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Abstract

Let M be a near I'-ring, and let ¢ be an automorphism on M.
Let d be a reverse o-derivation on M. In this study, we investigate the
commutativity of a prime near I'-rings M employing certain conditions
on non-zero reverse o-derivations d and non-zero derivations on M.
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I.  Introduction
Let M and I' be additive abelian groups. M is sald to be a I'-tring if there
exists a mapping M x I' x M — M (sending (x, a,y) into zay) such that
(a) (r +y)az = raz + yaz,
r(a+ By = ray + x5y,
ra(y + 2) = ray + raz,

(b) (ray)fz = ra(yBz),
for all z,y,z € M and a, 3 € T.

A T'-ring M (not necessarily abelian under addition) is called a right
(resp. left) near I'-ring satisfying the right distribution law over addition
(resp. left distribution law over addition). A right (resp. left) near I'-ring M
is sald to be a zero-symmetric right (resp. left) near I'-ring if Oaxz = 0 (resp.
ral = 0), for all r € M and a € I'. A near ['-ring M is said to be prime if
raMFy = 0 implies either * = 0 or y = 0, for all z,y € M and «, 3 1.
A near I'ring M is said to be 2-torsion free if =+ +x = 0 for all z € M
implies # = 0. The center of M is denoted by Z and is defined by Z = {x
M : zay = yazx for all y € M and @ € I'}. The commutator ray — yaz is
denoted by [z, y]s. In our paper, we use the condition rayfSz = zSyaz for
all z,y,z € M and &, 3 € I' whereabouts we need and we denote it by (*).
With the help of (x), the useful notations [z, y5z],, and [ray, z]5 are given by
[z, yBz]a = ye[z, 2] + [z, y]aBz and [zay, 2]z = zaly, 2]z + [z, z].By for all
r,y,z € M and o, € I'. An additive mapping d : M — M is said to be a
derivation on M if d(ray) = rad(y) + d(z)ay for all z,y € M and o, 5 € T'.
The derivation d is said to be commuting on M if [d(z), 2], =0 for all z € M
and o« € T'.

Y.Ceven [10] studied on Jordan left derivations on completely prime ['-rings.

He mvestigated the nonzero Jordan left derivation on a completely prime I'-
ring that can make the I'-ring commutative by an assumption. He proved that
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every Jordan left derivation on a completely prime I'-ring is a left derivation
on it by the same assumption. In this paper, he created an example of Jordan
left derivation on ['-rings.

Mustafa Asci and Sahin Ceran [7] investigated a nonzero left derivation d on
a prime I'-ring M that makes M commutative with the conditions d(U) C U
and d?(U) C Z, with an ideal U of M and the center Z of M. They also
studied the commutativity of M using the nonzero left derivation dy and
right derivation dy on M such that do(U) € U and ddy(U) C Z.

A derivation and a Jordan derivation on I'-rings are defined due to Sapanci
and Nakajima [8]. They proved that a Jordan derivation on a certain type
of completely prime I'-ring is a derivation. They also set examples of a
derivation and a Jordan derivation of ['-rings.

A. K. Halder and A. C. Paul [1] investigated the existence of a non-zero Jor-

dan left derivation of a 2-torsion free prime ['-ring into a faithful I'M-module
X that makes M commutative. They also proved that M is commutative if
d: M — M is a derivation.

K. K. Dey and A. C. Paul [5] studied o-derivations d on Prime Gamma-
Near-Rings with automorphism ¢ on Prime Gamma-Near-Rings. In this
study, they proved that if d 1s a o-derivation such that od = do with d2
d? = 0, then d = 0. They also investigated composition o7-derivations of
two derivations o and 7 on Prime Gamma-Near-Rings.

A. M. Ibraheem [3] investigated the commutativity of prime ['-near- rings M
with the help of generalized I'-derivations F and G satisfying certain condi-
tions.

In this study, we develop the results of A. M. Ibraheem [2] and the com-
mutativity part of [4] in I'-ring version. We prove the commutativity of a
prime near I'-ring M with a reverse o-derivation d : M — M satisfving cer-
tain properties. We also prove the commutativity of a two-torsion free prime
near ['-ring in presence of a non-zero derivation with some conditions.

Il.  Initial Results
To prove our main results we need the following definition and lemmas:
Definition 2.1 If M is a near I'-ring and o is an automorphism on M
then an additive mapping d : M — M is said to be a reverse o-derivalion
whenever d(xay) = d(y)ax + o(y)ad(x), for all z,y € M and o € T'.
Lemma 1 For any near '-ring M and any arbitrary automorphism d
M — M, dzay) = o(y)ad(z) + d(y)az if and only if d(ray) = d(y)ax +
oly)ad(x), for all z,y € M and o« € I'. Therefore d is a reverse o-derivation
on M if and only if d(zxay) = d(y)ar + o(y)ad(z), for all z,y € M and
el

Proof
Suppose d(ray) = o(y)ad(xr) + d(y)az, for all z,y € M and o € T'.
Since (z + z)ay = ray + ray for all z,y € M and a € T,
d(x + z)ay
= o(y)ad(z + z) +d(y)a(z + z)
= o(y)ad(z) + o(y)ad(z) + d(y)ax + d(y)ax. .. (1)
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and

d(zay + ray)
= d(zay) + d(zay)
o(y)ad(z) + d(y)azr + o(y)ad(z) + d(y)az. .. (2)

forall z,y e M and a € T.

Equations (1) and (2) yield

d(zay) = o(y)ad(z) + d(y)ar = d(y)ax + o(y)ad(z), for all z,y € M and
acl.

The reverse part 1s similar.

Lemma 2 Ifd is a non-zero reverse o-derivation on a prime near I' — ring
M and d(M) C d(Z) then M is a commutative near ['-ring.

Proof
Suppose d(z) € Z for all z € M. Then

d(r)az = zad(z) ... (3),

forallze Z, z e M and a eI
We replace = by 8y in equation (3) and then use the action of d to get

(d(y)Bz + o(y)Bd(z))az = za(d(y)Bz + o(y)Bd(z)),
which with (%) yields

o(y)ad(z)Bz — zBo(y)ad(x)
= —d(y)azfz + z3d(y)azx
— _d(y)ozpz + d(y)azbe... (4),

forall zv,ye M, z€ Z and a,3 €I
Replacing o(y) by d(z) in equation (4) and then using (3), we have

d(y)a(—zBz + zBz) = d(y)alz, x|z =0 (5),

forall z,y e M, z€ Z and a,3 € T.
We write zay for z in equation (5) and then use equation (5) and () in the
obtained result to get

d(y)azBly, x]a = 0,

for all z,y,z € M and a, 7 €T.
Since M 1s prime and d 1s non-zero,

[y: ':C]r:t = U!
for all 2,y € M and a € I'. Therefore M 1s a commutative prime near ['-ring.

Lemma 3 Ifd is a non-zero reverse o-derivation on a prime near I'-ring M
with center Z then d(Z) C Z.
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Proof
Let e M, z e Z and a € I'. Then we have

d(raz) = d(zazx).

Now by using Lemma 1 and then replacing o(z) by Z in the obtained result,
we have

draz) = zad(z) +d(z)azx . .. (6),
forall z,z € M and a €I
Also,
d(zazx) = d(x)az + o(r)ad(z) . .. (7),

forall z,z € M and a €I
Equations (6) and (7) give

d(z)ar = o(r)ad(z)

forall z,z € M and ae € T'.
Since ¢ is an automorphism on M, o(x) = z yielding d(z)ar = rad(z) for

all z,z € M and a € T'. Therefore d(z) € Z and so d(Z) C Z.

Lemma 4 If d is non-zero reverse o-derivation on a prime near I'-ring M

and zad(M) =0 or d(M)az =0 for all x € M and o € T then = = 0.
Proof Suppose

rad(v)=0... (8),
forallv e M and a € T'.
Replacing v by ufv in equation (8), and by definition of d, we have

rad(v)Bu + rao(v)Bd(u) =0... (9),

for all z,u,v € M and ., 3 € I'.
Since o is an automorphism on M, o(v) = v and we have by equations (8)

and (9)
ravfd(u) =0,

for all z,u,v € M and ., 3 € I'.
This implies that

raMpBd(u) = 0,

for all x,u € M and o, 3 € T'.

Since M 1s prime, x = 0.

Similarly, if d(M)ar = 0 for all x € M and a € T', it can be shown that
r=0.
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3 Commutativity of Prime Near ['-rings With
Non-zero Reverse o-derivations

Theorem 1 Let d be a non-zero reverse o-derivation on a prime near I'-ring
M with center Z satisfying [x,d(z)], =0 for allz € M and a € I'. Then M

is commutative.

Proof
Let [z,d(z)], = 0 for all z € M and a € . We replace d(z) by yfd(z) in
[x,d(z)]o = 0 and then use (*) and the given condition in the obtained result
to get

2, ylafd(x) =0... (10),

for all z,y € M and e, 3 € I'. Putting zay for y in equation (10) and then
using (*) and (10) in the obtained result, we get

[z, z]qayBd(x) = 0,
for all z,y,z € M and a, 8 €I
This gives
[z, z]aaM pd(x) = 0,
forall z,z € M and o, 3 € T
Since M is prime and d is non-zero, it follows that [z, 2], = 0 and that z € Z

for any fixed z € M. Thus by Lemma 3, d(z) € Z and so d(M) C Z. Hence

by Lemma 2, M 1s commutative.

Theorem 2 If d is a non-zero reverse o-derivation on a prime near I'-ring
M with center Z such that [d(y),d(z)], =0 for allz,y € M and o € T', then

M is commutative.
Proof
Let
[d(y), d(2)]a = 0. . (11),
for all r,y € M and o € I
Replacing y by yf8z in (11) and then using action of d, (), and (11) in the
obtained result, we have

d(z)ely, d(z)]s + [o(z),d(z)]abd(y) = 0. .. (12),

for all z,y € M and v, 3 € T'.
For z € Z, we replace zay for y in (12) and use () to get
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d(z)azaly,d(z)]s + d(z)alz, d(z)]obBy + [o(z), d(z)]cad(y) Bz
+lo(z),d(z)|,a0o(y)Bd(z) =0. .. (13),
for all z,y,z € M and a, 3 €T

Since o is an automorphism on M, o(r) =  and o(y) = vy in (3) and then
(12) 1 (13) gives that

[z, d(z)]|aaypd(z) =0,

forall z,y,z € M and o, 8 € I'.
This gives that (13) gives that

[z, d(z)],aMBd(z) =0

forall z,z € M and o, B € T.
Since M is prime and d is non-zero, [z,d(z)], =0 for all z € M and a € I
Thus by Theorem 1, M 1s commutative.

Theorem 3 If d is a non-zero reverse o-derivation on a prime near I'-ring

M with center Z satisfying [x,d(y)|a € Z for all z,y € M and o, € T', then

M s commutative.

Proof
Suppose that [z, d(y)], € Z for all 2,y € M and «a, € I". Then for any u € M
and 3 € I, we have

2. d(y)]a uls =0.... (14)

Replacing = by rad(y) in (14) and then using * and (14) in the obtained
result, we have

[z,d(y)]acld(y),uls =0... (15),

for all z,y,u € M and o, 3 € I'.
Putting uax for = in (15) and then using (*) and (15) in the gained result,
we get

[’IL, d(y)]aaxﬁ[d(y)a U’]a =0

for all z,y,u € M and o, € I'. This implies that
[u, d(y)]aaM Bd(y), u]a = 0

for all yu e M and o, 5 € T".
Since M is prime, either

[u,d(y)]la=0... (16)
for all y,u € M and a € T,
or

(). ula =0... (17)
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for all yu € M and o € T'.

Now, replacing d(y) by vad(y) in equations (16) and (17) and using equa-
tions (16) and (17) in the obtained results, we have [u,v],ad(y) = 0 or
v, u]pad(y) =0 for all y,u,v € M and a € I'.

Then by Lemma 4, we have [u,v]|, = 0 and [v,u], = 0 for all u,v € M and
a € I'. Hence M is commutative.

Theorem 4 If d is d is a non-zero reverse o-derivation on a prime near
[-ring and x € M with center Z such that [z,d(z)]a =0 for all « € T, then
d(z) =0 orz € Z, and so M is commutative.

Proof
Suppose

2, d(2)]a = 0. (18)

forallz € M and a € I'.
Replacing d(z) by yfd(x) in equation (18) and then using () and (18) in
obtained results, we have

[z, ylafd(z) =0... (19)

forall z,y € M and o, B € T'.
Putting y by zay in equation (19) and then using (*) and (19) in the gained
result, we have

[z, z]eayBd(z) = 0,

for all z,y,z € M and «, 8 € T'. This implies that [z, z],aMBd(z) = 0 for
all 2,z € M and a, 5 € T'.

Since M is prime and d is non-zero, [r, z], = 0 for all z,z € M and o € I'.
This implies = € Z for any fixed x € M, and so by Lemma 3, d(M) € Z.
Therefore by Lemma 2, M is commutative.

Theorem 5 Ifd is a non-zero reverse o—derivation on a prime near I'-ring
M such that d([z,yla) = [z,d(y)]a for all 2,y € M and a € T', then M is
commutative.

Proof
Let

d([z,yla) = [z, d(¥)]a - -- (20),

for all z,y € M and o € T'.
Writing ySz in equation (20) and then employing (%) and (20) in the obtained
outcome, we have

[z,d(x)]aBy + [z,0(x)]aBd(y) =0. .. (21),
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for all z,y € M and o, 3 € I'. Since o is an automorphism on M, o(z) = =
and so (21) becomes

[z,d(z)]Py=0... (22),

forall z,y e M and o, 3 €T
Now, replacing y by yad(z) in equation (22) and using (), we have

[z, d(z)]aoypd(z) =0,

forall z,y € M and o, 5 € T'.
This implies [z,d(z)]oaMpBd(z) =0 for all z € M and o, 3 € I
Since M is prime and d is non-zero,

2, d(z)] = 0.
foralze M anda e T

Therefor by Theorem 1 it follows that M 1s commutative.

4 Commutativity of 2-torsion free Prime Near
['-rings With Non-zero Derivations

Theorem 6 If d is a non-zero derivation on a 2-torsion free prime near I'-
ring M such that [d(x),yla = [x,d(y)]a for all z,y € M and o € T', then M
is commutative.

Proof
Let

[d(z), Yla = [z, d(Y)]a- - - (23),

forall 2,y € M and o € T'.
Replacing d(y)Bx for x in equation (23),and then using (x), we get

d(d(y)ax)By, —ypd(d(y)azr) = d(y)ad(z) By — d(y)ayLd(z)
which gives
d(y)ad(z)By + &*(y)azfy — yad’(y) Sz — yad(y) fd(x) = d(y)ad(z)By — d(y)aySd(z).
Since yad(y) = d(y)ay, the last equation becomes
d*(y)azBy = yad*(y)Bz ... (24),

for all z,y € M and a, § € I'. Putting zaz for = in equation (24) with (*),
we have

& (y)azaxrBy = yad? (y)azBzr = d*(y)azayfz,

for all »,y € M and o, 5 € I'.
vielding

d*(y)aM B[z, y)a = 0,
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for all z,y € M and o € T'.
Therefore by (Theorem 3.6, [9]), M is commutative.

Theorem 7 If d is a non-zero derivation on a 2-torsion free prime near I'-
ring M such that [d(z),y], = [d(z),d(y)]s or [z,d(y)]o = [d(z),d(y)]s for all

T,y € M and o € T', then M is commutative.

Proof
First suppose that

[d(l‘): y]ﬁ = [d(l‘) d(y)]a R (25)‘

forall z,y € M and e € T'.
Using d(z)By for y in equation (25) and employing (%) with simplification,
we get

d(z)ad(d(z)By) — d(d(z)By)ad(z) = d(z)ad(z)Bd(y) — d(z)ad(y)3d(z)
which leads to

d(z)ad(z)Bd(y) + d(z)ad*(z)By — d*(z)ayBd(z) — d(z)ad(y)Bd(z) = d(z)ad(z)Bd(y) — d(z)a

which reduces to

d(z)ad*(x)By = d*(z)ayBd(z) . .. (26),
for all z,y € M and a, 8 € I'.
Replacing y by zay in equation (26) to get

d*(z)azByad(z) = d(z)ad*(x)azfy = d*(z)azBd(z)ay,
forall z,y € M and o, 5 € T,
yielding

d*(z)aMB[d(z),y], = 0

for all z,y € M and o, 3 € I'.

Since M is prime either dg(y) =0or [d(z),yla = 0.
Putting d(y) for y in equation (25), we have

[d(z), d(y)]a =0,

forall z,y € M and o € I'.

Therefore M is commutative due to (Theorem 3.6, [9]).

The proof of the part assuming [z, d(y)], = [d(z), d(y)], for all z,y € M and
a € I is straightforward.
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Theorem 8 Ifd is a non-zero derivation on a 2-torsion free prime near I'-
ring M such that [d(z),yl, = —[d(z),d(y)]a or [z,d(y)]. = —[d(z),y]. for
all z,y € M and a € T', then M 1s commutative.

Proof
Suppose that

[d(z),yla = —[d(z), d(¥)]a - .- (27),

forall z,y e M and a € T'.
Replacing y by d(x)By in equation (27), and then using (x) with simplifica-
tion, we get

d(z)ad(d(z)By) — d(d(z)By)ad(z) = d(z)ad(z)Sd(y) — d(z)ad(y)sd(z)
which gives

d(z)ad(z)Bd(y) + d(z)ad’(z)By — d*(z)ayfd(z) — d(z)ad(y)Bd(z) = d(z)ad(z)Bd(y) — d(z)ac

vielding
d(z)ad?(z) By = d*(x)aypd(z) . .. (28),

for all z,7 € M and «, 3 € T".
Substituting zay for ¥ in equation (28), we have

d*(z)azByad(z) = d(z)ad?(x)ozBy = d*(x)azBd(z)ay,

for all z, 4y € M and o, 3 € T,
leading to

d*(z)aMBd(z),y]le = 0

for all z,y € M and o, 3 € T".
Since M is prime either d*(y) = 0 or [d(z).y]. = 0.
Replacing y by d(y) in equation (27), we have

[d(z),d(y)]a =0,
for all z,y € M and oo € T'.
Therefore M is commutative by (Theorem 3.6, [9]).
By the same process M is commutative if we assume that [z,d(y)]. =
—[d(z),ylq for all z,y € M and a € I.

5 Comparison

K. K. Dey and A. C. Paul [5] worked on o-derivations and their compositions
on Prime Gamma-Near-Rings while we used non-zero reverse o-derivations
on prime near I'-rings M and non-zero derivations d on 2-torsion free prime
near ['-rings M to show the commutativity of M. We proved the commuta-
tivity of prime near I'-rings applying non-zero reverse o-derivations on the
whole prime near I'-ring M while A. M. Ibraheem [3] investigated the commu-
tativity of prime I'-near- rings M with the help of generalized I'-derivations
F and G satisfying certain conditions considering subsets of prime I'-near-
rings M.
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6 Conclusion

Under certain conditions on a non-zero reverse o-derivation d on a prime
near I'-ring M with center Z of M and with an automorphism o on M, M
1s commutative. M 1is also commutative under non-zero derivations d on M
with conditions [d(z),y]a = [z,d(y)]a, [d(2), Y]a = [d(z),d(y)]a, [z,d(y)]e =
[d(x), d(W)]as [A(x), vla = —[d(z), d®)]a and [z,d(y)]a = —[d(z), y]a for al
r,y e M and a € T'.
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