
International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 9 Issue 1 ǁ 2021 ǁ PP. 12-15

www.ijres.org 12 | Page

Graph Auto-Encoders with Edge Reweighting

William R. Huang
Research Scholar, R.I.S Institute, Taipei, Taiwan ROC

Abstract
In this paper, we analyse the effect of reweighting edges of reconstruction losses when learning node embedding

vectors for nodes of a graph with graph auto-encoders. The analysis regards the usage of the node embedding

vectors for the link prediction problem. We show that link prediction results are quite insensitive to edge

reweighting, with the exception of very unbalanced reconstruction losses. We also show that training models

from perfectly balanced reconstruction losses might sometimes be sub-optimal.

Keywords: Graph, Auto-Encoders, Graph Neural Networks, Edge Reweighting, Reconstruction Loss

Date of Submission: 29-12-2020 Date of acceptance: 10-01-2021

I. INTRODUCTION

The research activity related to the development of machine learning methods for graph (a.k.a.

network) data has grown at a fast pace over the past few years [1]. It became one the most active and intriguing

sub-areas of deep learning [2, 3, 4]. Among others, several researchers constructed different graph neural

network [3, 5, 6] architectures to learn node embeddings [1, 2, 3, 4]. A node embedding is a vector space learnt
from a graph neural network (in general), in which the nodes from a given graph are represented by some

vectors. The similar nodes in the graph will have close vectors in the space. Using a node embedding instead of

using a graph linking the nodes can be useful to solve machine learning problems involving the nodes [1, 2, 3, 4,

6, 7]. However, a majority of these graph neural networks must be trained in a supervised way. Indeed,

researchers will often update the parameters of these neural networks by minimizing a loss that involves labels

on each node or on a subset of nodes [1, 3, 6]. This is limiting, as such labels are sometimes unavailable.

During the last five years, graph auto-encoders [7] became efficient methods extending graph neural

networks to learn a node embedding but in an unsupervised way. Instead of using node labels, graph auto-

encoders optimize a reconstruction loss that must be computed from the connected node pairs (the edges) and

non-connected node pairs of the graph. The loss will decrease if the graph auto-encoder can correctly predict,

using the node embedding, which node pairs are connected and not connected in the original graph. In other

words, we assess the quality of the embedding by check if, starting from this space, it is possible to output a
reconstructed graph that is quite similar to the true data. Graph auto-encoders (and their derivatives, as graph

variational auto-encoders [7]) have been recently used to deal with a wide range of research problems. Some

famous examples are: link prediction [7, 8, 9, 10, 11], node clustering [12, 13, 14] and generating some small

graphs such as molecules [15, 16, 17]. Some papers also showed that graph auto-encoders give interesting

results for very large graphs with several millions of nodes [18, 19].

Many graphs being sparse, researchers almost always reweight the edges in the reconstruction loss,

with respect to the non-connected node pairs which are more numerous. Most codes simply set a positive edge

reweighting scalar parameter in the reconstruction loss. A deep experimental analysis of the effect of this

reweighing on the node embedding is missing. In this paper, we conduct and report the results of such an

analysis. For experiments, we focus on the usage of the node embedding vectors to address the link prediction

task [20], because this is the most common task to assess the quality of graph auto-encoders. Our analysis shows
that the link prediction results are quite insensitive to unbalanced reconstruction losses, with the exception of

extreme cases. Our analysis also tends to show the interest of keeping a quite balanced loss as well as the

interest of slightly overweighting edges with respect to non-connected node pairs, on some of our graphs. A

preprint version of this paper is available online on TechRxiv [24].

II. METHODS

We have an undirected graph with nodes and edges. We summarize by the

adjacency matrix of dimension which is defined as: if the node pair is connected by

an edge () and otherwise. We want to give to each node a vector of dimension <
in a node embedding space . Also, in next paragraphs, will be the matrix of size inside which the

row n° will correspond to the vector .

Graph Auto-Encoders with Edge Reweighting

www.ijres.org 13 | Page

A graph auto-encoder [7] is an unsupervised model with an encoder and a decoder. The encoder is a

parametrized function ; in modern research this function will be a graph neural network [3, 5, 6]. Its input is

and its output is . In our experiments, we will follow the first works of Kipf and Welling [6, 7] and our encoder

will thus be a 2-layer graph convolutional network:

 .

Here:

 the normalized version of the adjacency :
 , with the degree matrix of

 + (is the identity matrix of dimension),

 ,

 an weight matrix and another weight matrix (to learn).

Kipf and Welling [7] set and , and we will choose similar dimensions in our experiments.

Once the matrix (the node embedding vectors) is computed, the decoder will reconstruct an approximate

version of , named and of dimension , as follows:

Intuitively, the node embedding vectors in will be of “good quality” if the reconstructed matrix is
equal or very close to the true initial data . So, researchers train the graph auto-encoder by gradient descent to

minimize a reconstruction loss [7]:

 .

Kipf and Welling [7] set:

 .

We note the presence of an edge reweighting scalar parameter (usually in

 . Indeed, many graphs being sparse, researchers felt the need to positively reweight the

edges in the reconstruction losses, with respect to the non-connected node pairs which are more numerous

(vs). For instance, Kipf and Welling [7] set

 and this choice means that the

“positive” (edges) and “negative” (non-connected node pairs) parts of the reconstruction loss have the same

relative importance.

However, the choice of and the effect of edge reweighting on the node embedding has not been

deeply studied. Existing research set the value of in one line of code, without further study. In the next two

sections of the paper, we conduct and report the empirical results of such a study, focusing on link prediction

applications. Our objective is to assess the effect of setting:

,

for different values of the scalar parameter . Setting leads to an artificially balanced

reconstruction loss (as before), while setting will underweight edges with respect to non-connected node

pairs and setting will overweight edges with respect to non-connected node pairs.

III. EXPERIMENTAL DESIGN

For evaluation, we follow the experimental procedure of previous papers [7, 8, 9, 10, 11, 18, 19] and do

link prediction. The goal is to assess, for different values of our performance at predicting if two nodes and

 from the original graph are connected by an edge or not, only by using the learnt node embedding

vectors and and the associated reconstructed cell . We will report results on the three citation networks

Cora, Citeseer and Pubmed (we refer to [6] for more details), whose statistics are available in Table 1. These

three graphs are very relevant for our study, because they are commonly used, and because they are very sparse

and thus will all require the tuning of an edge reweighting scalar parameter to return good results.

Graph Auto-Encoders with Edge Reweighting

www.ijres.org 14 | Page

Table 1: Statistics of the Cora, Citeseer and Pubmed citation networks
Graph Number of nodes Number of edges

Cora 3 327 4 732

Citeseer 2 708 5 429

Pubmed 19 717 44 338

More precisely we will train several graph auto-encoders on some masked versions of the original

graph data, with only 85% of edges. Among the missing edges, 5% are put in a validation set and 10% and put

in a test set, together with the same number of non-connected pairs of nodes (selected randomly). These

numbers are on par with previous papers. Are we able to retrieve the missing edges in the test set? This is

actually a classification problem, that we will evaluate using the following two metrics:

 AUC: Area Under the receiver operating characteristic Curve [21].

 AP: Average Precision score [22].

We chose to train all the models using the ADAM algorithm [23] with a learning rate of 0.01, for 200

epochs of training and with and (as explained in II). For the Pubmed graph, which is

larger than Cora and Citeseer, we used the FastGAE code from [19] for faster evaluations.

IV. RESULTS

Table 2 shows our results on the three graphs Cora, Citeseer and Pubmed. All the AUC and AP scores

are in percentage and are averaged over 20 trainings of the graph auto-encoder model, and we also present the

corresponding standard deviations over all these different trainings (to account for the volatility due to the

randomness in edge masking). We tested a wide range of values for the parameter . As explained in II, setting

 is equivalent to a balanced reconstruction loss, whereas setting will underweight edges with

respect to non-connected node pairs and setting will overweight edges with respect to non-connected

node pairs.

Table 2: Link prediction results (on test sets) for the Cora, Citeseer and Pubmed citation networks

Foremost, we see in Table 2 that the Area Under the ROC Curve and the Average Precision link

prediction scores on the test sets are quite insensitive to the choice of in the graph auto-encoder reconstruction

loss, with the exception of extreme values (or). For all other values of we reach

scores that are quite close to the scores of the balanced reconstruction loss with . Another result from our

experimental analysis is that: fine-tuning (particularly to oversample the edges with respect to the non-

connected node pairs) can sometimes very slightly improve the results. In Table 2, for the Cora graph and for the

Citeseer graph, choosing and , respectively, is optimal. Ultimately, we know that the

standard deviations of our studies are quite large and that differences are not necessarily expressive ; yet, we see

that selecting around 1 decreases the scores volatilities with respect to very unbalanced reconstruction losses.

Future works on larger graphs could be necessary to really confirm our results on the advantage of .

Value of

Link prediction results (in percentage)

Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

0.001 52.2 2.2 52.3 2.2 51.9 2.8 52.1 2.8 55.3 2.8 55.5 3.2

0.01 84.1 1.3 86.6 1.2 78.0 2.2 81.4 2.3 73.8 2.6 77.2 3.2

0.1 84.5 0.9 88.2 0.9 78.1 1.9 83.7 1.5 82.4 0.7 86.2 0.5

0.25 84.8 0.8 88.2 0.8 78.1 1.5 83.7 1.5 83.3 0.6 86.9 0.4

0.5 84.8 0.8 88.3 0.8 78.2 1.6 83.7 1.3 83.7 0.5 87.2 0.3

0.75 84.9 0.8 88.3 0.8 78.2 1.4 83.8 1.2 83.7 0.4 87.1 0.3

0.90 84.8 0.8 88.1 0.6 78.3 1.6 83.8 1.2 83.8 0.3 87.1 0.3

0.95 84.8 0.7 88.2 0.6 78.3 1.2 83.8 1.0 83.8 0.5 87.1 0.3

1 84.9 0.7 88.4 0.6 78.4 1.2 83.8 1.1 83.9 0.4 87.4 0.3

1.05 84.9 0.7 88.3 0.6 78.8 1.2 83.9 1.2 83.8 0.5 87.2 0.3

1.10 84.8 0.8 88.4 0.5 78.2 1.5 83.9 1.2 83.7 0.4 86.8 0.3

1.25 85.0 0.8 88.4 0.7 78.1 1.3 83.8 1.6 83.6 0.5 86.8 0.3

1.50 84.9 0.9 88.3 0.8 77.5 1.2 83.2 1.5 83.4 0.4 86.7 0.3

1.75 84.7 1.2 88.3 0.9 77.5 1.4 82.7 1.3 83.4 0.4 86.7 0.3

2.0 84.1 1.3 87.6 1.3 77.5 1.6 82.5 1.3 83.0 0.4 86.5 0.3

5.0 83.6 1.4 86.8 1.2 77.4 2.0 82.5 1.6 82.9 0.4 86.2 0.3

10. 81.4 1.4 85.0 1.3 77.1 2.2 81.9 2.1 81.9 0.5 85.2 0.4

100 75.1 2.1 77.4 2.2 70.4 2.3 74.1 2.1 71.1 0.6 75.6 0.6

1000 66.5 2.2 70.2 2.1 65.5 2.3 70.0 2.0 70.1 0.9 75.5 0.7

Graph Auto-Encoders with Edge Reweighting

www.ijres.org 15 | Page

V. CONCLUSION

As many graphs are sparse, researchers often positively reweight the edges of their reconstruction

losses when training graph auto-encoders models, with graph neural network encoders and inner product

decoders. However, a deep experimental analysis of the effect of this reweighing on the model was missing. In

this paper, we reported and commented the results of such an analysis. We focused on the usage of graph auto-

encoders for link prediction on three popular citation networks. We showed that the link prediction

performances are quite insensitive to unbalanced reconstruction losses, with the exception of extreme values.

We also explained the potential interest of keeping a quite balanced loss as well as slightly overweighting edges

with respect to non-connected node pairs, in terms of optimal scores and of reduced standard deviations. Future

studies will try to confirm our results on variants of graph auto-encoders, such as graph variational auto-

encoders (preliminary experiments are conclusive) as well as on different graph datasets.

REFERENCES
[1]. Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on A.I. and Machine Learning, 14(3), 1-159.

[2]. Hamilton, W. L., Ying R., Jure Leskovec. (2017). Representation learning on graphs: Methods and applications. IEEE Data

Engineering Bulletin.

[3]. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE

Transactions on Neural Networks and Learning Systems.

[4]. Zhang, Z., Cui, P., & Zhu, W. (2020). Deep learning on graphs: A survey. IEEE Transactions on Knowledge and Data Engineering.

[5]. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE

Transactions on Neural Networks, 20(1), 61-80.

[6]. Kipf, T.N., Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. International Conference on

Learning Representations.

[7]. Kipf, T.N., Welling, M. (2016) Variational Graph Auto-Encoders. NeurIPS Bayesian Deep Learning workshop.

[8]. Salha, G., Limnios, S., Hennequin, R., Tran, V. A., & Vazirgiannis, M. (2019). Gravity-inspired graph autoencoders for directed

link prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 589-

598).

[9]. Shin, J., Kim, K., Park, D., Kim, S., & Kang, J. (2020). Bipartite Link Prediction by Intra-Class Connection Based Triadic Closure.

IEEE Access, 8, 140194-140204.

[10]. Grover, A., Zweig, A., Ermon, S. (2019) Graphite: Iterative generative modeling of graphs. International Conf. on Machine

Learning.

[11]. Salha, G., Hennequin, R., & Vazirgiannis, M. (2019). Keep it simple: Graph autoencoders without graph convolutional networks.

arXiv preprint arXiv:1910.00942.

[12]. Wang, C., Pan, S., Long, G., Zhu, X., Jiang, J. (2017). Mgae: Marginalized graph autoencoder for graph clustering. ACM

Conference on Information and Knowledge Management.

[13]. Liu, J. J. C. X., & Murata, T. (2020). Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization.

Entropy, 22(2), 197.

[14]. Salha, G., Hennequin, R., & Vazirgiannis, M. (2020). Simple and effective graph autoencoders with one-hop linear models. arXiv

preprint arXiv:2001.07614.

[15]. Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. arXiv preprint

arXiv:1802.04364.

[16]. Ma, T., Chen, J., & Xiao, C. (2018). Constrained generation of semantically valid graphs via regularizing variational autoencoders.

In Advances in Neural Information Processing Systems 7113-7124.

[17]. Simonovsky, M., & Komodakis, N. (2018). Graphvae: Towards generation of small graphs using variational autoencoders. In

International Conference on Artificial Neural Networks pp. 412-422.

[18]. Salha, G., Hennequin, R., Tran, V. A., & Vazirgiannis, M. (2019). A degeneracy framework for scalable graph autoencoders. arXiv

preprint arXiv:1902.08813.

[19]. Salha, G., Hennequin, R., Remy, J. B., Moussallam, M., & Vazirgiannis, M. (2020). FastGAE: Scalable Graph Autoencoders with

Stochastic Subgraph Decoding. arXiv preprint arXiv:2002.01910.

[20]. Liben‐Nowell, D., & Kleinberg, J. (2007). The link‐prediction problem for social networks. Journal of the American society for

information science and technology, 58(7), 1019-1031.

[21]. AUC on Scikit Learn: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

[22]. AP on Scikit Learn: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

[23]. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

[24]. Huang, W. R. (2020). On Edge Reweighting for Link Prediction with Graph Auto-Encoders, TechRxiv.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

