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ABSTRACT : In this work, a class of optimal control problems for a rod (plate) heating process with feedback, 
when the incoming information about the state of the process is continuously received only from its individual 
points, at which some temperature sensors are placed, is investigated. The heating process itself takes place in a 
stove at the expense of controlling the temperature inside the stove. The mathematical model of the controlled 
process is in both cases described by a punctual loaded parabolic type equation.  In the work, we derive 
formulae for the gradient of the functional.  Algorithms of numerical solutions to the considered problems are 
proposed. 
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I. INTRODUCTION 
Numerous publications deal with the problems of optimal feedback control (control design) of plants 

(processes) with lumped and distributed parameters. The findings in the area of feedback control systems 
concern mostly the lumped-parameter linear plants obeying the systems of differential equations with ordinary 
derivatives [1–3]. The published results on the distributed-parameter systems are scarce, and they concern 
particular classes of problem formulations [3–8]. 

The present paper is devoted to a class of problems of optimal feedback control of heating of rods 
(plates) where the information about the process state arrives continuously only from individual points where 
the temperature sensors are mounted. The rods are heated in the furnace by controlling the internal temperature. 
Consideration was also given to the case where the observation of rod (plate) heating is carried out at individual 
points at predefined discrete time instants. In both cases, the mathematical model of the controlled process is 
reduced to the pointwise loaded parabolic equation [9–11]. The control actions are calculated from the results of 
the continuous or discrete observation of the process at the observation points at the predefined time instants. 
A numerical method based on the earlier studies of the present authors is proposed [12–15]. 
 

II. PROBLEM STATEMENT 
 Let homogenous rods of the length l  be sequentially (or simultaneously, but independently of each 
other) heated in a heating stove at the expense of the temperature )(t  produced by an external source and 

identical in all the heating stove. Then, the process of heating each rod is described by the following differential 
equation of parabolic type: 

  ,],0[),0(),(,),()(),(),( 2 Tltxtxuttxuatxu xxt       (1) 

with boundary conditions 
        ,],0[,)(),0(),0( Ttttutu x       (2) 

     ,],0[,)(),(),( Ttttlutlu x       (3) 

where 02  const
c

k
a


 is thermal conductivity coefficient; 




c

h
  and 

k

h
  are reduced coefficients 

of heat exchange between environment and the rod in the heating stove along the length and at the ends of the 
rod correspondingly; h  is heat exchange coefficient; k  is heat conductivity coefficient; c  is specific heat 
coefficient;   is the density of the material. 

 The initial temperature of the rods, for the sake of simplicity, is considered constant along their lengths, 

but different for each rod. At that, we have some admissible set (interval) ],[ BBB   of possible values of the 

temperature: 
,],0[,)0,( lxBconstbxu       (4) 
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and the density function )(bB of initial temperatures is given, where 

 
B

BB Bbbdbb .,0)(,1)(       (5) 

 The current temperature Litxu i ...,2,1,),(   is measured at L  points ],0[ lxi   of all the rods with 

the help of sensors. Depending on the values of the temperature at the sources, the current temperature )(t is 

assigned inside the heating stove. 
Let Lii ,...,2,1,   be weighting coefficients characterizing the importance of taking into account the 

values of the temperature at the measured points, at that 

Lii

L

i
i ,...,2,1,10,1

1




 .                 (6) 

 The value 

],0[,),()(~
1

Tttxutu
L

i
ii 



  

is the current value of the “averaged” temperature of the rod according to the measured data. This value is used 
to form a feedback control for the heating stove: 

,),()()(~)(),;()(
1




L

i
ii txutKtutKKtt      (7) 

where )(tK  is control parameter defining the temperature of the heating stove. The vector ),...,,( 21 L  , 

in the general case, may be a function of time, but for the sake of simplicity, we consider it to be invariable and 
unknown. 
 Taking into account (7) in (1)-(3), we obtain the boundary problem of the form: 

,],0[),0(),(,),(),()(),(),(
1

2 TltxtxutxutKtxuatxu
L

i
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         (8) 
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 .   (10) 

 Problem (8)-(10) is called a pointwise loaded problem, as unknown values of the phase variable at 
different points of the space variable are present in its right-hand side. 
In practical applications, there may be certain technological constraints imposed on the control parameter )(tK : 

KtKK  )( , ,],0[ Tt     (11) 

where KK ,  are given upper and lower admissible values of the magnification constant correspondingly.  

 Suppose we have the following performance criterion: 
2

02

2

],0[01
2

)()();,(),( LRTLB

B

KtKdbbbKIKJ    ,   (12) 

  
l

dxxUbKTxuxbKI
0

2)(),,;,()();,(  ,    (13) 

where )(xU  is given function; 0)( x  is given weighting function; );,;,( bKtxu   is the solution to 

boundary problem (8)-(10) in the presence of control parameters ),(tKK   and of initial condition 

],0[,)0,( lxbxu  ; LRRK  0
1

021 ,,0,0   are regularization parameters satisfying (6) and (11). 

 The case when the observation over the heating process at the points xi Lilx ...,2,1,],0[   of the 

rod is carried out not continuously, but at given discrete moments of time 
TttLjTt

tLtj  ,0,,...,1,0,],0[ 0 , is of practical interest. The temperature inside the heating stove 

is assigned according to the results of observation, and is constant at the interval of time between any two 
observations, and is determined, for example, by the formula: 

.,...,2,1),[,,),()( 1
1

1 tjjj

L

i
jiij LjtttconstKconsttxuKt

x

 


      (14) 
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It is possible to make use of the “memory” to measure the values of the temperature at time using the formula 

      ,),[,),()( 1
1

1

1
11 jj

L

i

j

jiijj tttconsttxuKt
x







  



     (15) 

where  i  are weighting coefficients of the importance of taking into account the value of the temperature at i th 

point ix  at  th measurement at )1( j th time interval, i.e. at moments of time 1,...,1,0,  jt  . 

 The control problem is reduced to seeking the finite-dimensional vector of parameters 
),...,(,),...,( 11 xt LLKKK    in case of (14), and the matrix txij LjLi ,...,2,1,,...,1)),((    in case 

of (15). For both cases, the computation given below is not altered significantly; that is why we consider only 
control of type (7). 
 

III. FORMULA FOR THE GRADIENT OF THE FUNCTIONAL OR PROBLEM 
 For the numerical solution to parametrical optimal control problem (8)-(13), i.e. for the determination 
of function )(tK  and of finite-dimensional vector of parameters  , we propose to use first order optimization 

methods [16]. 
 From (8)-(13), taking into account the independence of the initial conditions of each other, and 
therefore the independence of the solution to boundary problems (8)-(10) for different initial conditions 

Bb)0,( xu , it follows the validity of the formula: 
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That is why, in order to apply first order optimization methods, obtain formulas for the gradient of functional 
(13) taking into account boundary problem (8)-(10) involving any admissible initial condition: 

  Bblxbxu  ],,0[,)0,( .            (16) 

 When solving problem (8)-(13) numerically with the application of standard first order optimization 
procedures, at each step of the iteration procedure, we use the gradient of the functional. With that end in view, 
at the current control, it is necessary to solve loaded boundary problem (8)-(10) and the following conjugate 
integral-and-differential equation: 
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with boundary and initial conditions 

  ],,0[,)(),()(2),( lxxUTxuxTx                                         (18) 

 ],0[,),0(),0( Txttx   , ],0[,),(),( Txtltlx   ,  (19) 

and non-local jump condition at intermediate points Lixi ,...,2,1,   of observation 

,,...,2,1),,(),( Litxtx ii     

LittltKtxtx iixix ,...,2,1)),,0(),(()(),(),(    .       (20) 

 Theorem. The gradient of the functional in problem (8)-(10) for admissible control parameters 
),(tKK   is determined by the following formulas 
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where );,;,(),(),;,;,(),( bKtxtxbKtxutxu    are the solutions to the direct and conjugate 

boundary problems (8)-(13) and (17)-(20) correspondingly at given initial admissible condition bxu )0,( . 

 
IV. NUMERICAL SCHEME OF SOLUTION TO THE PROBLEM 

 Formulas (17)-(20) for the gradient of the functional of problem (8)-(13) can be obtained using 
methods of grids  [15] or method of lines over time for reducing the initial problem to an optimal control 
problem with respect to a system of ordinary loaded differential equations involving non-local boundary 
conditions [13,17]. Then, applying necessary optimality conditions obtained in the work [12] to these problems, 
and passing to limit when the step of discretization over time tends to zero, we can obtain formulas (17)-(20). 
Below, we propose to use method of lines to numerically implement the iteration method of gradient projection, 
namely, to solve the boundary problems: direct (8)-(11) and conjugate (17)-(20). To solve the optimal control 
problem for the loaded system of differential equations involving non-local boundary conditions, we use the 
numerical method proposed in the works [13, 14,17]. 

In the domain  , introduce the lines tttts NThNssht  ,,...,1,0,  and notations 

.,...,1,0),(,),()( ttsts NsshKKshxuxu   Approximate boundary problem (8)-(10) by a boundary 

problem with respect to the following loaded system of tN  ordinary differential equations involving non-local 

boundary conditions: 

0)(
1

)()
1

()(
1

1
2  


 is

L

i
iss

t
s

t
s xuKu

h
xu

h
xua  ,   (23) 

,,...,2,1,)()()(

,)()0()0(

1

1

t

L

i
isisss

L

i
isisss

NsxuKlulu

xuKuu

































      (24) 

],0[,)(0 lxBbxu  .                   (25) 

Target functional (13) is approximated, for example, by the formula 
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 The obtained optimal control problem lies in determining )( LN t   dimensional vector of parameters 

),...,,,...,(),( 11 LN t
KKK   . In order to solve this problem using gradient projection method, give 

formulas of the gradient of functional (26): 
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  Conjugate boundary problem (17)-(20) is also approximated with the application of method of lines by 
loaded second order ordinary differential equations involving non-local boundary conditions 
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LilKxx sssisis ,...,2,1)),0()(()()(    ,        (29) 

which are solved successively from 1 tNs  to 1s  provided that 

 )()()(2)( xUxuxx
tt NN   ,  ),0( lx .        (30) 

 Then, the components of the gradient of the functional of problem (23)-(26) are determined by the 
approximation of formulas (21) and (22) in the following way: 
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 The other specific character of these boundary problems is point wise loading of equations (23) and 
integral loading of equations (27), as well as the presence of non-local boundary conditions (24) and (29). In the 
work [17], for the solution to such problems, a numerical solution method is proposed. It is based on the shift of 

boundary conditions, for example, from left to tight successively from point 0x  to points lxxx L ,,....,1 , 

and as a result we obtain nL )1(   (where n  is the order of the system) algebraic equations with respect to 

))(),(),...,(( 1 luxuxu sLss . After solving this system, the initial boundary problem is reduced to a Cauchy 

problem that is solved from right to left. Analogical approach is proposed in [12] for integrally loaded ordinary 
differential equations involving non-local boundary conditions. 
Note that the statement of the optimal feedback control problem and the approach to its solution given above 
can be extended onto other classes of optimal control problem with respect to systems with distributed 
parameters, described by other types of partially differential equations. 
 

V. RESULTS OF THE NUMERICAL EXPERIMENTS 

 We present the results of the numerical experiments that were obtained at solving the problem of 
feedback control of rod heating for the following data: rod length 1l ; heating time 5T ; the 
coefficient of thermal conductance 1a ; and the coefficient of boundary heat transfer 01,0 . Taking 
into consideration the symmetricity of heating along the rod, the points of temperature measurement were 

,4,0,2,0 21  xx , that is, 2L . The permissible upper value of the control coefficient is 5,6K , the 

lower one, ;0K the desired final value of the rod temperature 100)( xU    and ,1)( x ]1;0[x . 

In the calculations, the set of permissible initial temperatures was varied as follows: 

]28;20[],26;20[],22;20[,]21;20[ 4321  BBBB , the sets were sampled with the step 

5,0 , the density function )(bB  was taken in the calculations as uniformly distributed, that is, 

)(1)( BBbB  .  The weight coefficients were taken equal to 2,1,5,0  ii ,  and no optimization 

was carried out with respect to them, the regularization parameters were 005,0,0,30  K . Under 

these conditions, exact solution of the control problem is not known and cannot be established analytically. 
 For approximation of the direct (8)-(10) and conjugate (17)-(20) problems by a system of loaded 
differential equations with ordinary derivatives, the method of lines with the step 02,0  was used. At each 

time layer mss ,...,1,  , the loaded ordinary differential equation with nonlocal conditions obtained with the 

use of the method of [15] was reduced to the Cauchy problems solved by the fourth-order Runge-Kutta method 
with the step 04,0h . The precision of solution of the problem of optimal control by the method of gradient 

projection as defined by the variation of the functional over two last iterations was ,01,01   that of one-

dimensional optimization, 001,02  . 
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In the iterative optimization process, different values were taken as the initial approximation for )(tK . 

The calculation demonstrated that the results obtained are independent of the initial approximation. 
The table compiles the results of solving the problem of optimal control )(tK  for various ranges of 

the set of initial rod temperatures 4,3,2,1, iB i . Presented are the optimal values of the coefficients 

controlling the feedback with the step 5,0t . The corresponding optimal values of the functional *

iBJ  are 

shown in the next to last column; and the last column shows the maximal over the rod length relative deviations 
of the determined rod temperatures from the desired temperature 100)( xU , that is, 

)()(),(max
]1,0[

xUxUTxuR
x

i 


 

for different ranges of the initial rod temperatures .4,3,2,1, iB i .  

 As can be seen from the table, with an increase in the range of possible initial temperatures of the rods, 
their reduction to the desired temperature by averaged control of the furnace temperature is complicated, that is, 
as would be expected, in this case heating controllability worsens. 
 

Table 
        t                   
 

0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 *J  iR  

)(*
1 tK

B
 1,94 2,46 2,97 3,48 3,99 4,50 5,02 5,53 6,04 6,50 0,002 0,0023 

)(*
2 tK

B
 1,86 2,37 2,88 3,39 3,94 4,41 4,92 5,43 5,94 6,50 1,89 0,0048 

)(*
3 tK

B
 1,69 2,20 2,70 3,21 3,71 4,22 4,72 5,23 5,73 6,24 4,69 0,12 

)(*
4 tK

B
 1,61 2,11 2,61 3,11 3,62 4,12 4,62 5,13 5,63 6,14 5,05 0,148 

 
VI. CONCLUSIONS 

 The above approach to the feedback control systems for the distributed-parameter plants can be 
extended to the case where the processes are described by other classes of boundary problems. Other types of 
observations (discrete, time interval, or their combinations) may be considered as well. This approach can be 
used in the control systems of the processes described by the distributed- parameter systems. 
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