-III. We next fix the three constants a, b and h by length of the catenary (denoted
by [) and the positions of the two hanging points:

p1:(z1,u1), p2 i (22, 02).

By the function y(z) of the catenary, we have the following two relationships
Y1 = %cosh[a(:cl +b)—h., yo= icosh[a(:}:g +b)] — h. (2.14)

The third relationship is about the length of the catenary:

Tra ra T2
1= [ JT=w@)dz = / /(@) + hdx — / coshla(z + b)|de
2 2 = (2.15)
1
- a(ze+b) _ ja(xi+b) _ —a(xa+b) —a(x1+b)
% (e e € +e ) .

So, from (2.14) and (2.15) we ean determine the three parameters «, b and h by the
following three nonlinear equations

]— Qi (ea(rg+b) _ ea(miHb) _ g—a(zatb) | e—a:(x1+b)) :
¥
1

y1 = —cosh[a(z +b)] — h, (2.16)
ot

Yo = écosh[a(:rg +b)]—h.

There is no exact mathematical formula for the solution of this nonlinear problems. Alterna-
tively, we can fix the solutions via numerical computation for given parameters (1, y1, 22, y2,1).

2.2 Catenary function in real 3D space

Now, suppose we have two points in 3D

P (T, 91, 21), 9 (72,92, 22),

and we need to establish the catenary function in 3D specified by these two points and its
length [. The main idea for this goal is to consider the plane specified by the catenary, for
which we use a cartesian coordinate with one hanging point located on the vertical axis (see
Figure 2.2 for illustration). In such a coordinate system the range of the z-coordinate and
y-coordinate of the catenary is

z € [0,v/(z1 —22)? + (y1 — 2)?], v € [21,29].

So, we ean fix the function for the eatenary in the cartesian coordinate by the following two
points

p:(0,21), G: (V(z1 —72) + (y1 — 12)?, 22),

and the nonlinear equations (2.16) (to get the three parameters «, b and h).
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3D space

/’f.
'/,-’ Vi — x2)? + (11 — p)?

Figure 2.2: The cartesian coordinate for the catenary plane.

Now, we return to the original 3D space. The line fixed by p and ¢ points in the z-y
plane is

_wn —y2I+ T]QQ—IQm_
Ty — I Ty — T2
For any point along the eatenary in the 3D space, denoted by s : (z,y, z), the corresponding
point & in the catenary plane (cf. Figure 2.2) is

F:(V(E—m)2+@w—-m)?2)

So, in the 3D space the catenary function is

z =L coshla(y/(x —21)2 + (¥ — y1)2 + b)] — P,

y=fteg 4 nmoran (2.17)
T € [r1,T2].

2.3 The illustration codes

The following is an example code for generating the 3D catenary by the Matlab software [6].

1- p=[1/6,1/2,1]; Y% the first hanging point

2- g=[2,2,3.5]; % the second hanging point

3- L=sqrt(sum( (p—q)Q) )40.7; % the length of the catenary
4- XO=random(’unif’,0,2,3,1);

5- ahb=fsolve(@(X) F(X,p,q,L),X0,myopt); % fix parameters v, b and h
6- a=abh(1); b=abh(2); h=abh(3);

7- x1=p(1); yi1=p(2); x2=q(1); y2=q(2);
8- x=x1:0.001:x2; % discrete r-coordinate of projected catneary
9-  y=((y1-y2) /(x1-x2)) *x+ (xl*y2-x2*y1) / (x1-x2) ;

% y-coordinate of projection of the catenary on z-y plane

10- z=(1/a)*cosh(a*x(sqrt( (x—x1)2+(y—y1) 2) +b))-h; Y% z-coordinate of catenary
The function F(X, p, q, L) describes the nonlinear system (2.16)

11- function fun=F(X,p,q,L)
12- a=X(1); b=X(2); h=X(3);
13- x1=p(1); yi1=p(2); z1=p(3); x2=q(1); y2=q(2); z2=q(3);

14- X1=0; X2=sqrt ((x1-x2) %+ (yl—y2)2) ;% start and end points of the projected catenary

15- fun=[L-(0.5/a)* (exp(a*(X2+b))-exp(a* (X1+b)) -exp(-a*x(X2+b))+exp(-a*(X1+b)))
16- z1-((1/a)*cosh(a*(X1+b))-h);

17- z2-((1/a)*cosh(a*(X2+b))-h)]1; % the three nonlinear equations in (2.16)

18- end

2
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3 Numerical minimal distance between two catenaries

We now consider the minimal distance between two catenaries in the 3D space. As we
introduced in Section 1, such a minimal distance plays an important role in many engineering
and industry fields, such as the high-voltage power transmission engineering. We suppose
the two catenaries are specified by the following data

p:(T1,91,21), q: (72,92, 22), length =1y, (first catenary) (3.1)
p:(T1,91,21), 9:(T2,¥2, %2), length =1ly, (second catenary) '

and the parameters specified by (2.16) are denoted by (a,b, h) and (dgf}), respectively.
Then, according to (2.17) we denote the functions of these two catenaries by

T € [z, T9),
first. catenary : { y(z) = i’i:iif + Ilg?:zyl ’
2(z) = % cosha(y/(z — 1)+ (y(z) —y1)2 +b)] — h, (3.2)
T € [#1, T2],
(#) = L=oj 4 Di—Toly

second catenary : ¢ ¢
2(2) = Lcoshla(y/(z — 21)2 + (9(Z) — 912 +0)] — K.

Let s: (z,y,2) and § : (Z,7, %) be any two points located at the first and second cate-
naries. The distance between s and s is

L(s,3) =z -2+ (y—9)* + ( — 2)%
From (3.2) we see that (y,z) are functions of = and (g,2) are functions of #, so we can
equivalently rewrite the distance L by

L(z,2) = V/(z — 2)? + [y(z) — 9@ + [2(z) - 2(@)]~ (3.3)

Now, by fixing = and varying & from 71 to ¥, the minimum of L as a function of 7 is

Lyyin(z) = min  L(z, &) (— iemin Ve —2)?2+[y(z) — §(2)]2 + [z(z) - E(:E)P) .

FE[Fq,T9] [£1,24]

Next, we get the minimum of Lnin(z) for x € [z, z9], which corresponds to the minimal
distance between the two catenaries in 3D space. That is

L:2 = min Lmin(:r):\/e[ min (r —&)% + [y(z) — §(&)]2 + [2(z) — 2()]2.

rE[xy,T2] x1,x2], TE[T1,T2]
In summary, by letting
dis(z,7) = (z — 2)* + [y(z) — 9@ + [2(z) - 2(@)]%,
the minimal distance between the two catenaries is

Lrlj;?n = \/ min dis(x, 7). (3.4)

e [.‘1?1 .:rg], E‘E[:i‘] ."..7‘3]

The minimization problem in (3.4) can be solved very efficiently by many existing solvers,
such as the fmincon command in Matlab [6].

Example. To finish this section, we show some numerical results for computing the
minimal distance by solving the min-problem (3.4) via the command fmincon in Matlab [6].
We test two cases using the data given in Table 3.1, where (p1,q1) and (p2,g2) are the
hanging points for the first and second catenaries and [y, [y are the corresponding lengths of
the two catenaries. For these two groups of data, the catenaries and the minimal distance
are plotted in Figure 3.1 on the left and right, respectively. The locations for the minimal
distance are denoted by the star ‘«’ markers. We see that the mathematical formula (3.4)
can handle two representative situations: the projected lines of the two catenaries on the
(z,y)-plane has no interjection (Figure 3.1 on the left) and the projected lines has one
interjection point as shown in Figure 3.1 on the right.
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Table 3.1: The data used for Figure 3.1 on the left and right

j2l q1 Iy p2 02 Iy
left subfigure | (1,0, 3) | (2, 3, 3.5) | 4.7045 (0,1, 3) (1,2,4) |22
right subfigure | (1,0, 2) | (2,3,3) | 4.8166 || (0.5,2.5,3) | (2,0.5,4) | 3.2

minimal distance is 0.91299 minimal distance is 1.3192

Figure 3.1: The minimal distance between two catenaries in two cases: the catenaries pro-
jected onto the (z,y)-plane have interjection point (left subfigure) and have no interjection
point (right subfigure). The data for the these two cases are listed in Table 3.1.

IVV. Conclusion
In this paper, we revisited the mathematical model for the catenary, which was extensively

studied by many authors. The goal of this paper is to compute the minimal distance between two catenaries
in the real 3D space. To this end, we first established the catenary function based on the balance of the
tension force. For given data (the hanging points and the length of the catenary), such a force balance
results in three nonlinear equations (cf. (2.16)) concerning three parameters «, b and h, which completely
specify the catenary. Based on the catenary function, we then get the mathematical formula for computing
the minimal distance in Section 3. This involves a minimization problem (cf. (3.4)) and can be solved
efficiently by many existing optimization solvers, such as fmincon in Matlab.
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