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Abstract  
In this paper, we study the existence and stability of positive solutions for a nonlinear delay difference equation. 
The main tools employed here are the Schauder’s fixed point theorem and the Lyapunov function method. The 
main results are illustrated with two examples. 
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I. INTRODUCTION 
In the past two decades, difference equation plays an important role in application; see [1-8]. In [9], 

the author studied the existence of positive periodic solutions of a nonlinear delay difference equation 
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where : ,x ® D¢ ¡  denotes the forward difference operator, ( ) ( 1) ( )x n x n x nD = + - , 
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Based on the work in [9], the main purpose of this paper is to study the existence and stability of 
positive solutions of the equation (1.1). The existence results of the equation (1.1) will be obtained by the 
Schauder's fixed point theorem. 

Theorem 1.1  (Schauder's fixed point theorem [10]). Let W  be a closed, convex and nonempty subset of a 

Banach space X . Let :S W®W  be a continuous mapping such that SW  is a relatively compact subset of 

X . Then S  has at least one fixed point in W . That is there exists an xÎW  such that Sx x= . 

II. EXISTENCE OF POSITIVE SOLUTIONS 
In this section we shall study the existence of positive solutions of (1.1). 

Theorem 2.1  Suppose that there exists a positive continuous function ( , ),k n s n s nt- £ £ , such that  
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and 
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Then (1.1) has a positive solution 



Existence and stability of positive solutions for a nonlinear delay difference equation 

www.ijres.org                                                                                                                                               2 | Page 

1 1

( ) exp ln 1 ( , ) ( , ) , .( ( ))
n u

u T v u

x n p u v k u v n T
t

- -

= = -

= - + >å å  

Proof: Let 1 ([ , ), )X x C T t= Î - ¥ ¡  be the set of all continuous bounded functions. Then 1X  is a Banach 

space with the norm sup | ( ) |
n T

x x n
t³ -
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We define a closed, bounded and convex subset 1W  of 1X  as follows 
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Define the operator 1 1 1:S XW ®  as follows 
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For every 1xÎW  and n T>  we obtain 
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and 1( )( ) ( )S x n w n³ . 

For [ , ]n T TtÎ - , we get 1( )( ) 1S x n = , that is 1( )( )S x n ÎW . 

Now we can proceed by the similar way as in the proof of Theorem 2.1 in [9], by using the Schauder's fixed 
point theorem, we can obtain the results. We omit the rest of the proof. 

Corollary 2.1  Assume that there exists a positive and continuous function ( , ),k n s n s nt- £ £ , such that  
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and (2.2) hold. Then 
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has a positive solution 
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Corollary 2.2  Assume that there exists a positive and continuous function ( , ),k n s n s nt- £ £ , such that 

(2.1) and (2.2) hold and 
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Then (1.1) has a positive solution  which tends to zero. 

Corollary 2.3 Assume that there exists a positive and continuous function ( , ),k n s n s nt- £ £ , such that 

(2.1) and (2.2) hold and 
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Then (1.1) has a positive solution  which tends to  constant ae- . 
 

III. EXPONENTIAL STABILITY 

In this section, we shall study the exponential stability of positive solution of (1.1). Assume that ( )x n , 

1( )x n  are two solutions of (1.1) , let 1( ) ( ) ( ),y n x n x n= -  then  
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By the mean value theorem we obtain 
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Definition 3.1 Let 1x  be a positive solution of (1.1) and there exist constants 
1 1
,x xT K  and 0l >  such that for 

every solution x  of (1.1) 
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Then 1x  is said to be exponentially stable. 

Theorem 3.1 Suppose that (2.1) and (2.2) hold and 
1([ , ) [0, ] , (0, ]), ((0, ), (0, )), ( ) 0.p C T g C g x ct ¢Î +¥ ´ +¥ Î +¥ +¥ ³ >T T  

Then (1.1) has a positive solution which is exponentially stable. 

Proof. We shall show that there exists a positive l  such that 
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where 1

1 1[ , ]max | ( ) | (1 ) 1T
x n T TK y nt lÎ -= + + . 

Consider the following Lyapunov function 

1( ) | ( ) | (1 ) , [ , ).nV n y n n Tl= + Î +¥  

We claim that 1( ) xV n K£  for 1[ , )n TÎ +¥ . 

On the other hand, there exists * 1[ , )n TÎ +¥ , and *n  is the first constant such that * 1( ) xV n K=  or 

* 1( ) xV n K> . 

Calculating the difference of ( )V n  along the solution y  of  (3.1) we obtain 
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For *n n= , we get 
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If ( ) 0, [ , )y n n T> Î +¥  then from (3.1) it follows that for 1[ , )n TÎ +¥  the function y  is decreasing and if 

( ) 0, [ , )y n n T< Î +¥  then y  is increasing for 1[ , )n TÎ +¥ . We conclude that 



Existence and stability of positive solutions for a nonlinear delay difference equation 

www.ijres.org                                                                                                                                               4 | Page 

1| ( ) |, [ , )y n n TÎ +¥  has decreasing character. Then we obtain 

* *

*

*

*

1

* * *

1

*

0 ( ) (1 ) ( ( , ) | ( ) |) (1 ) | ( 1) |

(1 ) | ( ) | [ ( , ) ].

n
n n

s n

n
n

s n

V n c p n s y n y n

y n c p n s

t

t

l l l

l l

-

= -

-

= -

£ D = + - + + +

£ + - +

å

å
 

For 
*

*

1

0 ( , )
n

s n

c p n s
t

l
-

= -

< < å  we have a contradiction. Thus 1(1| )( ) | n
xy n Kl+ £  for 1[ , )n TÎ +¥  and 

*

*

1

0 ( , )
n

s n

c p n s
t

l
-

= -

< < å . This completes the proof. 

IV. EXAMPLES 
In this section, we give two examples to illustrate our main results. 

Example 1. Let ( ) 11
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For the condition (2.5), we have 
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Therefore, all conditions of Corollary 2.2 are satisfied, then equation (1.1) has a positive solution 
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which tends to zero. 

Example 2. Let 2
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Therefore, all conditions of Corollary 2.2 are satisfied, then equation (1.1) has a positive solution 
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