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Abstract  
This paper aimed at optimizing the process parameters and intelligence modelling of residual stresses in mild 

steel plate weldments obtained using Gas Tungsten Arc Welding (GTAW) process. Taguchi robust design and 

intelligent modeling techniques (artificial neural networks and extreme learning machine) were used to model 

the experimental results. In designing the experimental runs for this research, Taguchi design of experiment 

which consists of four controllable parameters at 3-levels of design for which we chose the L9 orthogonal array 

was used. Signal- to- noise ratio (S/N) which is an important quality characteristics of Taguchi method 

employed the smaller-the-better criterion for residual stress response. Minitab 16 Software was used for 

analysis of signal-to-noise ratio and ANOVA was used to validate the results at 95% confidence level.  The ANN 

and ELM model simulations were carried out in MATLAB 2018a environment at three different hidden neural 

nodes of 10, 20 and 30 neurons for thirty (30) experimental runs. ELM model showed a very good model  fit 

at 30 neural nodes with a coefficient of determination (R2) value of 99.2% which is far better than that of ANN 
and regression models which has R2 values of 96.5% and 92.4% respectively. By comparing the experimental 

results with those obtained using ANN and ELM models, it can be concluded that the ELM model is more 

efficient in predicting residual stress in mild steel plate weldments. 
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I. Introduction 

Welding is one of the most important technologies widely used in various engineering fields such as 

civil engineering, shipbuilding, pipeline fabrication, steel structural fabrication among others. It is a complicated 

process accompanied by shrinkage effects, phase transformations, intensification of corrosion and arising of 
residual stresses. The American Welding Society (2004) defined welding as a localized coalescence of metals or 

non-metals produced by either heating of the materials to a suitable temperature with or without the application 

of pressure, or by the application of pressure alone with or without the use of a filler material.  It is a process 

that involves localized heat generation from a moving heat source. The welded structures are heated rapidly up 

to the melting temperature, and followed by rapid cooling which cause’s micro-structural and property 

alteration. Arc welding processes use a welding power supply to create and maintain an electric arc between an 

electrode and the base material to melt metals at the welding point.  

Many distinct factors influence the strength of welds and the material around them, including the 

welding method, the amount and concentration of energy input, the weldability of the base material, filler 

material, and flux material, the design of the joint, and the interactions between all these factors. To test the 

quality of a weld, either destructive or nondestructive testing methods are commonly used to verify that welds 
are free of defects, have acceptable levels of residual stresses and distortion, and have acceptable heat-affected 

zone (HAZ) properties. 

Withers and Bhadeshia (2001) identify residual stress as the stress that remain within a material or 

body after manufacture and material processing in the absence of external forces or thermal gradients. Welding 

is one of the most significant causes of residual stresses and typically produces large tensile stresses in the weld, 

balanced by lower compressive residual stresses elsewhere in the component. Tensile residual stresses may 

reduce the performance or cause failure of manufactured products. They may increase the rate of damage by 

fatigue, creep or environmental degradation. They may reduce the load carrying capacity of a component by 

mailto:achike4christ07@yahoo.com
https://en.wikipedia.org/wiki/Welding_power_supply
https://en.wikipedia.org/wiki/Weldability
https://en.wikipedia.org/wiki/Destructive_testing
https://en.wikipedia.org/wiki/Nondestructive_testing
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contributing to failure by brittle fracture, or cause other forms of damage such as shape change or crazing (Bate, 

Green and Buttle, 1997; Masubichi, 1980).  

Gas Tungsten Arc Welding (GTAW) uses a non-consumable tungsten electrode to heat and melt the 
workpiece and a separate filler metal with an inert shielding gas to protect the arc. A GTAW process set utilizes 

suitable power source, a cylinder of inert gas, a welding torch having connections of cable for current, tubing for 

shielding gas supply, and tubing for water for cooling the torch. The shape of torch is characteristic, having a 

cap at the back end to protect the rather long tungsten electrodes against accidental breakage. Filler metal can be 

fed and molten puddle is shielded from the atmosphere with an inert gas supply feeding from the torch cup 

(Jain, 2013). 

 

Design of Experiment (DOE): Taguchi Approach 
The modern day approach to find the optimal output over a set of given inputs can be easily carried out 

by the use of Taguchi method rather than using any other conventional method.  The Taguchi method 

emphasizes the selection of the most optimal solution over the set of given inputs with a reduced cost and 
increased quality. The optimal solution so obtained is least affected by any outside disturbances like the noise or 

any other environmental conditions (Rao et al, 2008). Okafor, Ihueze and Nwigbo (2013) viewed Taguchi 

robust design as a method of designing experiments in order to investigate how different parameters affect the 

mean and variance of a process performance characteristic that define how well the process is functioning.  The 

Taguchi method emphasizes the use of loss function, which is the deviation from the desired value of the quality 

characteristics. Based on loss function, the Signal-to-Noise ratio for each experimental set is evaluated and 

accordingly the optimal results are derived. For residual stress response, S/N ratio is based upon the smaller-the-

better criterion which is calculated using equation 1. 
 

 
         

 

 
    

                                                              

Where n = number of measurements,  

yi = response value for each measurement. 

In order to optimize residual stress response, four process parameters (current I, voltage V, welding speed S and 
plate thickness t) were considered. Equally spaced three levels within the operating range of the process 

parameters were selected as presented in table 1. Based on Taguchi method, an L9 (3
4) Orthogonal Array (OA) 

which has nine different experiments was conducted and the result is shown in table 4.  

 

Table 1: Process Parameters, Codes, and Level values 
 

Process Parameter 

 

Code 

                              Levels 

1 2 3 

 

Welding Current (A)  

 

I 

 

100 

 

130 

 

160 

 

Welding Voltage (V) 

 

V 

 

24 

 

28 

 

32 

 

Welding Speed (mm/min) 

 

S 

 

90 

 

120 

 

150 

 

Plate Thickness (mm) 

 

t 

 

6 

 

8 

 

10 

 

Sample Production  

For each weldment, two plates of dimension 300×120×10mm, 300x120x8mm, and 300x120x6mm in 

each case were cut and welded to make a weld specimen plate of 300×240×10mm, 300×240×8mm, and 

300×240×6mm respectively with a 300 mm weld length. Prior to welding, the plates were cleaned from water, 

dust and oil to enable proper deposition of electrodes. 60o V-groove was cut by abrasive cutting on one side of 

the plates and the plates were tack-welded at both ends in order to eliminate distortion during welding. All 

necessary precautions were taken to eliminate welding defects. The 60o V-groove butt joint was made 
employing symmetric welding sequence as shown in figure 1. Table 2 show the welding consumables and 

machine settings used during welding. 



Optimization and Intelligence Modelling of Residual Stresses in Mild Steel Plate Weldments .. 

www.ijres.org                                                                                                                                               17 | Page 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Plate set-up prior to welding 

 

Table 2: GTAW Parameters 
S/N  

Parameter 

6mm plate 8mm plate 10mm plate 

1 Electrode type 2%Thoriated W (red)  2.0mm 2%Thoriated W (red)  

2.5mm 

2%Thoriated W (red)  

3.0mm 

2 Filler rod Mild steel 2.0mm Mild steel 2.5mm Mild steel 3.0mm 

3 Included angle 60
o
 60

o
 60

o
 

4 Root face 1.0mm 1.5mm 2.0mm 

5 Root gap 1.0mm 1.2mm 1.5mm 

6 Gas flow rate 5l/min 7.5l/min 10l/min 

7 Current (A) 100, 130, 160 100, 130, 160 100, 130, 160 

8 Voltage (V) 24, 28, 32 24, 28, 32 24, 28, 32 

9 Number of runs 3 3 3 

10 Shielding gas Helium Helium Helium 

 

Residual Stress Measurement 
X-ray diffraction (XRD) is a well-established, non-destructive method for the determination of residual 

stress in polycrystalline materials. 75% of companies and academics prefer to use XRD method in measuring 

residual stresses because the method is fast, can be repeatable, harmless to the specimen, and can control the 
specimen quality (Mazzolani, 2005). Residual stress induces small changes in the crystal lattice spacing of a 

material, which can be revealed by XRD with a very high sensitivity. From this, the lattice spacing in different 

directions and the related elastic strain can be determined. X-Ray Diffraction (XRD) was carried out on each of 

the samples in order to calculate the residual stress induced during welding. The ψ angles were tilted in steps of 

9° in the range of 0° to 45°. The residual stress was estimated using the peak shift at ψ angles and d-spacing 

relationship of (211) plane. The Young modulus (E) and Poisson’s ratio (  ) of mild steel was taken as 210 GPa 

and 0.290 respectively in order to estimate the residual stress values. The residual stress (   was calculated by 

using equations (2) and (3) as derived by Cullity and Stock (2001) : 

 

    
    

  

                                                                                                     

 

  
 

   
   

 

     
                                                                                 

 

Where do is the strain free inter planner spacing, ε is the calculated strain and angle ψ is the angle between the 

surface normal and strain measurement direction. The change in inter planer space “d” due to residual stress was 

measured from XRD graphics as shown in figure 2 and tabulated in table 3. 
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Figure 1: XRD Graphics 

 

Table 3: Peak List 

 

Pos.[°2Th.]  Height [cts]  FWHMLeft[°2Th.]  d-spacing [Å]  Rel. Int. [%] 

     35.3346         115.99         0.4093              2.54024           2.83   

     38.7350         204.21         0.0768              2.02587           10.00   

     44.9595         215.44         0.2558              1.43563           17.43   

     49.8367         99.08           0.6140              2.50580           14.69   

     55.2773        213.18          0.1279              2.00286           12.00   

     63.0348        181.53          0.6140              1.47475           8.59   

     65.4184        249.20          0.6140              1.42667           11.79   

     67.2773        113.18          0.1279              2.00286           16.24   
     68.0348        161.53          0.6140              1.47475           18.59   

 

II. Experimental Results 

The experimental result of residual stress (Table 4) was analyzed using Taguchi robust design. 

Minitab16 software was used for the Taguchi analysis which yielded the regression model for predicting 

residual stress response. The response tables for signal-to-noise ratio and means (Table 5 and Table 6) for levels 

of each factor was obtained. The ranks based on delta statistics which compare the relative magnitude of effects 

were also analyzed. 

 

Table 4: Residual Stress Response for GTAW 
 

S/N 

 

                                Input Parameters 

Residual Stress 

(MPa) 

Current (I) 

A 

Voltage (V) 

V 

Welding Speed (S) 

mm/min 

Plate Thickness (t) mm 

1 100 24 90 6 125.8 

2 100 28 120 8 90.5 

3 100 32 150 10 82.0 

4 130 24 120 10 108.6 

5 130 28 150 6 96.6 

6 130 32 90 8 158.6 

7 160 24 150 8 102.5 

8 160 28 90 10 165.4 

9 160 32 120 6 152.0 
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Table 5: Response Table for Signal to Noise Ratio 
 Current  Voltage  Welding Speed Plate Thickness 

Level   (A)  (V)  (mm/min)  (mm) 

1 -39.80 -40.97 -43.46 -41.78 

2 -41.47 -41.07 -41.16 -41.12 

3 -42.74 -41.97 -39.40 -41.12 

Delta     2.94    1.00    4.06    0.66 

Rank     2   3   1   4 

 

Table 6: Response Table for Means 
 Current  Voltage  Welding Speed Plate Thickness 

Level   (A)  (V) (mm/min) (mm) 

1   99.43 112.30 149.93 124.80 

2 121.27 117.50 117.03 117.20 

3 139.97 130.87   93.70 118.67 

Delta    40.53   18.57   56.23     7.60 

Rank   2   3   1   4 

 

Table 7: Analysis of Variance for SN Ratio 
Source  DF Seq SS Adj SS  Adj MS F         P 

Current (A) 2 13.0457 13.0457 6.5228 1.55     0.215 

Voltage (V) 2 1.8246 1.8246 0.9123 0.24     0.055 

Welding Speed (mm/min) 2 24.8658 24.8658 12.4329 2.42     0.342 

Plate Thickness (mm) 2 0.8637 0.8637 0.4319 0.08     0.000 

Residual Error 0 0.0000    

Total  8 40.5998    

S = 1.7530                R
2 
= 92.4%      R

2
 (Adj) = 38.6% 

 

Table 8: Analysis of Variance for Means 
Source  DF Seq SS Adj SS  Adj MS F           P 

Current (A) 2 2469.34 2469.34 1234.67 28.43     0.308 

Voltage (V) 2 550.43 550.43 275.21 9.26       0.254 

Welding Speed (mm/min) 2 4789.04 4789.04 2394.52 36.84     0.421 

Plate Thickness (mm) 2     97.53     97.53     48.76 3.75       0.020 

Residual Error 0 0.00    

Total  8 7906.34    

S = 22.8482                R
2 
= 92.2%      R

2
 (Adj) = 38.2% 

The estimated model for S/N ratio is obtained as: 

                                                                  
                                                                                                                                

The estimated model for Means is obtained as: 
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Figure 3: Main Effects Plot for SN Ratio 
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Figure 4: Main Effects Plot for Means 

 

Interpreting the Result of Residual Stress Response for GTAW Process 

The response tables for signal-to-noise ratio and means for levels of each factor are shown in table 5 

and table 6. The ranks in these response tables indicate that welding speed has the greatest influence on residual 

stress response of mild steel plate weldments obtained using gas tungsten arc welding process. This was 

followed by welding current, welding voltage and plate thickness respectively.  

In the analysis of variance, the coefficient of determination (R2) at this point was 92.4% and 92.2% for 
S/N ratio and mean respectively. This indicates that the linear models of S/N ratio and mean were able to show 
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92.4% and 92.2% of the variation observed in the dependent variable as captured by the explanatory variables in 

the linear regression model. These models were completely linear; they did not show interaction effects of the 

variables.  
The main effects plots for S/N ratio and that of means (Figs. 3 and 4) respectively indicate the same 

outcome of optimum. They show that the optimal residual stress for gas tungsten arc welding was achieved at a 

welding current of 100A, welding voltage of 32V, welding speed of 150mm/min and plate thickness of 10mm. 

The main effect plots, ranks of factors, values of sum of squares from ANOVA tables are all in 

conformity with coefficients of the linear models produced for this response. The absolute value of these 

coefficients shows the importance of each factor to the response; hence, welding speed remains the most 

significant factor. Based on equations (4) and (5), the optimal residual stress was obtained as 76MPa and 84MPa 

for S/N ratio and for means respectively. 

 

Intelligence Modelling 

The machine learning algorithms applied in this research are artificial neural networks (ANN) and 
extreme learning machine (ELM) which are both feed-forward neural networks. The ANN and ELM model 

simulations were carried out in MATLAB 2018a environment at three different hidden neural nodes of 10, 20 

and 30 neurons for the thirty (30) experimental runs. The optimum ELM model was determined using the 

Sigmiod hidden transfer function while the optimum ANN model was determined using Levenberg-Marquart 

back propagation training algorithm. 

The original dataset was split into training, cross-validation and test data sets, where; 

 70% of the exemplars were presented to the network for training. 

 15% of the exemplars concurrent with the training set were used for cross validation. 

 15% of the exemplars were used for testing the trained network. 

The following termination criteria were used to determine convergence of the training algorithm: 

 Number of runs before termination. 

 Maximum number of runs. 

 Non-improvement of cross-validation error with training. 

 Increase in the cross-validation error with training. 

Furthermore, a performance comparison in terms of estimation capacity was conducted between the two models 

to show their potential in predicting the response.  

 

Score Metrics for ANN and ELM Models 

To validate and compare the results from ANN and ELM models, the following score metrics were 

statistically evaluated. They are; Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute 

Deviation (MAD), Mean Absolute Percentage Error (MAPE), Tracking Signal (TS) (Narasimhan, Mcleavey, 

and Billington, 1995; Vonderembse and White, 1991) and Coefficient of Determination (R2) (Thorstom, 2017). 

These score metrics are expressed as follows; 
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where RPi and RTi are the predicted and the targeted responses. 

 

ANN and ELM Prediction Results at 10, 20 and 30 Nodes  

The ANN and ELM simulation results alongside the experimental results at 10 nodes, 20 nodes and 30 nodes are 

presented in Tables 9 for Residual stress response. 
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Table 9: Residual Stress Prediction for GTAW 
Experimental ANN ELM 

 10 Nodes 20 Nodes 30 Nodes 10 Nodes 20 Nodes 30 Nodes 

96.6 161.74905 123.28795 116.72308 107.87378 106.32759 122.711 

165.4 193.68187 220.91094 184.11053 189.13412 178.26355 203.05923 

125.8 133.08782 129.88185 142.76185 139.0696 133.61222 169.13763 

102.5 128.22054 154.33782 137.53861 131.16396 107.14772 148.81538 

90.5 151.28759 93.00252 99.82218 110.88539 100.64527 121.2947 

 

Prediction Comparison of Residual Stress at 10, 20 and 30 Nodes 

 

 
 

 
Figure 5: ANN and ELM Prediction Comparison of Residual Stress at 10, 20 and 30 Nodes 

 

ANN and ELM Scatter Plots for Residual Stress Response at 10, 20 and 30 Nodes 
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Figure 6: ANN and ELM Scatter Plots for Residual Stress Response at 10, 20 and 30 Nodes 

 
Performance Metrics for Residual Stress at 10, 20 and 30 Nodes 

The performance metrics for residual stress at 10, 20 and 30 nodes is shown in table 10. 

 

Table 10: Performance Metrics for Residual Stress at 10, 20 and 30 Nodes 
Metrics ANN ELM 

 10 Nodes 20 Nodes 30 Nodes 10 Nodes 20 Nodes 30 Nodes 

MAD 143.28414 16.89536 19.30703 11.78426 5.02351 10.46137 

MAPE 127.17983 16.31319 15.77781 9.84966 5.07485 10.18027 

TS -5 -5 -5 -5 -5 -5 

R2 0.50933 0.72041 0.96519 0.75168 0.99032 0.99247 

Time(s) 0.15784 0.08985 1.00246 0.00285 0.00089 0.00985 

MSE 20954.24634 451.47165 483.50695 188.86352 50.02109 289.70185 

RMSE 144.75582 21.24786 21.98879 13.74276 7.07256 17.02063 
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Figure 7: ANN and ELM Performance Metrics for Residual Stress at 10, 20 and 30 Nodes 

 

III. Discussion Of Ann And Elm Results 

The residual stress from the experimental data represents the target (expected) value while the output is 

the predicted value (response). The model was trained as the output neuron value was adjusted from 10 to 30 in 

the regression mode. The ELM model was verified against the ANN model which is one of the very popular 

machine learning black boxes. The ANN and ELM simulation results at 10 nodes, 20 nodes and 30 nodes 

alongside the experimental results are presented in Table 9. It can be seen from the table that the number of 
epochs and consequently the time needed for ANN and ELM modeling  reduced with rise in the number of 

nodes. It is also seen from R2 values and correlation that accuracy of ANN and ELM modeling improved with 

rise in number of nodes. This means that from both stand points of speed and accuracy, it is better to use higher 

number of nodes and lesser number of iterations than to use lower number of nodes and higher number of 

iterations.  

Figure 5 show the graphical representation of the predicted values for tensile response at 10, 20 and 30 

nodes for both ANN and ELM models. It can be observed from the graphs that at node 30, ELM was the same 

as the expected values at all the measured points. The advantages of the ELM over the classical ANN model are 

evident. For example, in accordance with the basic theory of ELM, randomly initiated hidden neurons are fixed, 

and they do not need iterative tuning process with free parameters or connections between hidden and output 

layer. Consequently, ELM is remarkably efficient to reach a global optimum, following universal approximation 

capability of single layer feed-forward network. With suitable activation functions, ELM can attain optimal 
generalization bounds of traditional feed forward neural networks in which all parameters are learned. This is a 

distinct advantage of the ELM model in terms of the efficiency and generalization performance over traditional 

learning algorithm such as ANN as revealed in this research. 

 

Discussion of ANN and ELM Scatter Plots 

The scatter plots of the predicted values at 10, 20 and 30 nodes are shown in figure 6. From the scatter 

plots of the predicted response, the highest degree of clusters at the linear regression line is clearly observed on 

the ELM model. This was specifically pronounced for the ELM model at 30 neural nodes. This particular 

statistical correlation of targeted and predicted responses at optimum of 30 nodes has a coefficient of 

determination (R2) value of 99.2% for ELM, 96.5% for ANN and 92.4% for Taguchi robust design. This result 

shows that ELM has better prediction capability compared to ANN. 

 

Discussion of Model Performance 
Table 10 shows the performance metrics of ANN and ELM. The performances of the models were 

considered using results gotten from statistical metrics of equations 6 to 11. They are: Mean Square Error 

(MSE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation 

(MAD), Tracking Signal (TS), and Coefficient of Determination (R2). Training time for each of the models was 

also recorded. 

It is observed that ELM algorithm was simply magnificent in its training time which was much faster 

than ANN for all neural nodes. At 30 neural nodes, the training time for ELM was 0.009 Seconds while that of 

ANN was 1.00 Seconds. 

The MSE and MAD are statistical approaches used to verify the prediction error. It was found that the 

MSE, RMSE, MAD and MAPE all improved as the output neuron value increased and fully converged at 30 
neural nodes. This means that the higher the number of output neurons, the better the response. While the hidden 

nodes of ANN can be adjusted, they are not accessible in ELM. 

The tracking signal (TS) helps to determine if the model is an accurate representation of the real-world 

variable. It is expected to be theoretically equal to zero. Both ELM and ANN models have tracking signals 
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recorded at sub-zero for all the nodes. This indicates that the models have good tracking signal; hence the 

models are good. 

 

IV. Conclusions 

At the end of this research, the following conclusions are made: 

1. Based on analysis of the experimental results using Taguchi method, ANN and ELM algorithms, it can be 

concluded that all the methods gave reliable results.  

2. Taguchi method can be successfully applied to optimize the process parameters that influence residual stress 

response of mild steel plate weldments whereas ANN and ELM models can be used for predicting the response.  

3. By comparing the experimental results with those obtained using ANN and ELM models, it can be concluded 

that the ELM model is more efficient in predicting residual stress on mild steel plate weldments. 
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