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ABSTRACT. Shannon definition of entropy is considered, and then Shannon formula is deducted based on the
unexpected value of uncertainty function. Later, Euler-Lagrange equation is extended to an unbounded interval,
and using this extension we can prove some results for characterizing maxima entropy functions and some
examples are shown.
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I. INTRODUCTION

In origins, entropy was matched to thermodynamics second principle or also named energy degradation
principle, as heat is considered a form more down or “degraded” of energy, understanding by degradation, when
a form of energy passed to another form, but it is impossible being accompanied by the complete inversion
process.

During the 19th century, first works about entropy emerged by Carnot, Clausius and then Boltzmann.
Boltzmann achieved a deep law interpretation, as he showed the link between entropy and the distribution of the
energetic of a system in thermodynamic equilibrium, called the Boltzmann probability distribution. Hence, he
concluded that the entropy of an isolated system is linked to the probability of its current state [4].

A simple definition of entropy is, the number of distinct forms in that we could dispose of the particles
a system, mathematically is the proportional quantity to a logarithm of a number of possible distributions of the
states of the system. Formally, Claude Elwood Shannon (1916-2001) electric engineer and mathematician (he is
remembered as information theory father), in his paper “A Mathematical Theory of Communication™ ([24]),
defined entropy as a function that permits a measure of information quantity associated to a random process, and
there he established that to major probability produced, less information contributed.

Shannon took a random variable X and from it defines a new variable/[X] = —log, p; namedquantity
of information, where pi is the probability of i-th event. Then, he defines entropy asexpected value of
information quantity, that is to say,

HIX] = EUX)] = - ) pilogo,
i=1

If in Shannon entropy we consider X as a random variable, which takes values on R, and f is thedensity function
associated to X, Shannon entropy could be defined by the following functional

HIf = [ f@)logf () dx

In the present paper, | want to determine conditions under which it is possible to guarantee
existenceand unicity of density functions, that maximize the functional gave above, submitting it to
diverserestrictions. For it, | do use technics of the calculus of variations.

The paper is organized as follows: In Section 2, | give some preliminary results and definitions,in
Section 3, | obtain some results about extension of Euler-Lagrange equation to a unboundedinterval, in Section
4, | prove some results about Euler-Lagrange equation with functionals, inSection 5 | prove general result for
extreme values and finally, in section 6 it achieves to characterizesome maxima entropy functions.
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Il. PRELIMINARES
The basic concept of entropy in Theory of Information is related to the uncertainty that existsin any
experiment or random signal. Inclusive it is possible to visualize it as the noise quantity orsystems disorder. In
this way, we can talk about information quantity contained in a signal. Often,when we talk about entropy from
the theory of information point of view, we find that this entropyis named Shannon entropy in honor to Claude
E. Shannon.

2.1. Shannon Entropy. Shannon offers an entropy definition that satisfies the following statements:

. The information measure must be proportional (continuous). That is to say a small change in the
probabilities of the occurrence of any signal element, must produce a small change in its entropy.
. If all signal elements are equiprobable at the moment to appear, then the entropy will be maximum.

In an intuitive way, the entropy can be viewed as a state function S of the system, that is asystem state function.
Usually, when you link the entropy to a state function, this means thatyou can characterize the system by S. For
example, you can establish if a system will go on aspontaneous (irreversible) change analyzing its entropy.
Electing of this unexpected function mustsatisfy some basic axioms, those are:

Axiom1.5(1) = 0

Namely, if an event is sure, the unexpected value is zero.
Axiom 2. If p > q,thenS(p) < S(q)

Hence, S is a decreasing strictly function. Then, when an event is more improbable than other,the unexpected
must be bigger.

Axiom 3. S(p)is a continuous function in p.

Little changes in probability, determines little variations in unexpected value. Now, let Eand Fbe two events
with probabilities pand qrespectively. Hence, surprise for both Eand Fis given byS(pq), but unexpected value
from Eis S(p), and unexpected value from Fis S(pq) — S(p). As Eand F are independent events, the last
surprise is just S(q). Let’s see,

Axiom 4. S(pq) = S(p) + S(q).forp,qin (0,1).

Using these axioms, we can find the functional form of S(p). We can remark that using Axiom4 in an
inductively way, we obtain

S(px) = xS(p),x €Q*

Consider a sequence {g,}such that converges to g, and we take g = p,, for any x > Oand
arbitrary.Considering g, = p!™1/*, and the continuity of function S, we can obtain that

S(px) = xS(p),x € R*

Furthermore, if x = Oby Axiom 1, we have to S(p°) = S(1) = 0 = 0.S(p). Considering 0 < p < 1land
X

any a > 0, we definex = —log, p,suchasp = (%)

, then

1\" 1
S(p) = S(E) = xS (a) = —Clog,p
whereC = S G) > S(1) = 0(by Axioms 1 and 2). Thus, these axioms determine that th unexpected response
function must be

S(p) = =S (2) log, p

If we denote by S, (p) to the function that results of choosingS G) = 1, we have that

18



Characterization Of Maxima Entropy Functions Using Calculus Of Variations

Sa(p) = —log,p

For a discrete random variable X, which has probability p;when it takes the value xi;, the entropyis calculated
using the probability of the mass function of the random variable, that is

Ho(X) = EGa((0) = = ) p(x)log, p(x)

Comparisons between entropies its our interest. Thus, if X and Y are random variables, then
H,(X H, (X
ﬁ:ﬁ’fora’b >0
H,(Y) Hy(Y)

Remark 5. Another way to see this constant factor is, thinking in the relation with measure unit,that is to say, the

logarithm base just specifies the units in which we are measuring the entropy.Then, we can establish that

measure unit is: bit, nat, dec, etc., depending it is 2, e, 10, etc.

Definition 6. Let x;be the i-th event of a random variable X, then the information quantity thatthis event supply
is determined by

I = —log; p(x)
wherep(x;) is the probability of this event.

Definition 7. Let X be a random variable, which takes values x;, x5, ..., x,with probabilitiesp;, p,, ..., p,that
apport information quantities Iy, I, ..., I,,. We established the random variableI[X] as the information quantity
associated to X, and we consider its expected value E[I[X]] thatwe name H[X]. This value is named Shannon
entropy.

Hence, the real number H[X], is the expected value of information quantity that we will obtainin an experiment
result expressed by said random variable. All in all, Shannon entropy analyticexpression is given by

n

HIX) = EUXI =) pGI) = HIX] = =) p(x) log plx)
i=1

i=1

In fact, if we consider X as a random variable that it takes values in R, with probability densityf : R — R, we
have that the Shannon entropy of X is just

[ reiog o ax

with the convention that 0 log0 = 0.

I1l. EULER-LAGRANGE EQUATION IN A BOUNDED INTERVAL
In this section, we focus in all the needed requirements to analyze the fundamental problem ofthe
calculus of variations. First, we will aboard the problem in the finite-dimensional case, thenfrom this
information, we will consider the infinite-dimensional case.

3.1. Finite-dimensional case. Let En be a n-dimensional Euclidean space and let D c E,bean open set.
Consider x € D, such that: x = (xy,x5,...,x,). Let fbe a function defined in D.We know that if Dis a closed
and bounded set, and if f is continuous, then Bolzano-Weierstrasstheorem guarantees the existence of extremes
values offin D.

We consider a function fdefined in 2, such that x, € Qis an extreme point (Qis a neighborhoodof x,). We
suppose that f is differentiable in 2, so %exist foralli = 1,2,...,n. If x4is an extremepoint of f, then it must
L

satisfy that % (xo) =0, foralli = 1,2,...,n.This result, is known asnecessary condition of extreme.
L
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To points that satisfying the necessary condition of extreme, are known as critical points, andpoints x,such that
df(xo) = 0, are known as stationary points of the function f. Last condition isequivalent to%. (%) = 0, for all
L

i=12,...,n.

Remark 8. The existence of a critical point does not a guarantee the existence of an extreme. Tosolve this
problem, let’s see the sufficient conditions for strict extremes.

Definition 9. We say that the quadratic form

n

Ax) = A(xq,%9,...,%,) = Z ag; XX , a; = a;,i,j = 1,2,...,n
ij=1
ispositive definite if A(x) > 0, forallx € E™, x # 0, and is null only when x = 0, that is to say,when x; =
Oforalli = 1,2,...,n. (Analogous for negative definite).

Let fbe a function of class C? in Qand let x° € Na stationary point of £. If the quadratic form

o 02f (x)

A(dxl,dxz,...,dxn) = W
1

Lj=

dx;dx;

is positive definite, the critical point x°is a strict minimum. (Analogous for strict maximum). Ifthe quadratic
form is undefined, thenx®is not an extreme point of f. These conditions are knownas sufficient conditions of
strict extreme.

3.2. Conditioned extremes. Let z = f(xq,x,,...,x,) be a nvariables function defined in anopen set D < E™.
Suppose that the nvariables are linked by mcomplementary conditions, wherem < nand, ¢; € R for i =
1,...,m, hence

1001, %2,...,%,) = ¢4
O (X1, X0, .00, %) = Cy

These equations are named link equations. Let x° = (x?,x9, ..., x0) be an internal point of D. We say that f has
a conditioned maximum (conditioned minimum respectively) in x°if the inequality

f) < f(xor f(x) = f(x°)
is satisfied into some neighborhood of x°, always that x%and xverify the link equations.

We consider the case n = 2to illustrate the process. Suppose that we need to find the extremevalue of z =
f (x,y) subject to the restriction ¢ (x,y) = c. By the implicit function theorem,the link equation ¢(x,y) = c,
determines to yas a differentiable function univocally definite, soy = ¥(x). Hencez = f(x,¢¥(x)) = F(x),
where the unconditioned extreme of F, will be just, theextreme sought of functionfwith the respective link
function. To solve the originalproblema for

z = f(x,x,...,%,)subject to the link equations, is enough to combine Vf(x) = Owith the implicitfunction
theorem, obtaining as consequence Lagrange multipliers method.

3.3. Lagrange multipliers method. To illustrate the Lagrange multipliers method (the proofof this theorem will
be accomplished later using more general results), we consider a couple ofconditions which must be satisfied to
find extremes of given functions, from these conditions wecould give a scheme of the process.

1) Partial derivatives of functions f(xq,x,,...,x)and @;(xq, xp, ..., x,)With i = 1,2,...,m, are
continuous in D.
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(2) The range of matrix(%), withi = 1,...,mandj = 1,...,nisequal to m < nin everypoint ofD.
j

Consider a new function

o) = f() + ) A @)
k=1

known as Lagrange function, where 4, ’s are undetermined constant factors (Lagrange multipliers).
Following, we analyze the unconditioned extremes of function @, that is to say, we formed thesystem of
equations (necessary conditions of extreme)

oD o0 Gl
—=0,—=20,...,—=10 (3.1)

ox;  ox, "V ox,

and from both this system andmlinked equations, we determine both parameter valuesi,,4,, ...,,1,,and

coordinates (xy,x,,...,x,) Of possible extreme points, that is :%): 0, with j = 1,...,m. Toanalyze the
j

stationary point x%as a conditioned extreme of dwe must consider the quadratic form

n-m

B(dx,,dx,, ..., dx,_ ) = z by dx,dx,
ij=1

and from the possible definitions of this quadratic form, we will find the possible strict extremes of ®.

IV. GENERAL CASE
In this section, we do a formal entry to Calculus of variations, having as a first variant C[a, b]which is
an infinite-dimensional space. Hence, we work with functions of functions, that is tosay, functionals. It is
important to highlight that our functionals are defined over continuou trajectories, in consequence, the partial
derivatives are not to be taken as the above case, withrespect to an independent variable of Euclidean space, but
with respect to a regular trajectory.

4.1. Functionals extremes. Suppose that Eis a linear manifold into C[a,b]. Analogously to thefinite-
dimensional case, maximums, minimums, extremes, are defined.

Definition 10. Let (E,||'|lz) be a normed vectorial space and consider M c E. A functional, isa function
F: M — R. The set M formed by functions ywhere the functional is defined, it isnamed definition’s field of
functional.

On the other hand, It is called variation or increment Ayof the plot v (t)of the functiona F (), to the difference
between the functionsy (t) and ¢ (t) that belong to subset M, namely

Ap = P) — (1)

Suppose then that the curves ¥ (t) and ¢(t) are defined in the interval [a, b]. From increment offunctional
definition, we can study the proximity between curves of a certain family, that is to say,we will say that (t)
and ¢(t) have approach order zero, if over the interval [a, b], the magnitude|[yp(t) — @(t)]|zis very small from
a geometric point of view.

Suppose that the curves ¥, € C'[a,b] at least. Then, (t) and ¢(t) have approach order one,if the
magnitudes

(@) — @@z and [[P'() — @Ok (41

are small over[a, b]. It is called order k distance,k = 0, 1to the major of expressions given in (4.1). Then,
werepresent this distance as follow
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= = D) — O _
pe = pelp(®), 0®] = max max [ () — p@ @, k = 0,1
It is called & —neighborhoodof order kof curvey(t),a < t < bto the set of all curves ¢(t) suchthat their
distances of k-th order to curve 1(t) are less than . Now, the & —neighborhoodof orderzero is named strong
& —neighborhoodof 1 (t), and the ¢ —neighborhoodof first order is called weake —neighborhoodof ¥ (t).

Definition 11. A functional F(y) defined into the set M of functions 1 (t) is called continuousin ¢(t) in the
proximity of k-th order sense, if for all ¢ > Oexist n > Osuch that it verifies that|F () — F(¢)| < ¢, for all
functions i € M that they satisfy p, [ (t), ¢ (t)] < n.Suppose that we have a functional defined over M, the
magnitude

AF = AF(Y) = F(Y + 4Y) — F(¥)

is named increment or variation of functional F (i), corresponding to increment Ay of the plot.Another form to
measure the increment of a functional, is considering the derivative of the functional Fin the Apdirection over
the point 1y, this is

d
AF = %F(‘Po + ady) o

Definition 12. A functional Freaches its local maximum on the curve ¢, if values that F(¢) takesover any curve
close to ¢(in some order), are not major that F(¢), such that

AF = Fp(@®) — F(p(®) < 0 (4.2)

If AF = 0, only when ¥ (t) = ¢(t), we say that the functional reaches a strict maximum on thecurve ¢.
Analogous for minimum.

On the other hand, we say that Freaches a strong local maximum on v, if it satisfies (4.2) for allcurves that
belong to ¢ —neighborhoodof order zero on the curve ¢. F reaches a weak local méximum if it satisfies the same
inequality but in a € —neighborhoodof order one. They are analogous for theminimum.

Remark 13. It is important to note that all strong extreme is at the same time a weak extreme.The functional
extreme that refers to the total of functions that are defined over the same curve, iscalled absolute extreme, and
hence all absolute extreme is at the same time a strong local extreme.

We need to evaluate the conditions for the existence of the extremes of the functionals, for it, wewill observe the
derivative definition over normed spaces and see that is the same that Euclideanspaces, with the exception of the
requirement that the approximation must be made by a linearfunctional continuous.

Definition 14. Let (E,||-|lg) and (H, ||-||y)be normed spaces. The functional F : E — H isdifferentiable in
x € E, ifand only if, exist a linear functional continuous L : E — H, such that

. F(x + h) — F(x) — L(h)
lim =
h=0 (1d1P

0 (4.3)

If F: E — H is differentiable in x € E, then the continuous linear functional that satisfies (4.3), iscalled
differential of Fin xand it is denoted by dF,: E — H.

Remark 15. In the finite-dimensional case, that is E = R"and H = R™this differential coincideswith the
matrix formed by the partial derivatives, expressed on the canonical basis, but ou main concern the
correspondences between infinite-dimensional spaces, where there is not a matrixrepresentation.

Theorem 16. Let L : E — Hbe a linear functional, where (E, ||[|z)and(H, ||-]|y)are normedvector spaces.
Then, the following statements over Lare equivalents

1) There is a number ¢ > 0, such that ||L(v)||_H < cl|v||g, forallv € E.
2) Lis continuous in everywhere.
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3) Lis continuous in 0 € E.

Proof. Suppose that the first condition is satisfied. Then, given x, € Eand € > 0, we have that
&
llx = xollg <2 = ML) = Llxo)llw = LG = xolly = cllx = xollp < &

then, (1) implies (2). Obviously, (2) implies (3). Then (3) implies (1).
As Lis continuous in 0 € E, we can choose § > Osuch that ||x||p < § = ||[L(x)|ly < 1. Hence,given
v # 0 € E, we obtain that

el = L(”””E 0 v)
" § lvllg
vl 4
- )
5 vl
< vl
)
takingx =Lv and ¢ = —, we get what we want ]

The following theorem is given without proofbecause it is analogous to the finite-dimensionalcase.

Theorem 17. Let Uand Vbe open subsets of the normed spaces (E,||"llz)and (H, ||-||;)respectively. If the
functionals F : U — Hand g : U — G(a third normed vector space), aredifferentiable in x € Uand F(x) €
Vrespectively, then the composition h = g o Fis differentiable inxand it satisfies that

dhx = dgF(x) o de

Consider a subset M of normed vector space E, the tangent space of M in x € M, is the setof all vectors v € E,
for which there is a differentiable trajectory ¢ : R — M, such that ¢(0) = x and ¢'(0) = v. Itis important to
highlight that, if M is open, then TM,, = Efor all x € M.

Theorem 18. Let (E,||[lzp)a normed space and F : E — Ra differentiable functional and letM < Eand
consider x € M. If Fis differentiable in xand F|,reaches a minimum in x, then

dF|ry, = 0

Proof. Given v € TM,let ¢ : R — M be a differentiable trajectory on E, such that ¢(0) = xande'(0) =
Then, the function g : R — R, defined by g = F ophas a local minimum in 0, suchthat g’(0) = 0. Hence,
using the chain rule we get

= g'(0) = dgo(1) = dF,o)(dpy(1)) = dF,(¢'(0)) = dF,(v)m

Remark 19. If M is an open set, then directly dF,x = 0. If M is any set, for finding the extremes isnecessary to
find the tangent space to M.

Theorem 20 (Lagrange). Let D < E™be an open setand let f,¢,: D — R,k = 1,...,m smooth functions with
m < n. Letxy € D, such that ¢, (xy) = ¢, with ¢, = constant, for eachk =1,....,mand let S ={x €
D: ¢, (x) = c,}. Suppose that Vg, (x,) are linearly independent fork = ,m. If flshas a maximum or a
minimum in S, reached inx,, then there real numbers 4;,k = 1,...,msuch that

n

VFC0) = ) 7o)
k=1

Proof. Let G : D — R™, the function defined by G(x) = (@1(x),..., P, (x)), then G(xy) = (cy,..., ¢;n) and
= {x €D: G(x) = C}, where C = (cy,..., ¢ ). The tangent space to Sinx,, isthe intersection between
tangent hyperplane to eachn-1dimensional manifolds defined by{x € D : ¢,(x) = ¢}, k = 1,...,m
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Hence, S0 the tangent space to Sis the set’s orthogonal complement {V¢;(x°),...,V@,, (x®)}. Iff|sreaches a
maximum in  x° then df,ls, =0 =Vf(x°) -x =0, as long as x €S,0 , that is to

sayx € {Vo;(x%),...,Ve, (x"}*, in consequence, Vf(x%) € {{Vo,(x%),...,Vep, (x*)}*}*and this isjustly
the manifold generated by V¢, (x°),..., V¢, (x°), then exist real numbers 1,,..., A,, suchthat

VA0 = ) ATp () m
k=1

From this moment, we will consider E = C'[a,b], that is to say we will consider the normedspace
(C'[a,b], Il -ll¢1), where

t "(t
loll ot ggtaélso()H arrslta;gjlfp( )]

Now, let Mthe subset composed by the functions ¥ € C'[a,b] that satisfy edge conditions (a) = a and
Y(b) = . If Fis differentiable on ¢ € M and F|,, has a local extreme on ¢, then by theorem18 we have

dre |TMq, =0 (44)

Hence, we say that ¢ € M is an extremal function of Fover M, if it satisfies the necessary condition(4.4). We
need to calculate explicitly dF,and determining the tangent space TM,,.Last problem is easy to solve, if we
consider a fixed trajectory ¢, € M, and given ¢ € M thedifference ¢ — ¢,belongs to C}[a, b], that is

Cola,b] = {$ € C'{a,b]: Y(a) = P(b) = 0}

Conversely, if ¥ € C}[a,b] we have that ¢, + 1 € M. Hence, M is a hyperplane on C![a, b],more exactly
translation by ¢qin Cg[a, b], but hyperplane’s tangent plane in any point, is just thesubspace of which is a
translation. Finally,

TM, = C¢la,b]m

¢
To calculate dF,,, we need to prove the following theorem.
Theorem 21. Let F : C'[a,b] — R, defined by
b
Fo) = [ Flo@. 0,00t
a
withf : R® — R, a C2class function. Then, Fis differentiable and
b
of , of : ,
ar, ) = [ [ @9 @000 + 3y @O0 OORORO|dt (45)

for all ¢, h € C[a, b].

Proof. As Fis differentiable on ¢ € C![a, b], dF, (h) must be the linear part of the differenceF (¢ + h) —
F(¢). We use Taylor expansion of second order of fover the point (¢(t), ¢'(t),t) € R3, let's see

of . B
2 2O, 0 (O, D) (4-6)

d ,
; %(ga(t). ¢ (O, DR () + r(h(D)

fle@® + h(®),9'(t) + h'(1),1) = f(e®),¢'(®),1)
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Where

r(h() = =22

2!|ax?

(@) (h®) + zaz—f(m))h(t)h’ ® + az—f(s(t))h(wh'(t)
dxdy dy?

for some point &(t), over the line segment in R3from the point (¢(t), ¢'(t),t) to the point(p(t) +
h(t), @' (t) + R'(t),t). If B is a ball with enough radius such that contains the continuous

trajectory image t ~ (@(t), ¢'(t),t), for t € [a, b], and Pis the maximum of absolute valuesof partial
derivatives of second order of fon B points, then we obtain

P ,
Ir(h()] < 5 (1A (O] +Ih ®D*(4.7)
forall t € [a,b], if ||h]|-: is small enough.

From (4.6), we have leftthat F(¢ + h) — F(¢) = L(h) + R(h), where

b
d , ) )
L) = [ [L 0@, ©.0m0 + 00,9 ©.0K 0] a

a

and
b

R(h) = f r(h(t))dt

a

We need to prove that dF,(h) = L(h), where L: C'[a,b] — R is obviously continuous and
linear.Now we need to verify that

R _

im ———= 4.8
i ThTTes (48)

where
l1hllcr = max {[R(©)], [ ()]}

From (4.7), immediately we obtain

b b
P
R < [ Ir(h(@)1de < [ 5 @IRlIc)?de = 2P~ @) Ikl|c)?

and this prove (4.8). m
Remark 22. This theorem shows that b — a < wis necessary to Fwill be differentiable.

Corollary 23. Let F : C'[a, b] — Rbe defined by
b

Fo) = [ Flo@.9 @0

a
withf : R® — R, a C2class function. If gis a C2class functionin [a, b]andh € C¢[a,b], then
b

9] , ) '
aroy = [ [L oo ©.0-Lwwsoolhon @

a

Proof. Given that ¢is a C?class function, then %((p(t),(p'(t),t) is a Clclass function in
[a, b].Integrating by parts, we obtain
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b b
0 ' d (@ ,
f [é((p(t)xp @, | (t)dt = — f E[%((p(t),(p (t),t)]h(t)dt
ash(a) = 0 = h(b), therefore (4.9) could be obtained directly from (4.5).m

From this moment, M,denotes a linear manifold into the set

{y €Ca,b]: Y(a) = 0 = YP(b)}.
Lemma 24. If Myis dense in L'[a, b]and, ¢ : [a,b] — Ris a continuous function such that
b
[ S e@ndc= o

a
for any h € My, then gis identically zero in [a, b].

Proof. First we consider when M, = C}[a, b]. Suppose that ¢(t,) # 0, for some t, € [a, b]. Then, gis
not null in an interval that contains to t,, because ¢is continuous. If ¢(t) > 0fort € [t;,t;] < [a,b]
and we define the function has follows

t—t)?(t—t)%  tE[ty,t]
0, another case

h(t) = {(
thenh € C}[a, b] in addition

b t2

[ oor@adc = [ o - 632~ 63> 0

a t1

which is a contradiction, hence ¢ = 0in [a,b]. As M,is dense in L![a, b], there exist a sequenceof
functions {h, } ¢ M,such that h, - ginto L![a, b], then

f<phn—>f<p2

which implies that ¢ = 0almost everywhere, becausegh, = 0 for all n.m

4.2. Euler equation. Suppose that there is a function f(x, y, t) which has partial derivativescontinuous
until second order, with respect to all its plots. Between all possible functions ¢(t) withcontinuous
derivative, we must seek the function that offers the weak extreme to the functional

b
F(p) = f FQP(O, Y (1), O)dt 4.10)

subject to the boundary conditions

Y(a) = Sandy(b) =y (4.11)

Again, it is necessary to establish conditions under which is possible to seek extremal functionsof the
functional defined in (4.10). Suppose that ;is contained in the set

{ €C'[a,b]: Y(a) = Sandy(b) = v}
and there is a linear manifold ¢ = C}[a, b], such that M, + M; c M;and M,is dense in L![a, b].
Theorem 25 (Necessary condition). Under the above conditions, for the functional given in

(4.10),defined by the set of all functions iy € M;reaches its maximum value, is necessary that the
functiony (t)verifies the Euler equation, that is

————=0 (4.12)

Proof. Consider h € M,. By corollary 23,
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b
d

) dad
aro) = [ [0 0.0 - 55

dx datay PO @' (D), t)] h(t)dt

a

and as TM; o M,, by theorem 18 the above differential is null, for all h € M,. Now, by lemma 24 we
obtain

af , d of , o
35 @O0 D0 = 32 (00,0 (0,0 = .

Remark 26. The integral curves that satisfy (4.12) are called Lagrange curves, because of this,
theequation is usually called Euler-Lagrange equation.Developing (4.12), we obtain

Y (Of, @O, (©),0) + P (Of,, WO, (), 0) + fo, (), P (), 1) S AVIORAGN
=0 (4.14)

which represents a second order differential equation, and its general solution has two arbitrary
constants,whose values will be determined from boundary conditions above mentioned. The
developgiven in (4.14) is possible, if the following theorem is considered.

Theorem 27. Let y(t)be a solution of Euler-Lagrange equation. If the function f((t),y’ (t),t)has
until second order continuous partial derivatives , then the function y(t)has continuous secondorder
derivative in every point for which

foy @@, 9" (D),t) #0

Proof. Consider the difference

Af, = f,(x + Ax,y + Ay, t + At) — f(x,y,t) = Atf,, + Axf,, + Ayf,,

where “overlines” indicate that the corresponding derivatives are evaluated over certain meancurves.
If this difference is divided by Atand we take the limit when Atapproach 0, we have

- Ax _ Ay _
fyt +Efyx +Efyy

The last limit exist, as f, has derivative with respect ¢, and according to Euler equation is equalto f,.
Additionally, f has continuous second order derivatives, then as Atapproach 0, fytapproachfyt. From
both yexistence and second derivative continuity f,,, we have that the limit of secondterm exist when
At — 0, but the third term also has limit, because the limit of the sum of threeterms exist. When
At - 0, f,, — f,, # 0, hence

lim &Y .

Jim T y(t)exist

All'in all, from Euler equation we can find an expression to y'which is continuous when f,, # 0.
]

1.3. Isoperimetric problem. Around IX century, the princess Dido solved a problem that we can
summarize as follows: “Finding between all closed curves with fixed length, the one that delimits the
greater surface”.

If we consider two points A(a,0) and B(b,0) over x-axis where the distance between them
isgiven, that is to say, d(4,B) = l, the problem to find a curve that maximize the area between itand
x-axis will be:

To find a function f(x) such that
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b
I[f] = ff(x)dxz max

subject to the restriction

wheref(a) = 0 = f(b).

From a general point of view, our problem consists in finding extremes of the functional givenin
(4.10), subject to edge conditions given in (4.11) and with the additional restriction

b
G@W) = fg(lp(t),lp’(t), t)dt=c, c €R (4.15)

withf,g : R3> — R,C?[a, b] class functions. Let M be the hyperplane in C![a,b] that containsthose
Clclass functions 1 : [a,b] — R, such that they satisfy (4.11), then our problem consistsin locate the
local extremes of the functional F over the setM n G~1(c). The principal idea is togeneralize to the
Lagrange multipliers method to infinite-dimension spaces.

We consider the following simpler case: Let both F,G: R® — R be functions of class C?,
suchthat G(0) = O0and VG(0) #0. If Fhas a local maximum or minimum in 0, subject to
restrictionG(x) = 0, then there must a number 4, such that

VE(0) = AVG(0) (4.16)
Furthermore, the differentials dF,, dGy: R* — R given by

dFy(v) = VF(0) - v anddGy(v) = VG(0)
then(4.16), as
dFy = A°dGy(4.17)

whereA : R — R is the linear function defined by A(t) = At.
Lemma 28. Let aandfBbe two linear functions to real values in vector space Esuch thatKer a >
Ker pand Image f§ = R.Then there exist 1 € R, such that « = AB. That is to say, exist a linear

function 4 : R — R, such
thata = A°pB, that is the same to say that the diagram

R

a A

ER - »
B

commutes.
Proof. Given t € R, we take x € Esuch that f(x) = land we define A(t) = a(x). To provethat Ais
well-defined, we must see if y € E, such that x # ywith the condition B(y) = t, the a(x) = a). If
B(x) = B(y) = t, then x — y € Ker B c Kera, that is a(x — y) = 0, by linearitya(x) = a(y).
Now, if B(x) = sand B(y) = t, then

A(as + bt) = a(ax + by) = aa(x) + ba(y) = adA(s) + bA(t)

hence, Ais linear. m
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Let E, Fand Gbe three full vector normed spaces. Consider the differentiable applicationf : E X F —
G, then for each a € Eand each b € F, the applications ¢ : E — Gand y : F — G defined by
o) = f(x,b) and Y(y) = f(a,y) are differentiable in a € E and b € Frespectively.

Then the partial differentials d,.f (a, b) and d, f (a, b), are defined by

d.f(a,b) =dg,andd,f(a,b) = dy,

Hence, d,f(a,b) is the differential of the application from Eon Gwhich was obtained from
applicationf : E x F — G, fixing y = b, and analogously for dyf (a, b), but fixing x = a.

Definition 29. Let Eand Fbe normed vector spaces. The application g: E — Fis said to
becontinuously differentiable or C'class, if it is differentiable and dg,(v) is a continuous function
of(x, v), that is to say the application (x,y) +— dg,(v) from E X Eto Fis continuous.

Remark 30. The next result will be presented without proof, for more details you can consult [5].

Theorem 31 (Implicit function theorem over normed spaces). Let E, Fand Gbe three full normedvector
spaces and let f : E X F — Gbe a C'class application. Suppose that f(a,b) = Oandthat d,f(ab) :
F-—Gis an isomorphism. Then, there exist a neighborhood Uof ain Eanda neighborhood Wof (a, b)in
E x Fand an application ¢ : U — Fof class C?, such that: If(x,y) € Wand x € U, then f(x,y) = 0if

onlyify = ¢(x).

Theorem 32. Let Fand Gbe C'class functions to real values, defined in a full normed vectorspace
Ewith G(0) = O0and dG, # 0. If F : E-—Rhas a local extreme in 0, subject to restrictionG(x) = 0,
then there is a linear function4 : R — Rsuch that satisfies the equation dF, = A °dG,.

Proof. We can use the lemma 28 with « = dFyand f = dG,, always thatKer dF,.o> Ker dG,. For it
we suppose that given v € Ker dG,, there is a differentiable trajectoryy : (—¢,&) — E, where its
image is a subset of G=1(0) such that, y(0) = 0and y'(0) = wv(for justifying this existence, see the
next remark).

Hence, the composition h = F°y: (—¢¢) — R has a local extreme in 0, whereh'(0) = 0, thenthe
chain rule gives us the following result

0 = h'(0) = dho(1) = dF,)(dyo(1)) = dFy(y'(0)) = dFy(v)
as we wanted to show.m

Remark 33. Now we will justify the existence of a differentiable trajectory y in theorem 32, for it,we will
use Implicit function’s theorem 31.

If X = KerdG,, then dGy:E — Ris a continuous function and X is a closed subset of
Eandtherefore complete. Choosing w € E, such that dGy(w) = land denoting by Y a closed
subsetthat contains all scalar multiples of w, we can say that Y is a copy of R.

Onthe otherhand, X N Y = O0andife € E,a € dGy(e) € R, then
dGo(e — aw) = dGy(e) — adGey(w) = 0
Hence, e — aw € X and in consequence, e = x + y, where x € Xand y = aw €Y. Therefore,
Eisthe direct algebraic sum of subspaces X and Y, in addition the norm over the space Eis equivalent
to the product norm over X X Y so, we can write E = X X Y. To apply the implicit function theoremwe

need to see that d,Gyo: Y — R is an isomorphism. From Y = R, we must show that d,G, # Obut
given (r,s) € X x Y = Ewe obtain that

dGo(r,s) = dGo(r,0) + dGo(0,5) = dGe(0,s) = d,Go(s)

29



Characterization Of Maxima Entropy Functions Using Calculus Of Variations

So if we suppose that d, G, = 0, we obtain dG, = 0, which is a contradiction.

Consequently, the implicit function theorem gives a differential functiongp : X — Y, which graph
= ¢(x) coincides with G~1(0) in any neighborhood of0. If H(x) = G(x,(x))so, H(x) = 0 for
xclosed to Omeaning

= dHy(w) = d,Go(u) + d,Go(dpo(w)) = d,Ge(dpy(u))
forallu € X, hence we get that dg, = 0, as d, Gyis an isomorphism.

Finally, given v = (u,0) € Ker dG,, we define y: R— E byy(t) = (tu,¢(tu)).So y(0) =
0 and y(t) € G~1(0), for tenough small and additionally

Y'(0) = (u,dpy(w) = (w,0) =
Theorem 34. Let F, G,and G,be functionals over C![a, b]defined by

b

b
F@) = jf(ll)(t).ll)'(t),t)dtandGi(lﬂ) = fgi(ll)(t),w'(t),t)dt—ci

a

wherei = 1,2and additionallyfand g;are functions of C%class in R3, for i = 1,2. Let ¢ € Mafunction
of C2class which is not a extreme function of G;, fori = 1,2. If Fhas a local extreme ingsubject to the
conditionsy(a) = a,y¥(b) = Band G;(xp) = 0;i = 1,2. Then there exist real numbers A;and
A;such that gsatisfies the Euler-Lagrange equation for thefunction h = f — 4,9, — 4,9, that is to
say

T 0.9 - ﬁaw@¢@w 0(4.18)

forall t € [a,b].

Proof. Suppose that ¢ € C![a, b]and it is a class function €2, such that Fhas a local extreme overM n
[GT1(0) N G5 1(0)]. We will consider the functions to real values F o T,Gi o T, with i = 1,20verC¢[a, b]
and from the fact that Fhas a local extreme over M n [G71(0) n G;1(0)]in ¢, we get thatF o Thas a
local extreme in 0, subject to the conditions Gi o T(y) = Ofori = 1,2, so d(Gi o T)y # 0.Then, if we
consider a linear function 4 : R — R, by theorem 32

d(F oT)g= A od([G1°T] + [G,°T])o

for each i = 1,2and where dT,is the identity application over Cg[a,b]. The chain rule gets us
inconsequence that

dl:(/J = Ao (dGl(p + dGz(p)

inC¢ [a, b]. Writing A(t) = (4, + A;)tand applying corollary 23 for dF,and dGi(pwe concludethat

of

fbw@¢@adw

@ (©,¢'©,0]ude

@ (©,0'©,0]u@de

b
f%w@w@odw
b

+2 [ [ 22 000.0' .0 - 22 (00,0 ©.0] w0

a
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forallu € C}[a,b]. If h: R® — R is defined by

h(x,y,t) = f(,y,t) — Lg1(x,y,t) — A29.(x,y,t)

we obtain that

(<p(t) @ (©), )| ul®)dt =0

b
[Bevson-55

for allu € C}[a, b]. As a consequence of lemma 24, (4.18) is satisfied.m

Theorem 35. Let M; c {y € C'[a,b]: Y(a) = ayy(b) = fland, let Fand Gbe functionalsover
C1[a, b]defined by

FQp) =_ff(¢(0.¢%t>t)dtandc(¢) =_fg(¢(o,¢%tmt)dt—c

wherefand gare functions of C2class in R3class in R3. Let ¢ € M;be a function of C?class that is not
anextremal of G. If Fhas a local extreme in psubject to the
conditionsy(a) = a,y¥(b) = B andG(y) = 0. Then there exist a real number Asuch that @satisfies
the Euler-Lagrange equation for the functionh = f — Ag, thatis to say

—(<P(t) P'(t),1) — (<P(t) P'(),t) =

dt dy
forall t € [a,b].

Proof. Suppose that ¢ € M;and it is of class C?, such that Fhas a local extreme over M; n G~1(0).We
know that M, c C¢[a, b]land M;is the traslation by any fixed element of this subspace. LetT : M, —
M, the traslation defined byT () = ¥ + ¢, again T(0) = ¢, where

dTo: MO — MO = TMl(p
is justly identity mapping.
Now, consider the functions of real values F o Tand G - T over M,. From the fact that Fhasa local

extreme over M; N G~1(0). in ¢, we obtain that F o T has a local extreme in 0, subjectthe condition
G o T() = 0. By hypothesis, @is not an extremal for Gover M;, that is to sadeq,|TM # 0, so
1y

d(G o T)0 # 0. Then, if we consider a linear function 4 : R — R, by theorem32, we have to
d(F oT)g= A od(G oT),

wheredT,is the identity application over M,. The chain rule gives us thatdF, = A°dG,, in M,.Taking
A(t) = Atand applying corollary 23 to differentials dF,and dG,, we conclude to

of

fbwm¢®odm

@©,¢'©,0|u@dt

@ (©,¢'©,0]ude

=aﬂgw@¢aw)dw

forallu € My.If h: R?® — R is defined by

h(x,y,t) = f(x,y't) - Ag(x,y't)
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we obtain that

1ok , d oh , ~
|Gz e 0.0 -5 w0 @.0]uwd =0

forall u € M,. By lemma 24 we have what we wanted.m

We can enunciate a similar theorem over M;, using both theorems 34 and 35 directly for itsproof. Let’s
see

Theorem 36. Let F, G;and G,be functionals over C![a, b]defined by

b b
Fp) = f FQP(O, W (), O)dt andG, () = f GO (0, O)de ~c,

wherei = 1,2and additionallyfand g;are functions of C2class in R3, fori = 1,2. Let ¢ € M;afunction
of C%class which is not a extreme function of G;, fori = 1,2. If Fhas a local extreme ingsubject to the
conditionsy(a) = a,y¥(b) = Band G;(xp) = 0; i = 1,2.Then there exist real numbers A;and 1,such
that gsatisfies the Euler-Lagrange equation for thefunction h = f — 4,9, — 4,9,, that is to say

d oh

115y, @OP .0 =0

oh ,
@O0, -

forallt € [a,b].
2. EXTENSIONOF EULER-LAGRANGEEQUATION TO A NON-BOUNDED INTERVAL

Suppose that we have a functional defined over a subset which contains C'class functions in asemi-
infinite interval like (—oo, a] or [b, ), or inclusive, over the real line, and we need to find theextremal
functions of this functional. For it, we will use the fact that Euler-Lagrange equation isinvariant under
regular transformations.

5.1. Invariance of Euler-Lagrange equation. If the functional given in (4.10) is transformdoing an
independent variable substitution or a simultaneous substitution of unknown function and the
independent variable, the extremals can be determined by Euler equation from integrandtransformed.

For it, we consider t = t(u,v) and x = x(u,v), where

ty ty

X, X, =0

Consider additionally uas an independent variable, then by chain rule we have

dx x, +x,v'

R T

Then

x, + x, v . ,
ff(x,y, t)dt = ff <x(u, v),m,t(u, v)) (t, +t,v)du = fh(v,v ,u)du

and the extremals of the initial equation are determined from Euler's equation for the
functional [ h(v, v',u)du, that is to say it must satisfy equation (4.12),

hy——hy = 0

Remark 37. For more details, you can see [9].
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5.2. Variables change in Euler-Lagrange equation. Let's see the fundamental result of theorem34:
If the functional

b
FQp) = f Fap(O.W (O, Dt 51

subject to the restriction

b

GCW) = J-g(ll)(t),ll),(t), t)dt = k, k is a constant (5.2)

a
reaches a maximum or minimum in ¢(t), then there exist A € R such that ¢(t) satisfies the equation

d oh

115y, @OP .0 =0

oh ,
@O0, -

forh = f — Ag(Lagrange function), where fand gare C%class functions in R3and ¢ € M is a C%class
function that is not an extremal of G, in addition we always consider that —c0o < a < b < .

Now is necessary to precise the invariance of Euler-Lagrange equations, for it we consider
thefollowing problem: To find the maximums or minimums of functional (5.1), subject to the
restriction(5.2) with the particularity that a and b can take the values —ocoand/or corespectively.

We consider the following set to prove the next theorem

D ={y € C'(R): |:1|im [t|"p(t) = 0,foralln € N}

Theorem 38. Let Fand Gbe the functionals defined by

Fp) = [ ra.w @, 0de 53)

and
b

6 = [ 9. @,0de - (5.4)

a

withyp € Dand f andgare C?class functions. There exist constants Qi ay € (o, 1)anda2f,a2g €
[1' ) and ﬂlf'ﬂlg;ﬂzf,ﬁzg, ki, ky, k3, ky > Osuch that

F@y, Ol < kx| (6P andlg(x,y, O] < kolx] ™ol
iflx| < landt € Rand additionally

fFGy, DI < kalx|™ [t and|g (x, y, )] < kylx|“20]e]2
iflx] > 1andt € R. Let pbe a C?class function, such that

(@) = o) = ¢'(a) = ¢'(b) =0

with—oo < a < b < oothat is not an extremal of G. If Fhas a local extreme in ¢, then there exista real
number Asuch that gsatisfies the Euler-Lagrange equation for the function h = f — Ag, thatis to say
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—(¢(t) @' (©),0) _Ea_(‘p(t) o ,0=0 (5.5)

forallt € R.

Proof. Let (a, b) be a finite interval and let u : (a,b) — (—, ) a C! class increasing mapping,such
that

lim u(s) = -0 ,  lim u(s) =
s—at s—b~

Let sbe an interior point of (a, b). Considering the change of variables t = u(s), the expressions(5.3)
and (5.4), give us a new variational problem, given by

F@) = ff(ll)(u(S)),llf(u(S)),u(S))u'(S)dS (5-6)

and

b

G = jg(l/)(u(s)),lp’(u(s)),u(s))u’ (s)ds = K,K is a constant (5.4)

a

Is important to highlight that

FOPO, P (@), Odt + f FQP(O, Y (1), Odt

| r@.w @0
- [y (®)I<1 MOIE!

IA

]hwmwmmm+jMMMWMWt

—00 —00

and both integrals converge, as: lim|., |t|"1(t) = 0, for alln € N.

Hence, the integral that defines F(y) in (5.6) always converges. Analogously, the integral
thatdefines G(i) in (5.7) also converges. Now, we consider yas a function defined in (a,b) and
suchthat y(s) = y(u(s)), then we will have

Y'(s) = P'wNU'(s) = P'(uls) =y'($)u'(s)
Furthermore, the problem was reduced to seek extremes of the functional

b

H@=ff0()

a

¥y (s)

) u(s)) u' (s)ds(5.8)

subject to the restriction

b

GQY) = f (s) y_(s) u(s) |u' (s)ds = K, Kis a constant(5.9)
- g y ’ u’ (S) ) - ) .

a
Let w(s) be an extreme, then wmust satisfy the equation

—(w(s) w (5),5) ——a—(w(s) w (s),s) =0 (5.10)

whereh = f — Agand
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fCuy,s)=f <x,%,u(5)> u'()andg(x,y,s) = g (x,%.u@)) u'(s)

If we define ¢: (a,b) = R by ¢(t) = w(u—1(t)), then ¢@is an extreme of initial problem
ande(u(s)) = w(s), wherew'(s) = @'(u(s)).u'(s).

Leth = f — Ag, where

h(x,y,s) =h <x,%, u(s)) u'(s)
Then rewriting (5.10), we have
oh , oh , ,
3y @(©),0'(5),9) = 3 (0(u(), ¢ (u(), u() ) u' ) (511)
and
oh , _on( y 1)
@((U(S),(l) (S)'S) - @ x!m!u(s) ( . )

then taking the derivative with respect to s in (5.12), we obtain

d oh , d oh w (s)
ga(w(s).w (s),s) %@<w(s),u,—(s),u(5))

_ don :

= T3y @EENP ), u)
oh : ' "(s), 9" ()u

= V@(‘P(u(s))xﬂ (u(s)),u(s))-(<l’ (W) (), 0" (u())w (s),u (S))
, oh , ' !

= 4OV ()¢ (@) u®). (¢ @) ¢ @)1)  G13)

matching(5.11) and (5.13), we have

dh , ) , dh , , "
3 (2,0 @), 1)1 () = w I 5 (0 (). ¢’ (4()), 1)) (¢’ (u). 0" (w()). 1)

dividing by u'(s) and taking t = u(s), we finally obtain

oh , oh , , ") 1
FAAORAORY V@(«)(t).«) ©),0).(¢ (), ¢ (©),1)

d oh ,
E@(‘P(t). @ (1),1t)

which is the same equation of a finite interval. m

Doing a proof totally analogous, we can prove a result with multiple restrictions. We will proceedto
enunciate this result without proof.

Theorem 39. Let Fand G;be the functionals defined by

Fap) = [ re.v @0

and
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b
6w = [ g wO.w ©.0d-g

withyy € Dand f andg;for each j=1,..nare C%class functions. Then there exist constants i,

a, ; €(0,1),j =1, ...,nandazf,azg]_ €[1,00),j=1,..,nand

g
ﬁlf’ ﬂzf, kl' k3 > Oandﬁlgj, ﬁzgj, kzj, k4’j > 0 ,j = 1, ,TlSUCh that

fC 2,01 < kelxl el and|g; (x5, 0] < kg x|t

if|x| < landt € Rwithj = 1, ..., nand additionally

Gy, 01 < kalxl el and|g (v, O] < ks, 6122 ¢

iflx] > 1andt € Rwithj = 1, ...,n. Let pbe a C?class function, such that

(@) = o) = ¢'(a) = ¢'(b) = 0

with—co < a < b < cothat is not an extremal of G; for all j =1,..,n. If Fhas a local extreme in ¢,
then there exista real number4;withj = 1, ..., nsuch that gsatisfies the Euler-Lagrange equation for the
function h = f —3¥/_; 4 g;, thatis to say

d oh

113y @D OB =0 (55)

oh )
= @©,0'©,0) -

forallt € R.

Remark 40. We can find distribution functions that maximize the functional that defines theentropy,
and they are not defined by all line, then in these cases, we can use results exposedin the last two
theorems as follows:

(1) If the interval where the functional and restrictions are defined, is of the form (a, o) witha €
R, then the set D is defined as follows:

D ={y € C'(R): tli_)rg|t|"1/)(t) =0,foralln e N}

(2) If the interval where the functional and restrictions are defined, is of the form (—oo,a) with
a € R, then the set D is defined as follows:

D={y € Cl(]R):tlir_n [t|™p(t) = 0,foralln € N}
V. MAXIMA ENTROPY PROBLEMS

Let X be a random variable which takes values in the real line. The probability that X takesvalues less
or equal to the given real number xgiven, it’s obtained integrating the density functionp, namely

P(X <x) = fp(t)dt

but as X can take any value, we obtain that

f p()dt =1

R

In too many problems, the principal interest is focused on achieving determining the density functionp,
having as basis the background about certain expected values. We will do this, using thetheorems of
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the last section. Now, we will enunciate and prove the necessary theorem which willallow us to
characterize the maxima entropy functions.

6.1. General theorem.

Theorem 41. Let hy,...,h,: R — Rbe measurable functions, such that |h,(t)| < my|t|™k, my,n, >
Ofor each k = 1,...,nand cy,...,c, € R. Suppose that there exist a,...,a, € Rsuchthat the function
q: R — Rdefined by

q(t) = exp(ao + athy(t) +- -+ +a,h, (1)

is a density of probability and each of functions h,q,k = 1,...,nare integrable in Rand

J-hk(t)q(t)dtzck‘ k=1..n

Then the functional Fdefined by

F(p) = f p(®) logp(t)dt,

with its domain formed by all measurable functionsp: R — Rsuch that

[e.]

p(t) = 0, fp(t)dt =1and | h(t)qt)dt=c¢c, k = 1,...,n

—00 —00
reach an extreme in q.

Proof. Consider the functional given by

oo

F(p) = j p(t) log p(6)dt ©.1)

—00

subject to the restrictions

oo

jhk(t)q(t)dt =c, k=1..n (6.2)

—00

Additionally, consider the functions f and g,, withk = 0,...,n defined as follow

flx,y,t) = —x logx , g, (x,y,t) = xh (t) ,k = 0,...,n

where
3
lfC,y,0)] = |—xlog x| = |x||logx| < [x]|2,if|x] < 1
and
If (x, 7, 0] < |x]?,iflx| > 1
and

lgi (%, 7, )] = |xh (O] < |x|[¢]™

in addition, hy(t) = 1,forallt e Rand ¢y = 1.
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Now, if gis an extreme of the functional given in (6.1) subject to the restrictions (6.2), thereare
real numbers A, ..., 4,, such that gsatisfies the Euler-Lagrange equation for the function zdefined by

n
2663,0 = fE10 = ) Aege(y,0)
k=0
that is to say

d 0z

13, @O.dO.0=0

q t )q t )t

0z

n
0z
Fi —logx —1 —kz(:) Ahy (t) andaz 0

then the Euler-Lagrange equation for g, is given by

“logq(t) — 1 — z Ay (6) = 0
k=0

furthermore
n n
logq(t) = —1— z Ah (0) = q(t) = exp[—l — Z chk(t)}
k=0 k=0
that is what we wanted to prove, where a, = — A;,foreachk = 1,...,nanday; = -1 — A,.m

6.2. Characterization of maxima entropy functions depending on their restrictions.

Consider X a random variable which takes values in some subset Ion the real line. Let p: I — Rbe
the density function of X, that is to say, psatisfies the following conditions:

(i) p(t) > 0,forallt € Iand p(t) = 0in another case.
(i)f, p®)dt =1

From calculus of variations technics, we will try to generate some typical density functions
thatmaximize the functional

[oe]

stl = [ p(e)1ogp(oyde 63)

—00

additionally, we will suppose that the function psatisfies conditions of the form:

f p®p)dt =c¢,, ¢, ENR, k=1.2,.. (6.4)
1

wherep;(t) = 1,forallt e land ¢; = 1.

6.2.1. Exponential case. Suppose that I = (0, o) and pis a function that satisfies the conditions (i)and
(ii), in addition to E(X) = a. Furthermore, the problem focuses on maximizing the functional(6.3),
subject to restrictions:
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[ee]

f p(t)dt = 1andf tp()dt =a,a>0 (6.5)
0 0

wherep,(t) = tand ¢, = «a.
Consider the functions
fl,y,t) = —x logx , g1(x,y,t) = xandg,(x,y,t) = tx
Then the functions g;and g,, satisfy
| 91(x,y, O] < |x|land|g, (x, y, )] < [t]]x]|

Then by theorems 36 and 39, there exist 1;, 4, € R such that psatisfies the Euler-Lagrange
equationfor the function hdefined by

h(x,y,t) = f(x,¥,8) — 41 g1, ¥, 8) — A2g2(x, 3, t)
that is

da

oh ’ h ' =0 6.6
a(p(t),p (t),t)—aa(p(t),p ®),t) = (6.6)

forall t € (0, ).

In virtue of

oh oh
a=—logx—1— A — Ayt and@= 0

we have that (6.6), can be represented by —logx—1— A; — A,t =0. Hence, if pis the
extremalfunction we obtain in consequence

p(t) — Ce—ﬂzt’c — el+ll

Then, using the conditions given in (6.5), we obtain that
1 :J(,‘e"mdt: c[—#r =£=>C=A
5 Aze_lzt 0 lz z

On the other hand,

=3} 0 " . c 0 1

= =4zt = _Aztdt = C [— —] —f _Aztdt = —

a fCte dt Cf te Te izt i +)L2 e R
0 0 0

1
Then, p(t) = Le 2t Taking = = awe obtain the expected result.
p a g a

6.2.2. Gamma case. Suppose again that I = (0, %) and pmaximises (6.3), subject to the restrictions

f p(t)dt = 1andJ- tot)dt =a,a >0 andJ’ log(t) p(t)dt =B (6.7)
0 0 0

Taking now the function
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h(x,y,t) = f(x,y,8) = L1 g1(x,y,t) — 1,92(x,¥,8) — A3g3(x, ¥, 1)
and considering the functions
fC,y,t) = —x logx , g1(x,y,t) = x,g,(x,y,t) = txandg;(x,y,t) = xlogt

By the exponential case, we know that the functions g;and g,, satisfy the conditions of theorems36
and 39, then

lgs(x,y,t)| = |xlogt| < |t||x|,for eacht € (0, )

which verifies again theorems 36 and 39, and doing an analogous calculus, we have to
—logx—1— 24 — At — A3logt =0

from which we obtain
p(t) = Ce*2tt™

Then, using the conditions given in (6.7), we get

1 —fCe —haty ’13dt—Cf = /1_' ifu= At (6.8)
2

Now, if p — 1 = —Asthen (6.8) can be wrote as follows

joe P~y = £l"(p) =(= %
) 2 I'(p)

NE;I o

from the second condition in (6.7), we have

(o]

= [ ctertemar=c | et Cdu_ €[ Pdu = — rp) =+
M RS A ek comeeT A’Z’HP P
0 0 0

Hence, 4, =

] |

Ifaﬂ = a, we will have that pcan be wrote as

p

I' (p)

Remark 42. Using the third condition in (6.7), it can be seen that p = 1, furthermore the
obtainedfunction transforms to the exponential case , because I' (1) =

—at tp—l

p(t) =

6.2.3. Laplace case. If we consider I = R with conditions

J- p(t)dt = 1and fltlp(t)dt =a,a>0 (69)

we can verify that the density function is given by
p(t) = Ce~*2l

Then, as the function pin this case is symmetric, by the exponential case, it is easy to reach

p(®) = 2aeal
2
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6.2.4. Normal case. We consider I = R, with conditions
f p(t)dt = 1and f t’p(t)dt = o? (6.10)

In addition considering the functions f, g;and g,as follow

f(x'y.t) = =X logx ) gl(x!y!t) = x'gZ(x!y’t) = th

by taking the function hwhich satisfies the Euler-Lagrange equation like

h(x,y,t) = f(x,y,8) — 41 g1, ¥.8) — A2g2(x, 3, t)
we have that

ah— 1 1- 2 A,t? I’ldah—o

Hence, the Euler-Lagrange equation for the extremal function pis given by
—logp(t) —1— A — A,t2=0

using logarithm properties, we obtain
1 2
log[Cp()] = = A,t* = p(t) = e~ ™

whereC = elt1

Finally, using the restrictions in (6.10) and the fact that
J e~t’dt =m

we obtain

o= 1 t?
p()—WeXP 57
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