
International Journal of Research in Engineering and Science (IJRES) 

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 

www.ijres.org Volume 9 Issue 3 ǁ 2021 ǁ PP. 54-62 

 

www.ijres.org                                                                                                                                                54 | Page 

Numerical /Analytical Investigations of Stability of Stratified Rotatory Elastico –

Viscous Oldroyd B Fluid In The Presence Of Variable Magnetic Field, Suspended 

Particles Saturating Porous Media 

             

Sumit Gupta* 1  and Anuj Sharma 2  
1
Department of Mathematics, Govt. Degree College Arki , Distt. Solan, India 

2
 Department of Physics, Govt. Degree College Arki , Distt. Solan, India 

*Corresponding author 

  

ABSTRACT. The influence of viscosity, viscoelasticity, medium permeability, medium porosity and suspended 

particles on the stability of a stratified elastic-viscous fluid is examined for viscoelastic polymeric solutions in 

the simultaneous presence of a variable horizontal magnetic field    0,0,  0 zHH  and uniform horizontal 

rotation  0,0, ΩΩ  in porous medium. These solutions are known as oldroyd B fluid and their rheology is 

approximated by the oldroyd B fluid constitutive relations, proposed by Oldroyd. The effects of coriolis force on 

the stability are chosen along the direction of the magnetic field and transverse to that of the gravitational 

field  g,0,0 g . Assuming the exponential stratifications in density, viscosity and viscoelasticity, the 

appropriate solution for the case of free boundaries is obtained using a linearized stability theory and normal 

mode analysis method. The dispersion relation is obtained and the behaviour of growth rates with respect to 

kinematic viscosity, kinematic viscoelasticity, medium permeability, dust particles and medium porosity is 

examined numerically using Newton-Raphson method through the software Fortran-90 and Mathcad. In 

contrast to the Newtonian fluids, the system is found to be unstable, for stable stratifications, for small 

wavelength perturbations. It is found that the magnetic field stabilizes the certain wave number band, for 

unstable stratification in the presence of rotation, suspended particles and this wave number range increases 

with the increase in magnetic field and decreases with the increase in kinematic viscoelasticity implying thereby 

the stabilizing effect of magnetic field,kinematic viscoelasticity , suspended particles and the kinematic viscosity 

has a stabilizing effect on the system for the low wave number range.  The medium permeability has enhancing 

effect on the growth rates with its increase for a fixed wave number. These results are shown graphically. 

KEYWORDS: Oldroyd B fluid; magnetic field; rotation; viscosity; viscoelasticity, medium permeability, 

medium porosity, suspended particles. 
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I.  INTRODUCTION 
The flow through porous medium has been of considerable interest in recent years particularly among 

geophysical fluid dynamics. When we consider flow in porous medium, some additional complexities arise 

which are due to the interaction between the fluids and the porous medium. Here we consider those fluid flows 

for which Darcy’s law is applicable. This law is empirical in nature and is usually considered valid for creeping 

flows where the Reynolds’s number as defined for a porous medium is less than one. Darcy’s law states that the 

gross effect , as the fluid slowly percolated through the pores of rock , is that usual viscous term in the equation 

of elastic-viscous fluid motion will be replaced by the resistance terms 



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-  , where   and 

are the coefficients of viscosity and viscoelasticity , of oldroyd B  fluid ,  1k  is the medium permeability and 

q  is the Darcian (filter) velocity (seepage) of the fluid.The stability of flow of a single component fluid through 

porous medium taking into account the Darcy’s resistance has been studied by Lapwood  [1] and Wooding [2]. 

The effect of the Earth’s magnetic field on the stability of such a flow is of interest in geophysics particularly in 

the study of Earth’s core where the Earth’s mantle, which consists of conducting fluid, behaves like a porous 

medium which can become convectively unstable as a result of differential diffusion. The physical properties of 

comets and meteorites strongly suggest importance of porosity in astrophysical context (McDonnell [3]).The 

stability derived from the character of the equilibrium of an incompressible heavy fluid of variable density (i.e. 

of a heterogeneous fluid) was investigated by Rayleigh [4]. He demonstrated that the system is stable or 
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unstable according as the density decreases everywhere or increases everywhere. An experimental 

demonstration of the development of the Rayleigh–Taylor instability was performed by Taylor [5].  The effect 

of a vertical magnetic field on the development of Rayleigh–Taylor instability was considered by Hide [6]. Reid 

[7] studied the effect of surface tension and viscosity on the stability of two superposed fluids. The Rayleigh–

Taylor instability of a Newtonian fluid has been studied by several authors accepting varying assumptions of 

hydrodynamics and hydromagnetics and Chandrasekhar [8] in his celebrated monograph has given a detailed 

account of these investigations. Bellman and Pennington [9] further investigated in detail illustrating the 

combined effects of viscosity and surface tension. Gupta [10] again studied the stability of a horizontal layer of 

a perfectly conducting fluid with continuous density and viscosity stratifications in the presence of a horizontal 

magnetic field. The Rayleigh–Taylor instability problems arise in oceanography, limnology and engineering.  

Generally, the magnetic field has a stabilizing effect on the instability, but there are a few exceptions 

also. For example, Kent [11] has studied the effect of a horizontal magnetic field which varies in the vertical 

direction on the stability of parallel flows and has shown that the system is unstable under certain conditions, 

while in the absence of magnetic field the system is known to be stable. In stellar atmospheres and interiors, the 

magnetic field may be (and quite often is) variable and may altogether alter the nature of the instability. Coriolis 

force also plays an important role on the stability of the system. In all the above studies the fluid has been 

assumed to be Newtonian. Generally, suspended particles number density has a destabilizing effect on the 

thermal convection on the fluids. From the physical point of view the effect of rotation on the micropolar fluids 

in the presence of suspended particles is interesting because there is a competition between the large enough 

stabilizing effect of rotation and destabilizing effect  (to a smaller extent) of suspended particles. Moreover, 

rotation introduces Coriolis acceleration which plays an important role on the stability on the system and a 

centrifugal force which is neglected due to its small magnitude. 

Generally, suspended particles number density has a destabilizing effect on the thermal convection on 

the fluids. From the physical point of view the effect of rotation on the micropolar fluids in the presence of 

suspended particles is interesting because there is a competition between the large enough stabilizing effect of 

rotation and destabilizing effect (to a smaller extent) of suspended particles. Moreover, rotation introduces 

Coriolis acceleration which plays an important role on the stability on the system and a centrifugal force which 

is neglected due to its small magnitude. The rotating fluid also finds its application in meteorphysics and 

oceanography. Fredricksen [12] has given a good review non-Newtonian fluids whereas Joseph [13] has also 

considered the stability of viscoelastic fluids. 

With the growing importance of non–Newtonian fluids in modern technology and industries, oil 

recovery, petroleum refining and chemical technology. Much attention is being paid to the investigation of such 

fluids. One such class of viscoelastic fluids is Oldroyd-B fluids with constitutive- equations proposed by 

Oldroyd [14], we are interested there in. Attention has recently been drawn by calculations of the theological 

behavior of dilute suspensions and emulsions, whose behavior at small variable shear stresses is characterized 

by Oldroyd-B model. An experimental demonstration by Toms and Strawbridge [15] reveals that a dilute 

solution of methyl methacrylate in n-butylacetate agrees well with the theoretical model of the Oldroyd-B fluid.  

Boffetta et al. [16] have studied Rayleigh-Taylor instability in a viscoelastic binary fluid and found that in 

polymer solutions, the growth rate of the instability speeds up with elasticity which is confirmed by the 

numerical simulations of the viscoelastic binary fluid. Sharma and Devi [17] have studied the numerical 

investigations of stability of stratified viscoelastic Oldroyd-B fluid in the presence of variable magnetic field and 

have found that the critical wavenumber kc and kmax for the stability of the system remains unchanged in the 

presence of stress-relaxation time parameter, strain-retardation time parameter, kinematic viscosity whereas the 

critical wavenumber kc goes on decreasing with the increase in magnetic field. 

Keeping  in  mind  the  importance  of  non–Newtonian  fluids , medium permeability  in  modern  

technology and  their various  applications  mentioned  above, the  present  paper is devoted  to consider the  

stability of  rotating  stratified elastico–viscous Oldroyd B fluid  in the presence of variable magnetic field and 

rotation in porous medium. 

 

II. RELATED WORK 
  The initial stationary state whose stability we wish to examine is that of an incompressible, 

heterogeneous infinitely extending and conducting    elastico–viscous oldroyd B fluid of thickness d  

bounded by the planes dz ,0 and   of variable density, kinematic viscosity and viscoelasticity, arranged in 

horizontal strata in a porous medium of variable porosity  and medium permeability so that the free surface is 

almost horizontal and the electrical conductivity 



e4

1
  is zero.  The fluid is acted on by gravity force 

 g,0,0 g , a uniform horizontal rotation  0,0, ΩΩ  and a  variable horizontal magnetic field 
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   0,0,  0 zHH .The character of the equilibrium of this stationary state is determined by supposing that the 

system is slightly disturbed and then, following its further evolution. 

The equations expressing conservation of momentum, mass, incompressibility and Maxwell’s equations for the 

elastico–viscous Walters’ (model B ) fluid are 
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where  ,  ,  p , e ,  ,  0  and u  denote , respectively, the density, the viscosity,  pressure, the medium 

permeability, the magnetic permeability, stress-relaxation time parameter, strain retardation time parameter and 

the fluid velocity (initially zero). dq   and  txN ,  denote the velocity and number density of particles. 

  6K ,  being theparticle radius, is the Stoke's drag and   zyxx ,,  .Equation (5) represents the 

fact that the density of a particle remains unchanged as we follow it with its motion. Assuming dust particles of 

uniform particle size, spherical shape and small relative velocities between the two phases (fluid and particles), 

then the net effect of the particles on the fluid is equivalent to an extra body force term per unit 

volume )( qqKN d  , as has been taken in equation (1). The presence of particles adds an extra force term, 

proportional to the velocity difference between particles and fluid which appears in equations of motion 

(1).This force exerted by the fluid on the particles is equal and opposite to that exerted by the particles on the 

fluid. The distance between the particles is assumed to be so large compared with their diameter that 

interparticle reactions are ignored.                                                                              
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Let   ,,       , wvuδp,  q , N ,   ,,  srl dq and   ,,  zyx hhhh  denote, respectively, the perturbations in 

density  z , pressure  zp , filter velocity q  0,0,0 , particle velocity   0,0,0   dq  , suspended particle 

number density and horizontal magnetic field   0 ,0 ,z 0HH . Then the equations (1)–(5) after perturbations in 

the cartesian form become  
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Equations (8)-(12) in the Cartesian form are 
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Analyzing the disturbances into normal modes, we seek solutions whose dependence on  

zyx  , ,  and time t  is given by 

 ntyikxikzf yx  exp)( ,                                                  (22) 

where )(zf  is the some function of z –only; xk , yk  are the wave-numbers in the x – and y –directions, 

respectively,   2
1

22

yx kkk   is the resultant wave-number and n  is the growth rate of the disturbance which 

is, in general, a complex constant. 

Equations (13)–(21) using expression (22) become  
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0  Dwvikuik yx
,                                                   (26) 

0  wDn ,                                                                (27) 

0 zyyxx Dhhikhik ,                                                                (28) 

00   DHwuHiknh xx  ,                                                  (29) 

vHiknh xy 0 ,                                     (30) 

wHiknh xz 0 ,                                                   (31) 

Now substituting the values of yx hh    ,  and zh  from equations (29)–(31) in equations (23)–(25), we get 
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where  uikvik yxz  ,  is  the z –component of vorticity. 

Multiplying equations (32) and (34) by yik  and xik , respectively, and then adding we get 
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Substituting the value of z  in equation (33), we get 
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Multiplying equations (32) and (34) by xik  and yik , respectively, and then adding and using (35), we 

obtain 
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Eliminating  u , v  and p from equations (32)–(34) using equations (35),  after little algebra, we get 

        
  

 














































n

HDk

VkkDn
k

n
n

Ω
DnwkDVkn

k

n
wkDn

k

n xe

Ax

Ax












4

 

 

4
1     

2

0

2

2222

1

2

2
222222

1

222

1

    
  

 
  0

4

 

 

4
1  2

2

0

2

2222

1

2

2
222222

1















































 wDgk
n

HDk

VkkDn
k

n
n

Ω
DnwkDVkn

k

n
Dw xe

Ax

Ax 







 .  (38)                                                                                                                                             

 

III. METHODOLOGY  
In order to obtain the solution of the stability problem of a layer of Oldroyd B fluid, we suppose that the 

density  , viscosity   , viscoelasticity   medium porosity  and medium permeability   vary 

exponentially along the vertical direction i.e.  
zzzzz

ekkeeee 11111

1010000 ,  ,   , , 
                                                       (39) 

 

where 
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Using the stratifications of the form (39), equation (38) transforms to 
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Considering the case of two free boundaries, we must have 

02  wDw   at 0z  and dz  .                                                 (41) 

The appropriate solution of equation (41) satisfying the above boundary condition is 

d
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 ,                                                   (42) 
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where  m  is an integer and 0A  is a constant. 

Substituting the value of w  from equation (42) in equation (40) we obtain dispersion relation 
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  where   










2

22

12

3

 

d

m
kL

 . 

Equation (43) is biquadratic in n  and is the dispersion relation governing the effects of uniform rotation, 

variable horizontal magnetic field, viscosity, viscoelasticity and medium porosity on the stability of stratified 

Oldroyd B fluid. 

 

IV.    RESULTS AND DISCUSSIONS 

 Case of stable stratifications (i.e. 1 0 ) and  ovk  010 4 ,  Equation (43) does not admit any positive 

real root or complex root with positive real part using Routh–Hurwitz criterion; therefore, the system is always 

stable for disturbances of all wave-number.  

  Case of unstable stratifications (i.e. 1 0 ) and  ovk  010 4 , If 1 0 ,  g
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where   is the angle between xk  and k i.e.  coskkx  .  
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real root or complex root with positive real part, therefore, the system is stable. The system is clearly unstable in 

the absence of magnetic field, rotation and for non–viscoelastic fluid. 
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For 1 0 , the constant term in the equation (43) is negative and therefore has at least one root with positive 

real part therefore the system is clearly unstable. The magnetic field, therefore, stabilizes potentially unstable 

stratifications for small wave-length perturbations  
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Also, it is clear that the wave-number range, for which the potentially unstable system gets stabilized, increases 

with the increase in magnetic field and decreases with the increase in kinematic viscoelasticity. All long wave-

length perturbations satisfying equation (44) remain unstable and are not stabilized by magnetic field. The 

behaviour of growth rates with respect to kinematic viscosity 0 , kinematic viscoelasticity 0  and square of 

the Alfvén velocity 2

AV  satisfying equation (43) has been examined numerically using Newton–Raphson method 

through the software Mathcad. Figure (1) shows the variation of growth rate rn  (positive real value of n ) with 

respect to the wave-number k  for fixed permissible value 

of   ,cm 6   ,1,6,5.0   ,2 11001  dmk 1Ω revolution/minute, 10   for three values of 0 2, 3 

and 4, respectively. These values are the permissible values for the respective parameters and are in good 

agreement with the corresponding values used by Chandrasekhar [8] while describing various hydrodynamic 

and hydromagnetic stability problems. The graph shows that for fixed wave-numbers, the growth rate increases 

for certain wave number with the increase in kinematic viscoelasticity 0 , which indicates the destabilizing 

effect of viscoelasticity whereas the growth rate decreases for certain wave numbers  implying thereby the 
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stabilizing effect of kinematic viscoelasticity on the system in the presence of medium permeability  and 

medium porosity for low wave numbers range. 

 Figure (2) shows the variation of growth rate rn  (positive real value of n ) with respect to the wave-

number k for fixed permissible values of   ,cm 6   ,1   ,2 11  dm 1Ω  revolution/minute, 10  , 

,6,5.0 ,55  ,45cos  ,cm/s980 100

202  kVkkg Ax
 for three values of 0 2, 4 and 6, respectively. 

The graph shows that for fixed wave-numbers, the growth rate increases for certain wave number with the 

increase in kinematic viscosity 0  which indicates the destabilizing influence of kinematic viscosity, whereas 

the growth rate decreases for certain wave numbers, implying thereby the stabilizing effect of kinematic 

viscosity on the system in the presence of medium permeability and medium porosity. 

Figure (3) shows the variation of growth rate rn  (positive real value of n ) with respect to wave-number k for 

fixed permissible values of ,cm 6  ,1  ,2 11  dm 1Ω  revolution/minute, 0 4, 2 0  , 

6,5.0 ,45cos  ,cm/s 980 100

02  kkkg x
  for two values of  2

AV 15 and 55, respectively. The 

graph shows that for fixed wave-numbers, the growth rate increases with the increase in the square of the Alfvén 

velocity 2

AV  for certain wave number which indicates the destabilizing influence of the square of the Alfvén 

velocity, whereas growth rate decreases for certain wave numbers, implying thereby the stabilizing effect of the 

square of the Alfvén velocity on the system in the presence of medium permeability and medium porosity.  
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Figure 1:The variation of  

rn with  wave-number k    for three values of  4,3,20   
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Figure 2: The variation of 

rn with wave-number k   for three values of  6 ,4 ,20   
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Figure 3:The variation of  

rn  with wave-number k  for two values of 55 ,152 AV . 

                                                                    

V. CONCLUSION  
Both the parameters such as kinematic viscosity, kinematic viscoelasticity, has the stabilizing effect on 

the system whereas the parameters such as suspended particles and rotation have the destabilizing effect on the 

system. Square of the Alfvén velocity 2

AV  also has stabilizing effect on the system  in the presence of medium 

permeability and medium porosity. We have considered Oldroyd B fluid  viscoelastic fluid in the present 

problem. The problem could be extended by taking different fluids such as Rivlin –Ericksen fluid, Nano fluid 

particles and Ferromagnetic fluids. 
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