Signed Total Roman Dominating Functions of Rooted Product Graphs

C. Shobha Rani¹, S. Jeelani Begum², G. S. S. Raju³

¹Department of Mathematics, Madanapalle institute of Technology & Science, Madanapalle, A.P., India ²Department of Mathematics, SVCE Tirupati, Tirupati, A.P., India ³Department of Mathematics, JNTUA Pulivendula, Pulivendula, A.P., India Corresponding author: C. Shobha Rani

ABSTRACT: In this paper, we study the signed roman dominating functions, signed total roman dominating functions of rooted product graph $G = P_n \circ C_m$, where P_n be a Path graph with n vertices and $C_m (m \ge 3)$ be a cycle with a sequence of n rooted graphs $C_{m1}, C_{m2}, \dots, C_{mn}$. Also we check the minimality of the signed roman(signed total roman) dominating functions.

KEYWORDS: Rooted product graph, signed roman dominating functions, signed total roman dominating functions.

subject classification code: 05C10

Date of Submission: 09-03-2021

Date of acceptance: 23-03-2021

I. INTRODUCTION

Let $f: V \to \{-1,1,2\}$ be a function, is said to be a signed roman dominating function (SRDF) of *G*, if $f(N[v]) = \sum_{u \in N[v]} f(u) \ge 1$, for each $v \in V$ and satisfying the condition that every vertex u for which f(u) = -1 is adjacent to at least one vertex v for which f(v) = 2. It is minimal signed roman dominating function (MSRDF), if for all g < f, g is not a SDF. The weight of *f* is the sum of the function value of all vertices in *G*, i.e., $f(V(G)) = \sum_{u \in V(G)} f(u)$. The signed roman domination number of *G*, $\gamma_{sR}(G)$, is the minimum weight of a SRDF of *G*.

A function $f: V \to \{-1,1,2\}$ is called a signed total roman dominating function of G, if $f(N(v)) = \sum_{u \in N(v)} f(u) \ge 1$, for each $v \in V$ and satisfying the condition that every vertex u for which f(u) = -1 is adjacent to at least one vertex v for which f(v) = 2. It is minimal signed total roman dominating function (MSTRDF), if for all g < f, g is not a STRDF. The weight of f is the sum of the function value of all vertices in G. The signed total roman domination number of G, $\gamma_{stR}(G)$, is the minimum weight of a STRDF of G.

In 1995 Dunbar, Hedetniemi, Henning and Slater [2] published the first paper entitled "Signed domination in graphs" and also referred in [3].

Volkmann [6,7] has studied about signed total roman domination in digraphs, signed total roman domination in graphs.

In 2014, Ahangar, Henning, Lowenstein, Zhao and Samodivkin [1] introduced the concept of signed roman domination in graphs.

A new product on two graphs G_1 and G_2 , called rooted product denoted by $G_1 \circ G_2$ and it was first introduced by Godsil and McKay [4] and also we referred in [5].

II. RESULTS ON SIGNED ROMAN DOMINATING FUNCTIONS

In this section we can derived some results on the signed roman dominating functions of $G = P_n o C_m$. **Theorem 2.1:** If the function $f: V \to \{-1, 1, 2\}$ is defined by

$$f(v) = \begin{cases} 2, if \ v = u_{ij} \in C_m \ and \ j \equiv 2 \pmod{3} in \ each \ copy \ of \ C_m, \\ -1, if \ v = u_{ij} \in C_m \ and \ j \equiv 1 \pmod{3} in \ each \ copy \ of \ C_m, \end{cases}$$

(+1, otherwise.)Then f is a minimal signed roman dominating function of $G = P_n oC_m$ and signed roman domination number of G is $\gamma_{sR}(G) = \frac{2mn}{3}$, when m is divisible by 3 in G.

Proof: Consider the rooted product graph $G = P_n o C_m$.

Let f be a function defined in the hypothesis.

Here -1 is assigned to $\frac{m}{3}$ vertices in each copy of C_m in G, 2 is assigned to $\frac{m}{3}$ vertices in C_m , and +1 is assigned to all other vertices in G.

Case 1: Suppose $v \in P_n$. (i) As d(v) = 4 in *G*. Thus $\sum_{u \in N[v]} f(u) = [2 + (-1)] + [1 + 1 + 1] = 4$. (ii) As d(v) = 3 in *G*. Thus $\sum_{u \in N[v]} f(u) = [(-1) + 2] + [1 + 1] = 3$. **Case 2:** Suppose $v \in C_m$ be such that d(v) = 2 in *G* & f(v) = -1, +1 or 2. Thus $\sum_{u \in N[v]} f(u) = [(-1) + 1 + 2] = 2$. In both cases, we get $\sum_{u \in N[v]} f(u) \ge 1, \forall v \in V$.

This implies that f is a signed roman dominating function (SRDF).

$$\operatorname{Now}_{u \in N[v]} f(u) = \left(\underbrace{1 + 1 + - - + 1}_{n - times}\right) + \left(\underbrace{\frac{m}{3}(-1)}_{n - times}\right) + \left(\underbrace{\frac{m}{3}(+2)}_{n - times}\right) + \left(\underbrace{(m-1) - \frac{2m}{3}}_{n - times}\right)(+1) = \frac{2mn}{3} \cdot \frac{2mn}{3}$$

By the definition of signed roman domination number, $\gamma_{sR}(G) \leq \frac{2mn}{3} \rightarrow (1)$ Now we claim that *f* is a minimal signed roman dominating function. For this we define $g: V \rightarrow \{-1, 1, 2\}$ by

$$g(v) = \begin{cases} -1, \text{ if any one vertex } v_k \in P_n, \\ 2, \text{ if } v = u_{ij} \in C_m \text{ and } j \equiv 2 \pmod{3} \text{ in each copy of } C_m, \\ -1, \text{ if } v = u_{ij} \in C_m \text{ and } j \equiv 1 \pmod{3} \text{ in each copy of } C_m, \\ +1, \text{ otherwise.} \end{cases}$$

Since, at the vertex $v_k \in P_n$ the strict inequality holds, it follows that g < f. Here we discuss about the condition $v_k \in N[v]$ and $v_k \notin N[v]$ is discussed in the above cases.

Case 3: Suppose $v \in P_n$.

(i) As d(v) = 4 in *G*, then $\sum_{u \in N[v]} g(u) = [2 + (-1)] + [1 + (-1) + 1] = 2$. (ii) As d(v) = 3 in *G*, then $\sum_{u \in N[v]} g(u) = [2 + (-1)] + [(-1) + 1] = 1$. **Case 4:** Suppose $v \in C_m$ be such that d(v) = 2 in *G* and g(v) = -1 or 2. If g(v) = -1 then $\sum_{u \in N[v]} g(u) = (-1) + [2 + (-1)] = 0$. If g(v) = 2 then $\sum_{u \in N[v]} g(u) = 2 + [(-1) + (-1)] = 0$. From the above cases, we get $\sum_{u \in N[v]} g(u) < 1$, for some $v \in V$.

This implies that g is not a SRDF.

Hence f is a minimal signed roman dominating function of G.

Therefore for any signed roman dominating function $f, \sum_{u \in N[v]} f(u) \ge \frac{2mn}{3}$.

Thus $\gamma_{sR}(G) \ge \frac{2mn}{3} \to (2)$

From the above two inequalities (1) & (2), we get $\gamma_{sR}(G) = \frac{2mn}{3}$. For example, the functional values are given at each vertex of the graph $G = P_4 \circ C_9$.

Corollary 2.2For any G, $\gamma_{\times 2}(G) = \gamma_R(G) = \gamma_{SR}(G)$ when m is divisible by 3 in G. **Proof:** From reference[5] theorem 3.4.2, $\gamma_{\times 2}(G) = \frac{2mn}{3}$, theorem 4.3.1, $\gamma_R(G) = 2n\left(\frac{m}{3}\right)$ and By the above theorem 2.1, $\gamma_{SR}(G) = \frac{2mn}{3}$. Clearly it follows that, $\gamma_{\times 2}(G) = \gamma_R(G) = \gamma_{SR}(G)$. **Corollary 2.3:** For any G, $\gamma_{SR}(G) = 2\gamma_S(G)$ when m is divisible by 3 in G. **Proof:** From reference[5] theorem 4.2.1, $\gamma_S(G) = \frac{mn}{3}$ and by the above theorem 2.1, $\gamma_{SR}(G) = \frac{2mn}{3}$. Clearly it follows that, $\gamma_{SR}(G) = 2\gamma_S(G)$. **Theorem 2.4:** If the function $f: V \rightarrow \{-1, 1, 2\}$ is defined by

(2, if
$$v = u_{ij} \in C_m$$
 and $j \equiv 2 \pmod{3}$ in each copy of C_m ,

 $f(v) = \begin{cases} -1, if \ v = u_{ij} \in C_m \ and \ j \equiv 1 \pmod{3} in \ each \ copy \ of \ C_m, \\ +1, \ otherwise. \end{cases}$ Then f is a minimal signed roman dominating function of a graph G and signed roman domination number of G is $\gamma_{sR}(G) = n \left[m - \left| \frac{m}{3} \right| \right]$, for m = 3k + 1 in G.

Proof: Consider the graph $G = P_n o C_m$ with |V| number of vertices and |E| number of edges. Let f be a function defined in the hypothesis.

Here -1 is assigned to $\left|\frac{m}{2}\right|$ vertices in each copy of C_m in G, 2 is assigned to $\left|\frac{m}{2}\right|$ vertices in each copy of C_m , and +1 is assigned to all other vertices in G.

Case 1: Suppose $v \in P_n$.

(i) As d(v) = 4 in G, then $\sum_{u \in N[v]} f(u) = [1 + (-1)] + [1 + 1 + 1] = 3$. (ii) As d(v) = 3 in G, then $\sum_{u \in N[v]} f(u) = [1 + (-1)] + [1 + 1] = 2$. **Case 2:** Suppose $v \in C_m$ be such that d(v) = 2 in G then f(v) = -1, 2 or + 1. If f(v) = -1 or 2 then $\sum_{u \in N[v]} f(u) = [(-1) + 1 + 2] = 2$. If f(v) = +1 then $\sum_{u \in N[v]} f(u) = [1 + 1 + 2] = 4$.

In the above cases f is a SRDF, because $\sum_{u \in N[v]} f(u) \ge v, \forall v \in V$.

This implies that f is a signed roman dominating function.

$$\operatorname{Now}_{u \in N[v]} f(u) = \left(\underbrace{1 + 1 + - - + 1}_{n-times}\right) + \left(\underbrace{\left\lfloor \frac{m}{3} \right\rfloor}_{n-times}\right) + \left(\underbrace{$$

By the definition of signed roman domination number, $\gamma_{sR}(G) \leq n \left| m - \left| \frac{m}{2} \right| \right| \to (1)$ Now we check for minimality of *f*, define $g: V \rightarrow \{-1,1,2\}$ by

$$g(v) = \begin{cases} -1, \text{ if any vertex } v_k \in P_n, \\ 2, \text{ if } v = u_{ij} \in C_m \text{ and } j \equiv 2 \pmod{3} \text{ in each copy of } C_m, \\ -1, \text{ if } v = u_{ij} \in C_m \text{ and } j \equiv 1 \pmod{3} \text{ in each copy of } C_m, \\ +1, \text{ otherwise.} \end{cases}$$

Where i = 1, 2, --, n.

Since, at the vertex $v_k \in P_n$ the strict inequality holds, it follows that g < f. Here we discuss about the condition $v_k \in N[v]$ and $v_k \notin N[v]$ is discussed in the above cases.

Case 3: Suppose $v \in P_n$.

(i) As d(v) = 4 in G, then $\sum_{u \in N[v]} g(u) = [1 + (-1)] + [1 + (-1) + 1] = 1$. (ii) As d(v) = 3 in G, then $\sum_{u \in N[v]} g(u) = [1 + (-1)] + [(-1) + 1] = 0$. **Case 4:** Suppose $v \in C_m$ be such that d(v) = 2 in G & g(v) = -1, +1 or 2. If g(v) = -1 then $\sum_{u \in N[v]} g(u) = (-1) + [2 + (-1)] = 0$. If g(v) = +1 or 2 then $\sum_{u \in N[v]} g(u) = (+1) + [2 + (-1)] = 2$. This implies that g is not a SRDF, because $\sum_{u \in N[v]} g(u) < 1$, for some $v \in V$.

Hence f is a minimal signed roman dominating function on G.

Therefore for any signed roman dominating function $f, \sum_{u \in N[v]} f(u) \ge n \left| m - \left| \frac{m}{2} \right| \right|$.

Thus
$$\gamma_{sR}(G) \ge n \left[m - \left[\frac{m}{3} \right] \right] \to (2)$$

From the above two inequalities (1) & (2), we get $\gamma_{sR}(G) = n \left[m - \left| \frac{m}{3} \right| \right]$. **Theorem 2.5:** If the function $f: V \rightarrow \{-1, 1, 2\}$ is defined by

$$f(v) = \begin{cases} 2, if \ v = u_{ij} \in C_m \text{ and } j \equiv 2 \pmod{3} \text{ in each copy of } C_m, \\ -1, if \ v = u_{ij} \in C_m \text{ and } j \equiv 1 \pmod{3} \text{ in each copy of } C_m, \\ +1, & \text{otherwise.} \end{cases}$$

The f is not a signed roman dominating function of $G = P_n o C_m$, for m = 3k + 2 in G. **Proof:** Let f be a function defined in the hypothesis.

Here -1 is assigned to $\left[\frac{m}{3}\right]$ vertices in each copy of C_m in G, 2 is assigned to $\left[\frac{m}{3}\right]$ vertices in each copy of C_m , and +1 is assigned to other vertices in G.

www.ijres.org

Case 1: Suppose $v \in P_n$. (i) As d(v) = 4 in G, then $\sum_{u \in N[v]} f(u) = [(-1)(2 - times)] + [1 + 1 + 1] = 1$. (ii) As d(v) = 3 in G, then $\sum_{u \in N[v]} f(u) = [(-1)(2 - times)] + [1 + 1] = 0$. **Case 2:** Suppose $v \in C_m$ be such that d(v) = 2 in G and f(v) = -1, +1 or 2. Thus $\sum_{u \in N[v]} f(u) = [(-1) + 1 + 1] = 1$ or $\sum_{u \in N[v]} f(u) = [(-1) + 1 + 2] = 2$. Since, $\sum_{u \in N[v]} f(u) < 1$, for some $v \in V$. This implies that f is not a SRDF.

III. **RESULTS ON SIGNED TOTAL ROMAN DOMINATING FUNCTIONS**

In this section we can derived some results on the signed total roman dominating functions of $G = P_n o C_m$. **Theorem 3.1:** If the function $f: V \to \{-1, 1, 2\}$ is defined by

$$f(v) = \begin{cases} 2, & \text{if } v = u_{ij} \in C_m \text{ and } j \equiv 1 \text{ or } 2 \pmod{3} \text{ in each copy of } C_m \\ -1, & \text{if } v = u_{ij} \in C_m \text{ and } j \equiv 0 \pmod{3} \text{ in each copy of } C_m, \\ -1, & \text{if } v \in P_n. \end{cases}$$

Then f is a minimal signed total roman dominating function of $G = P_n o C_m$ and signed total roman domination number of *G* is $\gamma_{stR}(G) = mn$, when m is divisible by 3.

Proof: Suppose m is divisible by 3 and m > 3. Consider the graph $G = P_n o C_m$.

Let f be a function defined in the hypothesis.

In this graph, -1 is assigned to $\left(\frac{m}{3}-1\right)$ vertices in each copy of C_m in G, 2 is assigned to $\frac{2m}{3}$ vertices of C_m , and -1 is assigned to all vertices of P_n .

Then by the definition of the function.

$$f(u_{i1}) = 2, f(u_{i2}) = 2, f(u_{i3}) = -1,$$

 $f(u_{i4}) = 2, f(u_{i5}) = 2, f(u_{i6}) = -1,$

$$f(u_{i4}) = 2, f(u_{i5}) = 2, f(u_{i6}) = -$$

 $f(u_{i(m-3)}) = -1, f(u_{i(m-2)}) = 2, f(u_{i(m-1)}) = 2.$ And $f(v_1) = f(v_2) = \dots = f(v_n) = -1$. **Case 1:** Suppose $v \in P_n$.

(i) As d(v) = 4 in G, then N(v) contains two vertices of C_m and two vertices of P_n in G. Thus $\sum_{u \in N(v)} f(u) = 1$ 22-times+[(-1)(2-times)]=2.

(ii) As d(v) = 3 in G, then N(v) contains two vertices of C_m and one vertex of P_n in G. Thus $\sum_{u \in N(v)} f(u) = 1$ 22-times+(-1)=3.

Case 2: Suppose $v \in C_m$ be such that d(v) = 2 in G then f(v) = -1 or 2.

If f(v) = 2 then $\sum_{u \in N(v)} f(u) = (-1) + (2) = 1$

And if f(v) = -1 then $\sum_{u \in N(v)} f(u) = (2) + (2) = 4$.

From the above cases, we get $\sum_{u \in N(v)} f(u) \ge 1, \forall v \in V$. It follows that *f* is a STRDF.

Now
$$\sum_{u \in N(v)} f(u) = \left(\underbrace{\binom{m}{3}}_{n-tim\,es} \left(-1\right)\right) + \left(\underbrace{\binom{m}{3}}_{n-tim\,es} \left(+2\right)\right) + \underbrace{\binom{0}{(+1)}}_{n-tim\,es} = mn$$
.

By the definition of signed total roman domination number, $\gamma_{stR}(G) \leq mn \rightarrow (1)$. Now the minimality check for *f*, define $g: V \rightarrow \{-1, 1, 2\}$ by

$$g(v) = \begin{cases} 2, & \text{if } v = u_{ij} \in C_{m} \text{ and } j \equiv 1 \text{ or } 2 \pmod{3} \text{ in each copy of } C_{m}, \\ -1, & \text{if } v = u_{ij} \in C_{m} \text{ and } j \equiv 0 \pmod{3} \text{ in each copy of } C_{m}, \\ +1, & \text{if } v = u_{ik} \in C_{m} \text{ in } i^{\text{th}} \text{ copy of } C_{m}, \\ +1, & \text{otherw ise.} \end{cases}$$

Since, at the vertex $u_{ik} \in C_m$ the strict inequality holds, it follows that g < f. Here we discuss about the condition $u_{ik} \in N(v)$ and $u_{ik} \notin N(v)$ is discussed in the above cases.

Case 3: Suppose $v \in P_n$. (i) As d(v) = 4 in G then $\sum_{u \in N(v)} g(u) = [(2) + (1)] + [(-1) + (-1)] = 1$. (ii) As d(v) = 3 in G then $\sum_{u \in N(v)} g(u) = [(2) + (1)] + (-1) = 2$.

Case 4: Suppose $v \in C_m$ be such that d(v) = 2 in *G*. Thus $\sum_{u \in N(v)} g(u) = (-1) + (1) = 0$. From the above cases, we get $\sum_{u \in N(v)} g(u) < 1$, for some $v \in V$. This implies that g is not a STRDF. Hence f is a minimal STRDF on *G*. Therefore for any STRDF $f, f(V) = \sum_{u \in N(v)} f(u) \ge mn$. Thus $\gamma_{stR}(G) \ge mn \rightarrow (2)$. From the above two inequalities (1) &(2), we get $\gamma_{stR}(G) = mn$.

From the above two inequalities (1) &(2), we get $\gamma_{stR}(G) = mn$. For example, the functional values are given at each vertex of the graph $G = P_4 o C_9$.

Corollary 3.2: For any G, $\gamma_{st}(G) = \gamma_{stR}(G)$ when m is divisible by 3 in G. **Proof:** From reference[5] theorem 6.2.2, $\gamma_{st}(G) = mn$ and by theorem 3.1, $\gamma_{stR}(G) = mn$. Clearly it follows that, $\gamma_{st}(G) = \gamma_{stR}(G)$. **Theorem 3.3:** If the function $f: V \to \{-1, 1, 2\}$ is defined by

 $f(v) = \begin{cases} 2, & \text{if } v = u_{ij} \in C_m \text{ and } j \equiv 1 \text{ or } 2 \pmod{3} \text{ in each copy of } C_m, \\ | -1, & \text{otherwise.} \end{cases}$

Then *f* is not a signed total roman dominating function of $G = P_n o C_m$, when m = 3k + 1 in *G*.

Proof: Suppose m is not divisible by 3. Consider the graph $G = P_n o C_m$ and f be a function defined in the hypothesis. Here -1 is assigned to $\left\lfloor \frac{m}{3} \right\rfloor$ vertices in each copy of C_m in G, 2 is assigned to $\left(m - \left\lfloor \frac{m}{3} \right\rfloor - 1\right)$ vertices of C_m , and -1 is assigned to all vertices of P_n .

Case 1: Suppose $v \in P_n$.

(i) As d(v) = 4 in G, then N(v) contains two vertices of C_m and two vertices of P_n in G. Thus $\sum_{u \in N(v)} f(u) = -12 - times + -1 + 2 = -1$.

(ii) As d(v) = 3 in G, then N(v) contains two vertices of C_m and one vertex of P_n in G. Thus $\sum_{u \in N(v)} f(u) = 2^{2+1+1=0}$.

Case 2: Suppose $v \in C_m$ be such that d(v) = 2 in *G* then f(v) = -1 or 2. If f(v) = 2 then $\sum_{u \in N(v)} f(u) = (-1) + (2) = 1$.

If f(v) = -1 then $\sum_{u \in N(v)} f(u) = (2)(2 - times) = 4$.

Since, $\sum_{u \in N(v)} f(u) < 1$, for some $v \in V$. This implies that f is not a STRDF.

Theorem 3.4: If the function $f: V \to \{-1, 1, 2\}$ is defined by

$$f(v) = \begin{cases} 2, & \text{if } v = u_{ij} \in C_m \text{ and } j \equiv 1 \text{ or } 2 \pmod{3} \text{ in each copy of } C_m, \\ | -1, & \text{otherwise.} \end{cases}$$

Then *f* is not a signed total roman dominating function of $G = P_n o C_m$, for m = 3m + 2 in *G*.

Proof: Suppose m is not divisible by 3. Consider the graph $G = P_n o C_m$ and f be a function defined in the hypothesis. Here -1 is assigned to $\left\lfloor \frac{m}{3} \right\rfloor$ vertices in each copy of C_m in G, 2 is assigned to $\left(m - \left\lfloor \frac{m}{3} \right\rfloor - 1 \right)$ vertices of C_m , and -1 is assigned to all vertices of P_n . Then by the definition of the function.

(ii) As d(v) = 3 in G, then N(v) contains two vertices of C_m and one vertex of P_n in G. Thus $\sum_{u \in N(v)} f(u) = 22 - times + -1 = 3$.

Case 2: Suppose $v \in C_m$ be such that d(v) = 2 in *G*. If $f(v) = f(u_{i1})$ then $\sum_{u \in N(v)} f(u) = (-1) + (2) = 1$. If $f(v) = f(u_{i(m-1)})$ then $\sum_{u \in N(v)} f(u) = (-1) + (-1) = -2$. And $f(v) = f(u_{ij})$ then $\sum_{u \in N(v)} f(u) = (-1) + (2) = 1$ or $\sum_{u \in N(v)} f(u) = (2)(2 - times) = 4$, here $j \neq 1$ or (m - 1). From the above cases, we get $\sum_{u \in N(v)} f(u) < 1$, for some $v \in V$.

This implies that f is not a signed total roman dominating function.

No Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

- Ahangar H. A., Henning M. A., Löwenstein C., Zhao Y., and Samodivkin V., Signed Roman domination in graphs, Journal of Combinatorial Optimization, 27(2)(2014) 241-255.
- [2] Dunbar J. E., Hedetniemi S. T., Henning M. A., and Slater P. J., Signed Domination in Graphs, Graph Theory, Combinatorics and Application, John Wiley and Sons, Inc., Hoboken, (1995) 311-322.
- [3] Favaron O., Signed domination in regular graphs, Discrete Math., 158(1996) 287-293.
- [4] Godsil C. D., and McKay B. D., A new graph product and its spectrum, Bulletin of the Australian Mathematical Society, 18(01)(1978) 21-28.
- [5] Shobha rani C., "STUDY ON DOMINATING FUNCTIONS OF ROOTED PRODUCT GRAPH OF A PATH WITH CYCLE", Thesis Submitted to the Jawaharlal Nehru Technological University Anantapur, December 2019.
- [6] Volkmann L., Signed total Roman domination in digraphs, Discussiones Mathematicae Graph Theory, 37(1)(2017) 261-272.
- [7] Volkmann L., Signed total Roman domination in graphs, Journal of Combinatorial Optimization, 32(3)(2016) 855-871.