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Abstract 
The interaction of a three-level atom with two modes of quantized field is investigated analytically. Strong 

entanglement between different parts of the studied multi-partite system is found and described both 

qualitatively and quantitatively. A possibility to control and tailor the observed entanglement either by features 

of the acting fields or by initial parameters of the scheme is demonstrated. The considered system can be used 

as a controlled transmission unit with managed multi-partite entanglement resource. 
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I. INTRODUCTION 

An important part of modern information technology appears to be the development of algorithms 

providing transfer, storage and extraction of quantum information. Such protocols are usually based on quantum 

states of light that recently become available in experiment. Now different quantum states of light can be 

generated: Fockstates, coherent states with small number of photon, squeezed vacuum light, Schroedinger cat 

states etc [1-8].Among them squeezed states of light appears to be the most attractive due to their unique 

properties that are very perspective for many important and interesting practical applications. Such non-classical 

states of light can be produced in a parametric down conversion process and are known to be characterized by 

strong correlations between photons [9-11]. In addition such light is characterized by suppressed variance of one 

of the field quadratures which makes possible the high resolution measurements with noise reduction beyond the 

standard quantum limit. Now it is possible to generate squeezed states of light with huge mean number of 

photons up to 10
15

 per mode[12]. In this sense it is possible to refer such states of light to as macroscopic 

quantum states. 

From the point of view of purposes for information technology, the transfer of quantum information 

seems to be better to provide using such nonclassical states of light while the storage is more convenient to 

beorganized on the basis of the so called atomic qubits. Different systems can be considered as qubits including 

superposition of states in atoms, semiconductors and especially semiconductor quantum wells, superconducting 

Josephson qubitsetc [13,14]. To perform good transfer and exchange of quantum information including the 

phase, perfect interface between the quantum light and atomic qubits is strongly required. The key point of such 

protocols consists in strong entanglement between atomic and field subsystems which takes place during their 

interaction. A simple example of the entanglement is the well-known Jaynes-Cummings model [15] describing 

the interaction of two-level atom with one mode of quantized field. The advantage of such quantum 

entanglement consists in the possibility to extract information of one part of the system by measuring another 

one. And the degree of entanglement can be simply calculated for example using the so called Schmidt 

parameter [16, 17]. However more complicated entangled systems are usually of great interest since multiport 

quantum control can be possible in such case. For example a three-level atom interacting with two modes of 

quantized field can be considered as important controlled transmission link. Moreover atomic systems involved 

in different physical processes can be often well described using the 3-level scheme [15]. However for such 

multipartite systems it is very difficult to establish the entanglement since there are no methods to characterize 

correctly the entanglement even for 3 interacting subsystems.  

In this paper an analytical solution for a 3-level atom interacting with two modes of quantized field is 

presented. The arising multipartite entanglement is analyzed both qualitatively and quantitatively. The 

possibility of strong entanglement between atomic and field subsystem is demonstrated. Moreover the 

entanglement between initially independent field modes is found to be induced due to their interaction via the 

atomic subsystem. Methods to increase and control the observed entanglement are suggested. The entanglement 
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resource found in such multipartite systems is shown to be very promising for many perspective applications in 

information technologies. 
 

II. THEORETICAL APPROACH 

We solve analytically the problem of resonant interaction of three-level atomic system with two modes 

of quantum electromagnetic field. The atom is considered in so-called Λ-configuration with possible  transitions 

induced resonantly by the first field (with frequency  𝜔1 ) between the lowest and upper atomic levels and by 

the second field (with frequency  𝜔2 )  - between the second low level and the upper one.  

The interaction of the atom with two modes of quantized electromagnetic field is studied in the frame 

of the non-stationary Schrödinger equation with both quantum field degrees of freedom being taken into 

account: 

 

𝑖ℏ
𝜕𝛹

𝜕𝑡
=  𝐻 𝑎𝑡 + 𝐻 𝑓𝑖𝑒𝑙𝑑  1 + 𝐻 𝑓𝑖𝑒𝑙𝑑  2 + 𝑊 1 + 𝑊 2 𝛹 (1)  

The total Hamiltonian consists of the atomic and field interaction-free Hamiltonians  𝐻 𝑎𝑡  𝑎𝑛𝑑 𝐻 𝑓𝑖𝑒𝑙𝑑  1,2 

respectively and the interaction terms 𝑊 𝑖 = 𝑑𝜀0𝑖𝑞𝑖  taken in the dipole approximation. Here 𝒅 = 𝑒𝒓  stands for 

the operator of atomic dipole moment, 𝑞𝑖  - for the dimensionless electromagnetic field in each mode and 𝜀0𝑖   is a 

correspondent normalization constant which characterises the coupling strength between the atom and a field  

and depends on the interaction volume 𝐿3: 𝜀0𝑖 =  
4𝜋ℏ𝜔 𝑖

𝐿3  . It should be noticed that the efficiency of atom-field 

interaction can be significantly increased by using small micricavity which allows to observe experimentally 

even vacuum Rabi oscillations [3]. For our model we suppose the strength of atomic-field interaction which is 

determined by the mean photon density < 𝑁 >/ 𝐿3 large enough to provide the characteristic Rabi oscillations 

significantly faster than any decoherence processes in the system. 

The Eq. (1) is solved by expansion of the time-dependent wave function of the total system over the 

interaction-free atomic eigenfunctions 𝜑𝑛 𝑟   and Fock states of each field mode Φ𝑚  𝑞𝑖  : 

𝜓 𝑟 , 𝑞1, 𝑞2 , 𝑡 =  𝐶𝑛𝑘𝑚  𝑡 

𝑛𝑘𝑚

𝜑𝑛 𝑟  𝛷𝑘 𝑞1 𝛷𝑚  𝑞2 × 𝑒𝑥𝑝  −
𝑖

ℏ
𝐸𝑛𝑘𝑚 𝑡  (2)  

where the energy𝐸𝑛𝑘𝑚 is given by  𝐸𝑛𝑘𝑚 = 𝐸𝑛 + ℏ𝜔1(𝑘 +
1

2
) + ℏ𝜔2(𝑚 +

1

2
). 

Substitution of solution (2) into Eq. (1) with using the rotative-wave approximation leads to the system 

of differential equations for the probability amplitudes 𝐶𝑛𝑘𝑚  𝑡  to find the atom in eigenstate 𝜑𝑛  and k and m 

photons in one and another quantum fields respectively: 

 
 
 
 
 

 
 
 
 

𝑖ℏ𝐶 1 𝑘+1 𝑚 = −𝑑13𝜀01𝐶3𝑘𝑚 
𝑘 + 1

2

𝑖ℏ𝐶 2𝑘 𝑚+1 = −𝑑23𝜀02𝐶3𝑘𝑚 
𝑚 + 1

2

𝑖ℏ𝐶 3𝑘𝑚 = −𝑑13𝜀01𝐶1 𝑘+1 𝑚 
𝑘 + 1

2
− 𝑑23𝜀02𝐶2𝑘 𝑚+1  

𝑚 + 1

2

  (3)  

Here 𝑑𝑖𝑗 =< 𝜑𝑖 𝑒𝑟 𝜑𝑗 > is the matrix element of the electron dipole moment for transition between 

atomic levels with numbers i and j. The system (3) is solved analytically for each coupled triad of probability 

amplitudes: 
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𝐶1 𝑘+1 𝑚  𝑡 = 𝛾𝑘𝑚 +
𝑑13𝜀01

𝜉𝑘𝑚
 
𝑘 + 1

2
 𝛼𝑘𝑚 𝑒𝑥𝑝  

𝑖

ℏ
𝜉𝑘𝑚 𝑡 − 𝛽𝑘𝑚 𝑒𝑥𝑝  −

𝑖

ℏ
𝜉𝑘𝑚 𝑡  

𝐶2𝑘 𝑚+1 = −
𝑑13𝜀01

𝑑23𝜀02

𝛾𝑘𝑚 +
𝑑23𝜀02

𝜉𝑘𝑚
 
𝑚 + 1

2
 𝛼𝑘𝑚 𝑒𝑥𝑝  

𝑖

ℏ
𝜉𝑘𝑚 𝑡 − 𝛽𝑘𝑚 𝑒𝑥𝑝  −

𝑖

ℏ
𝜉𝑘𝑚 𝑡  

𝐶3𝑘𝑚 = 𝛼𝑘𝑚 𝑒𝑥𝑝  
𝑖

ℏ
𝜉𝑘𝑚 𝑡 + 𝛽𝑘𝑚 𝑒𝑥𝑝  −

𝑖

ℏ
𝜉𝑘𝑚 𝑡 

  (4)  

with notation 𝜉𝑘𝑚
2 =

1

2
 𝑑13

2 𝜀01
2  𝑘 + 1 + 𝑑23

2 𝜀02
2  𝑚 + 1  . 

The coefficients 𝛼𝑘𝑚 , 𝛽𝑘𝑚 , 𝛾𝑘𝑚  can be found from the initial conditions for the atom and fields  

𝜓 𝑟 , 𝑞1 , 𝑞2 , 𝑡 = 0 =  𝐶𝑛𝑘𝑚
0

𝑛𝑘𝑚

𝜑𝑛 𝑟  𝛷𝑘 𝑞1 𝛷𝑚  (5)  

and are given by: 

 
  
 

  
 𝛼𝑘𝑚 =

1

2
𝐶3𝑘𝑚

0 +
1

2 2𝜉𝑘𝑚
× (𝑑13𝜀01 𝑘 + 1𝐶1 𝑘+1 𝑚

0 + 𝑑23𝜀02 𝑚 + 1𝐶2𝑘 𝑚+1 
0 )

𝛽𝑘𝑚 =
1

2
𝐶3𝑘𝑚

0 −
1

2 2𝜉𝑘𝑚
× (𝑑13𝜀01 𝑘 + 1𝐶1 𝑘+1 𝑚

0 + 𝑑23𝜀02 𝑚 + 1𝐶2𝑘 𝑚+1 
0 )

𝛾𝑘𝑚 =
𝑑23𝜀02 𝑚 + 1

2𝜉𝑘𝑚
2 × (−𝑑13𝜀01 𝑘 + 1𝐶1 𝑘+1 𝑚

0 + 𝑑23𝜀02 𝑚 + 1𝐶2𝑘 𝑚+1 
0 ) 

  (6)  

As an initial condition we suppose the atom to be generally in a some superposition of its 

eigenstatesand consider the quantum fields to be in coherent state with small number of photons or in a 

squeezed vacuum state. The coherent state |𝛼 > with phase 𝜗 can be expanded over different Fock state by 

following way: 

|𝛼𝜗 > =   𝑒𝑥𝑝  −
 𝛼 2

2
 

𝑛

 𝛼 𝑛 𝑒𝑥𝑝 𝑖𝑛𝜃 

 𝑛!
𝛷𝑛  (7)  

This expression leads to the Poisson distribution over Fock states with mean number of photons equal 

to  < 𝑁 >=  𝛼 2  and photon number variance 𝐷𝑛 =< 𝑁 > . As for the squeezed vacuum state, it is 

characterized by much more broader distribution over Fock states with only even numbers contributing to field 

wave function [18]: 

𝛹𝑠𝑞  =   𝐶2𝑛

𝑛

𝛷2𝑛  (8)  

𝐶2𝑛 =  −1 𝑛 
2𝛾

1 + 𝛾2

  2𝑛 !

2𝑛𝑛!
 

1 − 𝛾2

1 + 𝛾2 
 

𝑛

 (9)  

Here 𝛾 is the squeezing parameter which determines the mean photon number as < 𝑁 >=
1

4
 𝛾 −

1

𝛾
 

2

. 

And the photon number variance appears to be extremely large in this case: 𝐷𝑛 = 2 < 𝑁 >2+ 2 < 𝑁 > .  

Using the found time-dependent wave function of the total system (2) it is possible to get any 

information about the atomic and quantum field subsystems and their interaction including the entanglement. 

For example, the time-dependent population of atomic levels  𝑃𝑛 𝑡  and of different Fock states for each field 

mode𝑊𝑘 𝑡  and 𝑊 𝑚  𝑡  can be found respectively as following: 

𝑃𝑛 𝑡 =    𝐶𝑛𝑘𝑚  
2

𝑚𝑘

 (10)  

𝑊𝑘 𝑡 =    𝐶𝑛𝑘𝑚  
2

𝑚𝑛

 (11)  

𝑊 𝑚  𝑡 =    𝐶𝑛𝑘𝑚  
2

𝑘𝑛

 (12)  
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The main goal of this paper is to examine in details the entanglement arising in the studied multipartite 

system.  

 

III. RESULTS AND DISCUSSION   

There are many ways to characterize the degree of entanglement between two subsystems [16, 17, 19, 

20] while the entanglement between all components in a three-partite system is rather difficult to describe 

quantitatively.Two analyze the entanglement in multipartite system two main different strategies can be used. 

The first one means to characterize one of interacting subsystems independently on the behavior and dynamics 

of the others. Actually, such approach supposes to average over all variables except the considered subsystem 

and to find its entanglement with the other part of the whole system. Another way consists in the so called 

conditional measurement which describes the subsystem of interest under the condition that the other part of the 

whole system is found in a certain state. These two different ways make possible to characterize the 

entanglement from different points and are both discussed below.  

 

3.1 Evolution of the atom and entanglement between atomic and field subsystems 

If we examine the evolution of atomic system independently on the states of both quantum fields we 

should average over the field variables.Then we see that in a most general case the atom is found in a mixed 

state rather than in a pure state due to its interaction with quantized fields and is characterized by some density 

matrix with matrix elements given by:  

𝜌𝑖𝑗
𝑎𝑡 =   𝐶𝑖𝑛𝑘

𝑛 ,𝑘

𝐶𝑗𝑛𝑘
∗ 𝑒𝑥𝑝  −

𝑖 𝐸𝑗 − 𝐸𝑖 𝑡

ℏ
  (13)  

Diagonal elements of this matrix coincide exactly with time-dependent populations of atomic levels 

(10) while the off-diagonal elements keep the information about phase coherence in the formed atomic state.To 

characterize the entanglement between atomic and field subsystems we can use the Schmidt parameter which is 

given by [16, 17, 21]: 

𝐾 = [𝑆𝑝(𝜌𝑎𝑡
2 )]−1 (14)  

Using the matrix elements (13) for our system this parameter can be calculated as following:  

𝐾 = [  𝜌𝑖𝑗
𝑎𝑡  

2

𝑖𝑗

]−1 (15)  

It is seen that both the diagonal and off-diagonal matrix elements contribute to the value of the Schmidt 

parameter. The more is this parameter the higher is the degree of entanglement. The minimal value of this 

parameter is equal to 1 and corresponds to the case of fully independence between the atom and fields. Under 

such conditions simple factorization of atomic and field states take place and the atom is found in a pure state. 

The maximal value of the Schmidt parameter depends on the number of the basis atomic eigenstates and is equal 

to 3 for our system. It can be under stood that the maximal entanglement corresponds to the case when the atom 

is in a mixed state with all off-diagonal matrix elements equal to zero. Such state can be reffered to as the most 

possible mixed state. So, the Schmidt parameter can be used also to characterize how mixed is the state. At the 

same time its inverse value can be considered as the degree of purity of atomic state. Indeed, if the Schmidt 

parameter is equal to 1, the atomis density matrix describes a pure state since 𝑆𝑝 𝜌𝑎𝑡
2  = 𝑆𝑝 𝜌𝑎𝑡  = 1. It should 

be noticed that in a pure state the off-diagonal matrix elements are always non-zero.  

For our multipartite system the Schmidt parameter characterizing the entanglement between the atom 

and two fields is presented at Fig. 1 for two different cases: when initially two coherent or two squeezed vaсuum 

states interact with the atom. The atom initially is supposed tooccupy the coherent superposition of two low 

atomic levels with some relative phase between them:  

𝜓 𝑟 , 𝑡 = 0 =
𝜑1 + 𝑒𝑖∆𝜑2

 2
 (16)  
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a) b) 

Fig. 1.Dynamics of the Schmidt parameter K obtained for two coherent states and two squeezed 

vacuum states  (a) and regimes of “collapse” and “revival” of atomic transitions (b) presented in the case of 

initial atomic state 
𝜑1+𝑒 𝑖∆𝜑2

 2
  for Δ =

π

2
 and mean photon number  𝑁  =  10. 

In this case it is found that the highest degree of entanglement is reached for Δ =
𝜋

2
since all of 

quaienergy states of the system are initially populated at such initial condition [22]. The time-dependent 

behaviour of the Schmidt parameter is shown to be very different for two initially coherent or squeezed vacuum 

fields. For two coherent fields the Schmidt parameter reveals the change between smooth and oscillating 

behaviour which results from the arising effects of “collapse” and “revival” of atomic transitions found in [22] 

and demonstrated  at Fig. 1b for the populations of atomic states. 

In the case when two squeezed vacuum fields interact with atomic system, such regimes do not take 

place and the evolution of the Schmidt parameter is characterized by more or less chaotic iscillations arising due 

to a  lot of Fock states with different numbers that contribute to such initial squeezed state. Moreover the mean 

value of the Schmidt parameter averaged over time is found to be significantly larger than in the case of  

coherent fields and is rather close to its maximal value equal to 3 in this case. Thus there is the possibility to 

achieve and shoose different regimes of entanglement between atomic and field subsystems. 

 

3.2  Entanglement between the atom and one of the two interacting fields 

For some practical purposes and applications it is important to manage the entanglement between an 

atom and one mode of electromagnetic field while the second mode is used as a control field. To calculate the 

entanglement in this case the third subsystem (the control field) should be excluded either by averaging over all 

its possible states or by fixing a certain state for this system. Let us consider the second way. In this case it is 

very convenient to fix a certain number of photons in the control field and calculate the entanglement under 

such condition. To do this we project the total wave function of three-partite system onto the Fock state with m 

photons of the second field Φ 𝑚 (𝑞2) and then obtain the wave function describing a bi-partite system 

namely“atom+ one mode of quantized field”:  

𝜓 𝑟 , 𝑞1 =  𝛷 𝑚 (𝑞2)|𝜓𝑡𝑜𝑡𝑎𝑙   (17)  

Further procedure of calculation of entanglement is simple and consists in obtaining the Schmidt 

parameter by usual way. Using the projected wave function (17), it is possible to construct the density matrix of 

thebi-partite system 

𝜌 =  |𝜓  𝜓|  (18)  

andthereduced atomic density matrix which matrix elements are given by: 

 𝜌𝑟𝑒𝑑  𝑛1

𝑛2 =  𝐶𝑛1𝑘𝑚𝐶𝑛2𝑘𝑚
∗ 𝑒𝑥𝑝  −

𝑖 𝐸𝑛1
− 𝐸𝑛2

 𝑡

ℏ
 

𝑘

 (19)  

Here the indices𝑛1and 𝑛2take the values from 1 to 3 corresponding to the numbers of atomic levels.  

The final step is to characterize the entanglement quantitatively by calculating the Schmidt parameter: 

𝐾 =
1

𝑆𝑝  𝜌𝑟𝑒𝑑  
2 

 (20)  

Note that in contrast to Eq. (13) the summation in (19) is performed over k only while the number of 

photons m in the second field is supposed to be fixed. It means that we calculate the entanglement under the 

condition that m photons are found in the second quantized field. Such approach has physical reasons since in 



Multipartite entanglementin interacting “atom + quantized field” system 

24 

experiment the number of photons in a field can be measured directly or the procedure of post-selection can be 

used.  

Under such conditions the Schmidt parameter calculated for the atom and one mode of quantized field 

using Eq. (20) is presented as a function of time at Fig. 2 for two different numbers of photons in the second 

field m.  

  

a) b) 

Fig. 2. Dynamics of the Schmidt parameter K obtained for two coherent states with number of photons 

in the second field m=10 (a) and m=20 (b) presented in the case of initial atomic state
𝜑1+𝜑2

 2
andinitial mean 

photon number< 𝑁 > =  10for each field. 

Since the Schmidt parameter is found for the case of two coherent field impact, its evolution partially 

reveals the effects of “collapse” and “revival” with regions of smooth behavior and fast oscillations changing 

each other. The Schmidt parameter is found to be not as high as it was for the Results of Fig. 1. The main 

interesting feature of the found behavior is that larger entanglement is observed for number of photons in the 

second fields larger than the mean number.At first glance this fact seemsto be counter-intuitivein some sense. 

However when the number of photons of the second field is observed to be far from the mean value, a wide 

range of entangled quasienergy states contribute to the bi-partite wave-function (17). As a result it is possible to 

tailor the degree of entanglement by choosing the number of photons in the second (control) field.   

 

3.3  Conditional entanglement of two quantum fields 

Similar strategy (as in the previous Section) can be used to examine the entanglement between two 

modes of quantum fields.  This entanglement arises due to interaction of both fields with atomic system which 

seems to be one of the few good waysto induce coupling between independent modes of quantized field. Here 

we calculate a conditional entanglement between two quantum fields which is obtained under the condition that 

the atom is found to be in a certain atomic eigenstate. In this case the bipartite wave function of two fields when 

the atom is found in the “i-th” state is given simply by the following projection of the total wave function of the 

system on the “i-th” atomic state :  

𝜓 𝑞1 , 𝑞2 =< 𝜑𝑖|𝜓𝑡𝑜𝑡𝑎𝑙 > (21)  

Since the bi-partite state of two fields is pure and is described by the wave function (21) we can 

characterizethe degree of entanglement between two quantum fields by the Schmidt parameter which is given 

by: 

𝐾 =
1

𝑆𝑝  𝜌𝑟𝑒𝑑  
2 

 (22)  

where the elements of the corresponing reduced density matrix of one field can be calculated as 

following: 

 𝜌𝑟𝑒𝑑  𝑘1

𝑘2 =  𝐶𝒊𝑘1𝑚𝐶𝒊𝑘2𝑚
∗ 𝑒𝑥𝑝 −𝑖𝜔1 𝑘1 − 𝑘2 𝑡 

𝑚

 (23)  

The calculated time-dependent entanglement between two coherent fields obtained under the condition 

when the atom is found to occupy the upper level is presented at Fig. 3 for the initial condition (16) with zero 

phase between atomic states.  
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Fig. 3. The time-dependent entanglement obtained between two coherent fields of equal initial mean photon 

numbers < 𝑁 > =  10under the condition when the atom is found to occupy the upper level. The initial atomic 

state corresponds to (16) with𝛥 = 0 . 

The initial dynamics of the entanglement revials a sort of quasiperiodical behaviour with growing the 

magnitude sometimes accompanied by very fast oscillations. Such evolution is consistent with regimes of  

“collapse” and “revival” found for the populations of  atomic and field states under the coherent field inpact. 

However the “plateau” stage on the evolution of the level probability corresponds to the smooth growing of the 

degree of entanglement. This fact is a clear evidence that the off-diagonal are responsible for the observed 

increase of entanglement and actually represent the arising of quantum correlations between fields. 

At the same time the projection of the total wave function on the ground atomic state is found to 

provide much smaller entanglement since under used initial condition for the atom effiecient coupling between 

fields arises via the upper atomic level. 

The comparison of the entanglement achieved between to coherent and two squeezed vacuum fields 

is presented at Fig. 4 for smaller initial mean photon number. For such small number of photons the regime of 

smooth growing of the entanglement degree found for coherent field states is shown to take place at the very 

beginning of the evolution only. However the entanglement is found to be significant and appears to be much 

larger in comparison to the case of two squeezed vacuum fields. The maximal value of the degree of 

entanglement between two squeezed vacuum fields is found to be around 2 that means a formation of a very 

specific bi-partite field state with a certain type of correlations between photons. To analyze the features of the 

bi-partite  field stateы formed during the interaction with the atom we calculate the 2D photon number 

distribution of two fields under the condition that the atom is found to occupy the upper level: 𝑊𝑘𝑚  𝑡 =
 C3km  

2 . The data is presented at  Fig. 5. for two initially coherent and two squeezed field states. Such 

destribution represents in particular the probability to register k photons in the first field when m photon in the 

second field are found. Thus, in addition to the averaged characterisitcs it gives the conditional data i.e the 

information  about photon correlations.  

 

 

 

a) b) 

Fig. 4. Evolution of entanglement obtained between two coherent fields (a) and two squeezed vacuum 

fields (b) of equal initial mean photon numbers< 𝑁 > =  3under the condition when the atom is found to 

occupy the upper level. The initial atomic state corresponds to (16) with𝛥 = 0 . 

The distribution (a) of Fig. 5 is obtained for two initially coherent fields for instant of time in the 

middle of the first "plateau" on the time-dependent population of the upper atomic level. Initially both coherent 

fields are independent and their distribution can be simply caracterized by a circle centered at mean photon 

number equal to 10. During the interaction with the atom the bipartite filed distribution is characterized by well 

pronounced photon numbers either larger or smaller than 10. 
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a) b) c) 

Fig. 5. The bipartite photon number distribution of two coherent (a) and squeezed vacuum (b) fields 

under the condition when the atom is found to occupy the upper level obtained for instant of time in the middle 

of the first "plateau" on the time-dependent population of the upper atomic level. (c) – the same as (a) but for the 

instant of time at the end of the same "plateau". 

The observed very special distribution is formed due to the interaction with the atom and results from 

strong correlations between photons of two fields induced by this interaction. It can be seen that each photon 

number of the first field there is a certain predominant number of photons of the second field. This fact is a clear 

evidence of correlations between photons in the two fields.  

In the case of two squeezed vacuum fields the photon correlationsare found to exist too but are 

characterized by complitely defferent features. The 2D distribution formed during the interaction with atomic 

system reminds a chessboard with very pronounced formation of a set of the so called N00N- states. It is the 

formation of such states that is responsible for the value of the entanglement degree close to 2 demonstrated at 

Fig. 4. It should be also noticed that such N00N- states are mostly characterized by odd numbers N since the 

population of the odd Fock states is much more pronounced at the 2D bipartite photon distribution  for squeezed 

fields (Fig. 5b).  

It was also found that in the regime of  “collapse” of atomic transitions when the populations of 

allatomic and field eigenstates remain constant, the shape of 2D bipartite photon distribution and therefore 

photon correlations are changing dramatically. This fact is illustrated by the bi-partite distribution obtained for 

two initially coherent fields and calculated  for another instant of time - at the end of the same "plateau"just 

before the second revival (See Fig. 5c). It is seen that the distribution becomes rather close to the initial one 

wich for two coherent fields is caracterized by a circle centered at mean photon number equal to 10.  

Thus, the obtained results demonstrate the possibility to obtain new properties of bi-partite state of two 

modes of quantum fields and to manage the degree of their entanglementand correlations of photons not only 

quantitatively but also qualitatively. 

 

3.4  General case of entanglement between two quantum fields 

The results discussed above concern the case when two entangled subsystems are found in a pure state 

which is characterized by a wave function. For more general situation it can be not the case. If the coupled 

subsystems are in a mixed state and are described by a density matrix the Schmidt parameter is known not to be 

able to characterize their entanglement correctly. One possible way to solve this problem is to use the von 

Nuemann’s Entropy to characterize the purity or how mixed is the studied bi-partite state and to calculate 

mutual Information to find the degree of entanglement or correlations [21].To perform such analysis we 

calculate use the von Nuemann’s Entropy by following way: 

𝑆 𝜌 = −𝑇𝑟(𝜌 𝑙𝑜𝑔2 𝜌) = − 𝜆𝑖 𝑙𝑜𝑔2 𝜆𝑖
𝑖

 (24)  

where density matrix𝜌 describes the bi-partite state of two quantum fields averaged over the atomic variables.  

Here 𝜆𝑖  are the eigenvalues of this matrix used to calculate correctly the logarithmic function of matrix 

andthe density matrix elements are given by: 

𝜌𝑘1𝑚1

𝑘2𝑚2 =   𝐶𝑛𝑘1𝑚1
𝐶𝑛𝑘2𝑚2

∗

𝑛

𝑒𝑥𝑝  −
𝑖

ℏ
 𝐸𝑘1𝑚1

− 𝐸𝑘2𝑚2
 𝑡  (25)  
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The correspondent reduced matrix of one and another fields are characterized by the following matrix 

elements: 

 𝜌𝑟𝑒𝑑1 𝑘1

𝑘2 =  𝜌𝑘1𝑚
𝑘2𝑚

𝑚

,             𝜌𝑟𝑒𝑑2 𝑚1

𝑚2 =  𝜌𝑘𝑚1

𝑘𝑚2

𝑘

 (26)  

And the mutual Information can be found using the von Nuemann’s Entropy calculated for the bi-

partite state of two fields and the reduced density matrix for each field: 

𝐼12 = 𝑆 𝜌𝑟𝑒𝑑1 + 𝑆 𝜌𝑟𝑒𝑑 2 − 𝑆(𝜌) (27)  

The time-dependence of the Entropy obtained for the bi-partite state of two fields and for each field 

separately as well as the mutual Information are presented at Fig. 6 for two initially equal coherent fields with 

mean number of photons < 𝑁 >  = 5and initial atomic state chosen as𝜙𝑎𝑡  𝑡 = 0 =
𝜑1+𝜑2

 2
. 

 

Fig. 6.The time-dependence of the Entropy obtained for the bi-partite state of two fields and for each field 

separately as well as the mutual Information calculated for two initially equal coherent fields with mean number 

of photons < 𝑁 >  = 5 and initial atomic state chosen as 𝜙𝑎𝑡  𝑡 = 0 =
𝜑1+𝜑2

 2
. 

For such initial condition for the atom and initially equal fields the Entropies of both fields are found to 

be the same. Initially all the Entropies as well as mutual Information are equal to zero since two fields are 

independent from each other and each field is in a pure state. However due to the interaction with the atom 

either bi-partite two field state or individual state of each field becomes mixed and significant correlations 

between the field subsystems are found. This fact is clearly demonstrated by growing with time of all the 

Entropies and the Information at Fig. 6. It is clearly seen thatdue to strong photon correlations an individual 

state of each field appears to be mixed in more extent than the bi-partite state.  

Another interesting result concerns the dependence of the found photon correlations on the relative 

phase between acting fields. At Fig. 7 the mutual information characterizing the entanglement between fields is 

presented for two initially coherent fields in dependence on the phase 𝜃 of one field (see Eq. 7) and zero phase 

of the second field.It is seen that the phase dependence is well pronounced and the maximal entanglement 

isfound to take place for𝜃 = 0.  

 
Fig. 7The time-dependent mutual information obtained for two initially coherent fields and presented for 

different relative phase 𝜃between them. 
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Further we compare the entanglement achieved for initially coherent and squeezed vacuum states of 

fields. The results are presented at Fig. 8 for rather small mean number of photons  < 𝑁 >  = 3 . A much more 

regular time-dependence of the mutual information and higher reached degree of entanglement is found in the 

case of two initially coherent fields. However some specific mixed bi-partite state is seen to be formed for 

squeezed fields which is characterized by the Entropy being approximately equal to 1. This fact is due to the 

formation of a set of N00N- states mentioned  in the previous section. The obtained results show the possibility 

to manage not only the entanglement between two quantum fields but also to control and tailor the bi-partite and 

individual states of these fields.  

 

 

a) b) 

Fig. 8.The time-dependence of the Entropy obtained for the bi-partite state of two fields and for each field 

separately as well as the mutual Information calculated for two initially equal coherent fields (a) and two 

initially squeezed vacuum states (b) with mean number of photons < 𝑁 >  = 3 and initial atomic state chosen 

as𝜙𝑎𝑡  𝑡 = 0 =
𝜑1+𝜑2

 2
. 

IV. CONCLUSION 

The problem of interaction between three-level atomic system and two resonant electromagnetic non-

classical fields is investigated and an analytical solution is obtained. The dynamics of the multipartite state is 

analyzed and dramatic difference is found for the cases of initially coherent and squeezed vacuum field states.  

The entanglement arising between different parts of the multi-partite system is examined and ways of 

its quantitative description are discussed. Significantly strong entanglement between initially independent field 

modes is found to be induced due to their interaction via the atomic subsystem. The possibility to manage the 

entanglement between different interacting subsystems as well as to control and tailor the multi-partite state of 

the system is demonstrated. The considered system can be used as a controlled transmission unit with multi-

partite entanglement resource and can be very promising for many applications in information technologies. 

We acknowledge financial support of the Russian Science Foundation project No.19-42-04105. 
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