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Abstract

This article assumes that the random error term obeys the asymmetric Laplace distribution, and realizes the
quantile regression of the likelihood function of the asymmetric Laplace distribution specified by the negative
binomial distribution for Bayesian analysis, and uses the Gibbs sampling algorithm to obtain the parameters.
The statistical properties of the posterior distribution are compared and the influence of whether the scale
parameter is parameterized on the statistical properties of the model estimated coefficients is compared. The
experimental results show that the statistical properties of the estimator obtained after the scale parameter is
parameterized are better.
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I. INTRODUCTION

Since the least-squares estimation was proposed, it has been widely used in the field of social economy,
but sometimes it can’t fully describe the relationship between dependent variables and independent variables.
Therefore, quantile regression was proposed to supplement the deficiency of focusing only on conditional mean
estimation based on least-squares estimation. Koenker first proposed the concept of "Quantile Regression" in
1978 [1]; Koenker and Machado studied the relationship between quantile and asymmetric Laplace distribution
in 1999 [2]; Yu used Bayesian quantile regression based on asymmetric Laplace distribution to estimate
parameters in 2001 [3]. At the same time, it is confirmed that even if the prior distribution is not appropriate, the
posterior distribution obtained is also appropriate; with the development of the times, the combination of
quantile regression and Bayesian analysis method is applied to more and more fields. In 2005, Yu et al. studied
the distribution of wages in Britain based on this method [4].

In previous studies, researchers have always set the scale parameter of asymmetric Laplace distribution
as 1. In 2009, Wang Xinyu and other researchers proved that the scale parameter should be parameterized [5].In
2012, Zeng Ping and others studied the Bayesian analysis of non-standard distribution in WinBUGS software
[6]. Based on this idea, this paper realizes the parameter estimation of Bayesian quantile regression of
asymmetric Laplace distribution specified by negative binomial distribution in WinBUGS.

Il. ASYMMETRIC LAPLACE DISTRIBUTION (ALD)

When using the Bayesian analysis method to estimate the quantile regression model, to make the model
more robust, it is assumed that the random error term obeys ALD, so the maximum likelihood function is
obtained according to its probability density function. The posterior distribution of parameters can be obtained
from the prior distribution of parameters by the Bayesian theorem.

2.1 LAPLACEDISTRIBUTION (LD)
Since the probability density function of Laplace distribution (LD) is composed of two exponential
functions, it is also called double exponential distribution. The probability density function of LD is

t(y: 11,0 :%exp{_M} (21)

O
It is said that the random variable y obeys the Laplace distribution, the mean is s, and the variance is 2.

Among them, the location parameter —oo < 1 < +o0 and the scale parameter o > 0 ; this distribution is also called
the one-variable Laplace distribution, and the normal distribution is the binary Laplace distribution.
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2.2 PROBABILITY DENSITY FUNCTION OF ASYMMETRIC LAPLACE DISTRIBUTION
The probability density function of ALD is
q(l-q -
f(y;1,0,q) = %exp {—%[q -l(y< #)]} y € (o0, +e0) (2.2)

where the location parameter —o < g < 400, the scale parameter o >0, the skewness parameter0 < g <1, and

the loss function is s [yf‘ﬂj = %{ +(29 ‘Q%} .

The density function diagram of ALD is shown in figure 1. When the position parameter 4 and the
scale parameter & are fixed, with different values of the skewness parameter (, the density function diagram of
ALD is also different; whenq=0.2, the density diagram of ALD is biased to the right. Whenq=0.5, the
density diagram of ALD is symmetrical on the left and right sides of the position parameter. When q =0.8, the
density diagram of ALD is biased to the left.
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Figure 1:Density function of asymmetric Laplace distribution (ALD) (#=0,0=1,q)

I1l. BAYESIAN QUANTILE REGRESSION
When using the Bayesian analysis method to estimate the quantile regression model, we first need to
build a linear regression modeland then assume that the random error term obeys ALD. Then, based on the
Bayesian method, we use the Markov chain Monte Carlo (MCMC) method to sample to obtain the posterior
distribution of parameters. Finally, we test the estimation effect of parameters through data simulation analysis.

3.1 LINEAR MODEL
The linear regression model is:

y =0, + B X+U, (3.1
where let Z(x; )=, +Bx, soy=Z(x;)+u, where Y is the dependent variable, X is the independent
variable, /3, is the constant parameter to be estimated, /£, is the coefficient parameter to be estimated, and the
random error term U ~ ALD(0,,q) , that is, y ~ ALD(Z (x;ﬁ),a,q).

3.2 ASYMMETRIC LAPLACE DISTRIBUTION LIKELIHOOD FUNCTION
The likelihood function of ALD probability density function is:

L2 (5 ) o) = L9 exp{—%ipq (ui)} Y, & (0 0), (32)

where p, (U;)=u, [q— I(u, SO)] is loss function,and U; =Y, —Z(x;/).The core idea of Bayesian quantile

regression based on asymmetric Laplacian distribution is: transform the optimal solution problem of quantile
regression into solving an asymmetric Laplace distribution probability density maximization of the likelihood
function.

3.3 SPECIFYING ASYMMETRIC LAPLACE DISTRIBUTION WITH NEGATIVE BINOMIAL
DISTRIBUTION

WinBUGS (Bayesian inference Using Gibbs Sampling, BUGS)is a software dedicated to Bayesian
statistical analysis. WinBUGS is a version under the Windows operating system. The biggest advantage of this
software is that it is free for users and flexible in operation, so it is widely used in Bayesian analysis; but in
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WinBUGS software only more than 20 standard distributions are provided, and the non-standard distribution of
ALD involved in this article is not included. Therefore, it is necessary to specify ALD with a negative binomial
distribution. First, compile the program that specifies the likelihood function of ALD in the WinBUGS software
for negative binomial distribution; then use the "bugs()" function in the Rstudio software to call the WinBUGS
compiled and saved program, and perform Gibbs sampling based on the WinBUGS software to achieve
Simulation of Bayesian quantile regression.

In the Bernoulli experiment sequence, the probability of occurrence of event A in each experiment is P
If X is the number of experiments when event A occurs for the I th time, then the possible value of X is
r,r+1---,r+m,--- and X is said to obey negative binomial distribution or Baska distribution, its distribution is
listed as follows:

f(X=k)=CIp"L-p)*" k=rr+l-, (3.3)

1
where X ~ Nb(r, p) , mathematical expectation as 1 r , and variance as F r(l— p) [71.
p

3.3.2The negative binomial distribution specifies the asymmetric Laplace distribution
Suppose the logarithmic density function of the data isl, =log f (y;;Z(x;8),0,0) . the probability

density function is f(yi;Z(xi; ),o-,q):exp(li), and the negative binomial distribution data are

h =0,i=12,---,n, then the likelihood function is L(y;;Z(%;8),0,9) = ﬁeXP(|i ) the parameter

P, =exp(1, ). ’ 4

in order to ensure P, 6[0,1] , so a larger c_goop IS  reduced,  where

I, = Iog(q(l—q))—Ioga—zi[|ui|+(2q —1)ui], U, =Y, —Z(x;/), then the likelihood function is:
O

L(y;;Z(%;B),0,9) H [exp —c][l exp(l —c)]

0! 1 1
ocl_[exp(li —c)
i=1

IV. NUMERICAL SIMULATION ANALYSIS
The model for generating random data is

Y =1+2X +é, (4.1)
where X ~U (0,10)and ¢~ ALD(0,1,q) use the generated random data to simulate model(3.1).

(3.9)

4.1 THE SCALE PARAMETEROCISSET TO1
When the scale parameter o is set to 1, and the parameters to be estimated are /3, and 5, , it is assumed

that the prior distribution of the parameters to be estimated obeys the normal distribution. According to the
Bayesian theorem, the joint posterior distribution of the parameters is

P(yiiB.0) o L(%:Z(%:8).La) f (B), (4.2)

where f (/3) is the prior distribution of the coefficient S to be estimated, so

1
| =log(q(-a)- [Ju]+(@a-Du, ], (4.3)
substituting formula (4.3) into formula (3.4), the expression of parameter p, can be obtained:
P = exp(li _C)
1
= exp{log[q(l— 0] lul+a —1)ui]—600} (4.4)

= q(L-g)exp{-p, (u;)—600}
substituting formula (4.4) into formula (3.5), the joint posterior distribution of the parameters can be expressed
as:
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P(Yi;ﬁvo') o L(yi;z(xi;ﬂ)’l’q) f (:8)
o q"(1-q)" exp{-nc} EXP{_ZPU, (Ui)}-

Figure 2 shows the likelihood function of ALD specified by the negative binomial distribution, the
prior distribution is set to # ~ N(0,100) , the parameters 5, and £, are at the 0.75 quantile and the sample size is
75, the iteration is 10000 times, and the burn-in period is 5000 times. Sampling trajectory graph, density graph
and autocorrelation graph, the results show that the 5000 sampling values of parameter parameters S, and 5,

fluctuate up and down the set value, and the autocorrelation coefficient tends to zero as the lag period increases.
Therefore, the Markov chains formed by sampling all converge.
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Figure 2: Trajectory graph, density graph, and autocorrelation graph of 5, and B, sampled values
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Table 1:The mean, standard deviations, and MC errors of parameters g and g when @ is set to 1.

sample quantile 0.25 0.5 0.75
prior information
size parameter mean sd MC errors mean sd MC errors mean sd MC errors
5o -0.35840 0.63150 0.04100 0.18450 0.48930 0.05223 1.79900 0.69480 0.05175
25
B 2.08100 0.09703 0.00629 2.09700 0.07615 0.00811 1.98100 0.10740 0.00796
5o -0.32360 0.55320 0.04079 44.99000 10.32000 1.22800 1.39600 0.37280 0.02616
£~N (0,100) 75
B 1.99400 0.08611 0.00640 -34.29000 1.13100 0.13460 2.03900 0.06557 0.00462
5o -0.30170 0.43700 0.03132 84.40000 12.04000 1.43300 18.37000 8.46500 0.95450
100
ﬂl 1.91100 0.08437 0.00593 -40.34000 1.37400 0.16360 -30.82000 1.36600 0.15430
ﬁo -0.29870 0.65390 0.04001 0.21630 0.53060 0.04218 1.77600 0.65420 0.04501
25
ﬂl 2.07000 0.10390 0.00630 2.09200 0.08788 0.00705 1.98300 0.10100 0.00693
ﬁo -0.32150 0.52270 0.03719 0.58650 0.33750 0.02382 1.37800 0.38330 0.02871
B~N(0,10) 75
ﬂl 1.99300 0.08427 0.00607 2.02700 0.05553 0.00397 2.04300 0.06915 0.00511
ﬁo -0.22660 0.39260 0.02421 0.55010 0.32010 0.02214 1.31600 0.28910 0.01687
100
ﬂl 1.90000 0.07868 0.00454 1.99000 0.06267 0.00430 2.01600 0.05881 0.00330
ﬁo -0.11460 0.54310 0.03086 0.23480 0.46300 0.03398 1.31800 0.55460 0.03778
25
ﬂl 2.04200 0.09239 0.00530 2.08500 0.07854 0.00577 2.03900 0.09213 0.00603
ﬁo -0.17590 0.47580 0.03267 0.57610 0.32780 0.02268 1.28700 0.32700 0.02252
£~N(0,1) 75
ﬂl 1.96800 0.07960 0.00542 2.02600 0.05278 0.00357 2.05400 0.06142 0.00417
ﬁo -0.17960 0.37620 0.02335 0.53360 0.31380 0.02143 1.22900 0.26450 0.01510
100
ﬂl 1.88800 0.07653 0.00455 1.99100 0.06314 0.00419 2.02700 0.05690 0.00324
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The above table uses the Gibbs sampling algorithm to sample the model parameters and the number of
samples is 10,000. To eliminate the influence of the initial value of the parameters on the sampling distribution,
the first 5000 sampling values are removed. Finally, the mean, standard deviations, and MC errors of the
posterior distribution of the parameters can be obtained, as shown in table 1:

(1)When the prior distribution and quantile are the same, as the sample size N increases, the standard

deviations and MC errors of the parameters 3, and 3, to be estimated gradually decrease.
(2)Under the same condition of sample size and quantile, with the enhancement of the prior distribution,
the standard deviation and MC error of the parameters B, and B, will be smaller, that is, when the prior

information is enhanced, the estimation accuracy of the parameters can be improved.
(3) When the prior information, sample size, and quantile are the same, the standard deviation and MC

errors of S, are always smaller than the standard deviation and MC errors of J3;, that is, the estimation accuracy

of the coefficient term obtained in the WinBUGS software is often higher than that of the constant term
estimated accuracy.
(4)In these three prior settings, when the sample size and prior information are the same, except that the

prior information is 8 ~ N (0,100) and the sample size is 100, the standard deviations and MC errors ratio of
parameters S, and £, at the 0.25 quantile are in the standard deviations and MC errors at 0.5 quantile and 0.75

quantile are small. Under other conditions, the standard deviations and MC errors of parameters 3, and S, at 0.25
quantile are both at 0.5 quantile and 0.75 quantile. The lower standard deviations and MC errors are large, that is,
the estimation accuracy of the parameters 3, and S, in the median and high quantile are higher.

4.2 PARAMETERIZE THE SCALE PARAMETER o
When the scale parameter in ALD is set to 1, although the estimated accuracy of the parameter is high,
it is not appropriate in practical applications. Therefore, the scale parameter in ALD should be parameterized

[5].
Wheno |, B,, and B, are all to be estimated, assuming that the prior distribution of the parameters /3,
and B, to be estimated is a normal distribution, the prior distribution of the scale parameter o is a chi-square

distribution, and the degree of freedom is 4, the smoothness of the three parameters to be estimated is higher.
when the three parameters to be estimated have higher smoothness. According to the Bayesian theorem,
the joint posterior distribution of the parameters is

P(y:B.0)xL(¥:Z(%:8),0,9) f(B)g(o), (4.6)
where f () is the prior distribution of the coefficient 4 to be estimated, g(o)is the prior distribution of the

scale parameter &, and o ~ x*(4),

I, = Iog[q(l—q)]—loga—EHﬁ +(2q—1)ﬂ}, 4.7
2||o o
substituting formula (4.7) into formula (3.4), the expression of parameter p, can be obtained as:
P = exp(li —C)
= exp{log[q(l— 9)]- Ioga—EHﬁ +(2q —1)ﬂ} —600} (4.8)
2||o o

_ad-q) exp {—pq (ﬁj - 600} ,
o o

substituting formula (4.8) into formula (3.5), the joint posterior distribution of the parameters can be expressed
as:
P(yiB.0)xL(¥iZ(x:8).0.0) T (8)g(o)
q'@-q)" N
— € —Nc; e - ;
LD eploncjerp| -2 3, (1)

Figure 3 shows the likelihood function of the ALD specified by the negative binomial distribution, and
the prior distribution is set to # ~ N(0,100), the parameterso , 5,, and S, are at the 0.75 quantile, the sample
size is 75, the variance is 100, iteration is 10,000 times, and the burn-in is the trajectory graph, density graph and

(4.9)
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autocorrelation graph of Gibbs sampling values with a period of 5000 times. The results show that the 5000

sampling values of parameterso , B,, and g, fluctuate up and down the set
coefficient tends to zero with the increase of the lag period, so the Markov chain
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Figure 3:.The trajectory graph, density graph, and autocorrelation graph of the sampled values of 5,, A,

ando

Table 2:The mean, standard deviations, and MC errors when parameters S, , 8,, and o are all to be

estimated
sample quantile 0.25 0.5 0.75
prior information
size parameter mean sd MC errors mean sd MC errors mean sd MC errors
5o -0.33670 0.40060 0.03062 0.35630  0.20250 0.01542 1.83000  0.36700 0.02749
25 B 2.09500 0.05705 0.00431 2.06900  0.03493 0.00265 1.97100  0.05173 0.00382
o 0.26650 0.05981 0.00097 0.27850 0.06252 0.00135 0.28530 0.06190 0.00100
ﬁo -0.30430 0.37670 0.02906 0.67030 0.25230 0.01818 1.37000 0.21980 0.01712
L~N (0, 100) 75 ﬁl 1.99400 0.05685 0.00435 2.01600 0.03935 0.00282 2.04000 0.03849 0.00303
o 0.36110 0.04300 0.00069 0.44200 0.05199 0.00077 0.38260 0.04594 0.00085
180 -0.22370 0.30070 0.02114 0.59590 0.24460 0.01644 1.29900 0.17460 0.00969
100 ﬁl 1.90100 0.05651 0.00377 1.98500 0.04770 0.00317 2.01300 0.03728 0.00209
o 0.43600 0.04554 0.00068 0.50060 0.05226 0.00081 0.41040 0.04221 0.00051
ﬁo -0.32930 0.40150 0.02860 0.37600 0.20600 0.01616 1.74600 0.42000 0.03560
25 ﬁl 2.09300 0.05813 0.00405 2.06500 0.03475 0.00270 1.98100 0.06092 0.00512
o 0.26570 0.05918 0.00102 0.27930 0.06258 0.00118 0.28690 0.06471 0.00131
L~N (O, 10) ﬁo -0.23050 0.36190 0.02608 0.60700 0.22840 0.01558 1.37600 0.21680 0.01600
75 ﬁl 1.98200 0.05572 0.00397 2.02500 0.03634 0.00251 2.03800 0.03760 0.00277
o 0.36020 0.04188 0.00067 0.44150 0.05192 0.00082 0.38270 0.04496 0.00070
100 ﬁo -0.19130 0.28030 0.01765 0.57280 0.25850 0.01950 1.30100 0.18850 0.00996
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A 189500  0.05317 ~ 000330  1.98800 005010 ~ 000375 201300  0.04022  0.00216

c 043480 004560 000073 050180 005292 000076 041110 004203  0.00069

By -0.19100 039360 002783  0.35350  0.19120  0.01292 1.64100 036190  0.02686

25 A 207400 005814 000418 206800 003273  0.00219 1.99300  0.05299  0.00392
c 026610 ~ 005888 000123 027820 006085 000122 028750  0.06408  0.00123

By -0.23810 033500 002487 058420 022110  0.01404 131800  0.21150  0.01673

B ~N(0,1) 75 B 1.98200  0.05384 0.00402 202700  0.03471 0.00226 2.04700  0.03851 0.00306
c 036030 004248 000064 044260 005299 000071 038260  0.04450  0.00061

By -0.16190 026430 001769 059740  0.25150  0.02053 1.26700 017340  0.01124

100 A 188800  0.05178 000335 198200 0.04916 000402 201900  0.03739  0.00236
c 043530 004439 000061 050080 005209 000082  0.40940  0.04283  0.00064

The above table uses the Gibbs sampling algorithm to sample the model parameters and the number of
samples is 10,000. To eliminate the influence of the initial value of the parameter on the sampling distribution,
the first 5000 sampling values are removed. Finally, the mean, standard deviations and MC errors of the
posterior distribution of the parameters can be obtained, as shown in table 2:

(1)When the prior distribution and quantile are the same, as the sample size increases, the standard
deviations and MC errors of parameters o, B, , and S, gradually become smaller.

(2)Under the same conditions of prior information, sample size, and quantile, for the size of the
standard deviations: B, <o < £, but for the size of the MC errors: o < S, < £, .

(3)Under the same condition of sample size and quantile, with the enhancement of the prior distribution,
the standard deviations and MC errors of parameters o, 5,, and S, are smaller, that is, when the prior
information is enhanced, the estimation accuracy of the parameters can be improved.

(4)When the prior information is the same and the sample size is 100, the standard deviations and MC
errors of the parameters o, f,, and f, at the 0.75 quantile are smaller than the standard deviations and the MC
errors at the 0.25 quantile and 0.5 quantile.

Comparing table 1 and table 2, we can see that when the prior information, sample size, parameters and
quantile are the same, the standard deviations and MC errors of parameters £, and f, in table 2 are smaller than

those of parameters 5, and B, in table 1 MC errors. Therefore, parameterizing the scale parameter can improve

the estimation accuracy of parameters 5, and 3, , that is, the scale parameter should be parameterized instead of
being set to 1.

V. CONCLUSION

In this paper, in the Bayesian quantile regression analysis, the relevant statistical properties of the
parameter posterior distribution are obtained through the Gibbs sampling algorithm. The experimental results
show that the likelihood functionof ALD is specified based on the negative binomial distribution. After the scale
parameter is parameterized, the statistical property of the estimator of the posterior distribution of the parameter
is better than the statistical property of the estimator when the scale parameter is assumed to be 1, so the scale
parameter should be parameterized; even if the prior distribution is improper, the obtained posterior distribution
is also suitable; a proper prior distribution can improve the accuracy of Gibbs sampling estimates.
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