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Abstract  
The electricity networks, which operate in almost the same way since Tesla, have become unable to respond to 

the needs of the 21st century. The use of information technologies in electricity generation, transmission and 

distribution technologies is inevitable to meet the needs of today's networks adequately and provide 

uninterrupted energy. Smart grid systems have been established by integrating today's computer and network 

technologies into electricity networks. Adaptive, responsive, cost-effective, simultaneous and other electrical 

power systems can be connected to every point of the electricity network. This constitutes the basic backbone of 

the smart grid structure. Smart grid optimization is to ensure optimal power distribution between busbars 

without exceeding the physical limits of existing devices in the networks. In this article, an improved firefly 

algorithm is used to optimize power loss in the smart grid. The active and reactive power sum in the network 

has been optimized with the help of the firefly algorithm. The program written in Matlab GUI was applied to the 

IEEE30-busbar test system and the results were compared with the other meta-heuristic algorithms. The results 

obtained from the firefly algorithm were found to be more optimized compared to other algorithms. 
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I. INTRODUCTION  
Increased electricity demand and insufficient energy production and transmission enable power system 

networks to operate under unstable conditions. When the power system is operated under unstable conditions,  

the safety of the system is threatened and may cause voltage to unbalance. Today, while the power system is 

planning and operation, active and reactive power distribution are affected by voltage unbalance. Under 

overload conditions power system will be unsafe conditions due to deficient reactive power or not optimized 

reactive power flow [1]. The issue can greatly be solved when reactive power flow is reallocated. To increase 

stability in the power system, system losses can be minimized by providing optimum reactive power flow. A 

large amount of reactive power flow in an electrical power system is called actual power loss in the system. 

Therefore, to minimize actual power loss, optimized reactive power flow (ORPF) must provide across the lines, 

reactive power optimization is a long-standing issue for improving voltage balance by minimizing actual power 

loss [2]. Optimal Power Flow (OPF) is one of the power system planning that helps operators operate the system 

in the best way possible under certain restrictions. OPF can be applied periodically to minimize total fuel cost, 

reduce actual power loss and improve voltage stability. 

 For the economical safe and operation of power systems, ORPF is an important tool [3]. In ORPF, the 

network active power loss is reduced and the voltage profile is improved while performing a series of work and 

physical constraints. The reactive power flow is optimized by adjusting the values of the control parameters 

accordingly. Until recently, classical optimization methods have been used for this purpose. To solve the ORPF 

problem, techniques such as nonlinear programming [4] and gradient-based optimization algorithms are used. 

However, these methods have great disadvantages such as large numerical repetition and insufficient 

convergence properties and this will also provide greater calculation and greater response time. Newly 

developed meta-heuristic and swarm-based algorithms perform better than traditional methods. These 

algorithms are more preferred for power system optimization. These techniques are heuristic and swarm-based 

algorithms. Genetic algorithm [5], particle swarm algorithm, artificial bee colony algorithm [6], cuckoo 

optimization algorithm [7], ant lion optimization and firefly algorithm [8] are examples of these methods. In the 

literature, studies to optimize power loss are given in Table 1. 

The optimal load flow problem has more optimum results when it was applied to smart grid systems. 

The smart grid is often used to describe many different features in modern power systems that are directed to 

provide a cost-effective, reliable and sustainable electricity source [9]. In this vision, smart transmission lines, 

smart control centers, and smart transformer centers are considered as integrated systems that occur in the 

coaction of intelligent ingredients. 



Improved Firefly Algorithm for Optimum Power Loss in Smart Grids 

67 

Table 1. Optimum power loss studies in the literature 

 

MFO [10]: Moth-flame optimization 

FAPSO [11]: Fuzzy adaptive particle swarm 

ALO [12]: Ant Lion optimization 

CLPSO [13]: Comprehensive learning particle swarm optimization 

BBO [14]: Biogeography based optimization 

IEP [15]: Improved hybrid evolutionary programming 

 

The smart grid concept is naturally associated with the integration of significant levels of Distributed  

Energy Source (DER) into the grid, including distributed energy sources, demand-side management [16], energy 

storage devices and other energy sources. The smart grid uses two-way electrical and information flow between 

consumers and the grid. The most important features of smart grids are: Enhancing renewable resources usage, 

reducing transmission and distribution losses and decreasing energy costs for customers, reduction of electricity 

consumption, ensure that consumers and electricity companies control demand. Fig 1 shows the conceptual 

model of the smart grid. 

 

 
       Figure 1. Conceptual model of the smart grid [17] 

 

One of the algorithms used for optimization process is the swarm intelligence based firefly algorithm. 

In this study;In the second part of this article, the structure of improved firefly algorithm; In the third part, the 

power optimization problem in the smart grid, in the fourth part the application of the improved firefly 

algorithm to a sample test system and comparison of the results, in the fifth part consists of conclusion. 

 

II. OPTIMIZATION CONCEPT IN SMART GRID AND SOME ALGORITHMS USED 
Smart grid optimization; It can be summarized as the distribution of electricity produced in generators 

in the network and providing the most appropriate power  exchange between the existing busbars in the network 

without exceeding the physical and operational limits of the elements used in the networks. Especially with the 

concept of smart grid; the integration of distributed energy sources  into the grid makes the network more 

complex. The power flow of the grid must be optimal in order to ensure a continuous and inexpensive energy 

Reference Using Algorithm Objective Power system 

[10] MFO Power loss, minimum voltage deviation 

IEEE30, IEEE57, IEEE118-busbar 

system 

[11] FAPSO 
Power loss,voltage deviation and voltage stabiliy 

index IEEE30, IEEE118-busbar system 

[12] ALO Power loss 

IEEE30, IEEE57, IEEE300-busbar 

system 

[13] CLPSO Power loss and voltage profile IEEE30, IEEE118-busbar system 

[14] BBO Power loss and voltage profile IEEE30, IEEE118-busbar system 

[15] IEP Power loss 

IEEE118-busbar system and a power 

system  in China 
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supply to the consumers in the electrical power system. Especially in smart grids, it is more preferable to use 

swarm intelligence and biological-based algorithms for optimization. Herd; It refers to a stack of distributed 

individuals that interact with each other. Individuals may be bees, ants, fireflies or human beings. N delegates in 

the herds work together to achieve a goal-oriented behavior. This easily observable collective intelligence 

emerges frequently from repetitive behaviors. Representatives use simple individual rules to manage their 

activities and achieve their herd objectives through interaction with the rest of the group. There is some sort of 

self-organization from the sum of the group activities [18]. One of the most preferred algorithms based on 

swarm intelligence is the firefly algorithm. 

 

2.1 Firefly Algorithm 

 Fireflies are a species of beetles, known for their flashing lights as they fly at night in spring and 

summer. Fireflies are animals known for their green-yellow light produced by chemical reactions in their bodies. 

The firefly algorithm was developed by Xin-She Yong in 2008 based on the refraction behavior of fireflies [19]. 

The luminosity characteristic based on the algorithm is summarized with the following 3 rules: 

a) There is no gender discrimination between fireflies. Therefore, fireflies may want to influence each 

other without looking at gender. 

b) The degree of brightness determines the effectiveness factor in fireflies. The firefly, which has a lot of 

brightness, will attract the little firefly itself. If the fireflies have the same luminosity, they will act 

instinctively. 

c) The brightness of the firefly will be chosen according to the problem function and the type of problem. 

 

2.1.1 Initiation of population 

In the first stage of the problem, all the fireflies in the environment are positioned instinctively in the search 

space S or a problem type for a problem with the size d.  m  firefly optimization in the environment is 

determined the solution of the problem by looking at the suitability value of xi. 

 

)(min)( * xfxf Sx                    (1)    

 

Since the optimization process is also a minimization process, the main goal in the system solution is to obtain 

the solution that f(x) minimizes the objective function 
*x . The previously determined objective function is the 

solution of fireflies, and as a result of this, Ploss also shows the brightness of the fireflies [20]. 

 

2.1.2 Determination of Interaction Rate 

      Each firefly in the solution space has a different β value, which determines the rate at which it affects 

other fireflies. To determine whether the i-th firefly is affected by the j-th firefly insect, firstly the degree of 

gloss of the i-th firefly is examined. The determined degree of brightness should be lower than the j-th firefly 

and the cost values of the solutions obtained are compared. If the xi solution is in a position to be affected by the 

xj solution, it is determined that the i-th firefly is less brighter than the j-th firefly, and the decreasing 

exponential function should be selected by the effect of the distance of i to j to determine the β value [21]. 
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In the case of the 0  parameter in equation (3),  the activity parameter and the parameter are the light 

absorption coefficient. In general, 0 is a number selected in the range [0 1]. If  = 0 is selected, a constant 

activity value and   is selected from equation (3), if the event is selected to be very close to zero. If the 

search space is included in the optimized characteristic length  parameter; calculated  as follows: 

maksr

0                        (4) 
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                (5)    

The 0 parameter in equation (4) is a fixed number selected in the range [0 1]. 
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2.1.3 Detemination the position 

In the case of a firefly j is affected by firefly i that has k dimension, its position in the solution space is 

determined according to equation (6) [22]. 

kikjkiki uxxx ,,,, .).1(                      (6)                                                                                                                  

In Equation (7), kiu ,  randomly determines the location of the i-th firefly and it is expressed as follows, 

depending on the random1 value in the range of [0 1] and the parameter  set in the range [0 1]: 

 

)
2

1
1.(,  randomu ki                (7) 

 

The firefly with the best cost value will move according to equation (8) in the search space. 

 

kikiki maksumaksxmaksx ,,,  k=1,2,..,d               (8)   

                                                                                       

)
2

1
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The flowchart of the firefly algorithm is shown in Figure 2. 

 

 
Figure 2. Flowchart of firefly algorithm 
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2.2 Calculation of optimal power loss by using firefly algorithm 

The steps to calculate the optimum power loss with the help of the firefly algorithm are as follows: 

Step 1: Enter the input data of the system to be solved. 

Step 2: Get the initial population of the firefly. Xi (i = 1,2,…,n) 

Step 3: Determine the power loss function (Ploss). 

Step 4: Determine the light intensity of Ii in xi with the function f(xi). 

Step 5: Specify the absorption coefficient (  ). 

Step 6: Identify the firefly with the best cost. 

Step 7: Stop the algorithm when the optimum result is reached or the number of iterations previously determined 

is reached; otherwise, continue to run the program by increasing the number of iterations. 

 

III. MATHEMATICAL MODEL OF OPTIMUM POWER LOSS PROBLEM 
This kind of problem is a minimization problem and is formulated as equation (10): 

0),(

0),(





uxh

uxg

                                (10) 

 

The objective is to minimize power losses (active and reactive). Ploss is given in equation (11). 
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Ploss: Total actual power loss (MW) 

Nb:  Number of busbar 

Vi ve Vj:  voltage at the end of the i-th and j-th busbar 

Gij: Conductivity of transmission line between i and j busbar 

 θij: Phase angle between i and j busbar 

 

3.1 Equality Limitations 

To achieve equation (11),  it is necessary to equalize the magnitude and angle of the voltage in each busbar as in 

equation (12). 
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Vi,Vj : Voltage at the end of the i-th and j-th busbar 

Gij: Conductivity of transmission line between i and j busbar 

PGi: Active output power of the i-th generator 

QGi: Reactive output power of i-th generator 

PDi: Active output load of the i-th busbar 

QDi: Reactive output load of the i-th busbar 

θij: θi-θj (phase angle between i and j busbar) 

 

The generator voltages must be within the permissible limits. 

 
maxmin

GiGiGi VVV 
                     (13)  

 

The active and reactive power generated by the algoritm must be within the permissible limits. 

 
maxmin

GiGiGi PPP               (14) 
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           (15) 
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IV.  TEST BUSBAR SYSTEM AND APPLICATION OF ALGORITHM TO TEST SYSTEM 
The IEEE30 busbar test system will be used to implement the firefly algorithm in the program written 

in Matlab GUI environment. The IEEE30 busbar test system consists of 41 lines, 6 generators and 4 step 

transformers available in lines 6-9, 6-10, 4-12, 28-27 as shown in Figure 3. The initial values of the IEEE-30 

busbar system are given in Table 2. 

 
Figure 3. IEEE30-busbar test system [23] 

 

Table 2. Introduction of IEEE30-busbar system 

Busbar total numbers 30 
 

 

Line total numbers 41 
 

 

Generator total numbers 6 
 

 

Tap changing transformer 

total numbers 
4 

 
 

Shont capacitor total 

numbers 
9 

 
 

Load buse total numbers 24 
 

 

Active power loss’s initial 

value 
5.811 MW 

 
 

Reactive power loss’s 

initial value 
32.41 MVar 

 
 

Various variables' limits 
 

 

 

Voltage of   

generators (p.u) 

Transfomer tap 

ratio 

Capacitor 

banks  

(MVar) 

Load 

Voltage      

(p.u) 

Min 0.95 0.9 0 0.95 

Max 1.1 1.1 5 1.05 

 

The base value of the voltage is Sbase = 100MVA, the base value of the voltage is Vbase = 100 kV and the 

tolerance rate is 10%. 
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Table 3. Optimization results of the IEEE 30-busbar test system (busbar voltages) 

BusbarNo 
Initial 

Values 

Values  obtained as a 

result of improved 

firefly  algorithm 

Bus bar No 
Initial 

Values 

Values 

obtained as a 

result of 

improved firefly  

algorithm 

1 1.0228 1.0558 16 1.0599 1.0184 

2 1.0622 1.0451 17 1.0585 1.0103 

3 1.0411 1.0451 18 1.0450 1.0047 

4 1.0449 1.0418 19 1.0440 1.0002 

5 1.0953 1.0253 20 1.0488 1.0034 

6 1.0503 1.0304 21 1.0515 1.0049 

7 1.0605 1.0206 22 1.0513 1.0058 

8 1.0646 1.0240 23 1.0404 1.0107 

9 1.0917 1.0203 24 1.0305 1.0024 

10 1.0651 1.0135 25 1.0056 1.0157 

11 1.0850 1.0484 26 0.9877 0.9980 

12 1.0686 1.0341 27 0.9990 1.0327 

13 1.0850 1.0953 28 1.0504 1.0248 

14 1.0557 1.0210 29 0.9826 1.0243 

15 1.0520 1.0177 30 0.9692 1.0082 

 

 The initial voltage values of the IEEE-30 busbar test system and the optimum voltage values obtained by 

firefly algorithm are shown in Table 3. When the voltage values in Table 3 are examined, it is seen that the busbar 

voltages obtained are between the optimum voltage values (0.95 p.u ≤ Vbusbar ≤1.1 p.u). The comparison of the 

initial and the optimum voltage values are given in Figure 4. Referring to Figure 4, the busbar voltages appear to 

be between the optimum values (0.95 p.u ≤ Vbusbar≤ 1.1 p.u). In Table 4, firefly algorithm results are compared by 

different number of nutrients, number of iterations and other parameter changes. 

 

Table 4. Firefly algorithm Ploss values 

Number of Nutrients 25 50 100 150 300 

Number of  Iterations 100 100 100 200 100 

Alpha coefficient 0,5 0,5 0,6 0,65 

 

0,55 

 

Ploss (MW) 4,64 4,45 4,55 4,39 
 

4,42 

 

 

When Table 4 is examined, the best Ploss value obtained as a result of the program is calculated as 4,42 MW. 

 

Table 5. Statistical Analysis of Algorithms(100 Trial Runs) 

Algorithm 
Best value 

(MW) 

Worst value 

(MW) 

Mean value 

(MW) 

Standard 

deviation 

Simulation time 

(Sec.) 

DE [24] NR* NR* NR* NR* NR* 

GSA [25] NR* NR* NR* NR* NR* 

BBO [26] 4.5511 4.5522 4.5515 NR* 110 

PSO [27] 4.6282 4.7986 4.7363 0.0011 130 

OGSA[28] 4.4984 4.6833 4.6397 0.0007 138 

Improved firefly  

algorithm 
4.4214 4.5626 4.4746 0.00068 102 

NR
*
 means not reported 
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Table 5 shows the statistical analysis of the proposed and compared algorithms. All algorithms were 

run 100 times to compare the best, worst and mean values, standard deviation and simulation time. Since the 

algorithms are stochastic, the single operation does not make sense. Therefore, the algorithms were run 100 

times during the comparison and the obtained results are given in Table 5. The values of the compared 

algorithms were obtained from the relevant reference. It is seen in Tablo 5 that improved firefly algorithm gives 

better results than other algorithms. 

 

 
Figure 4. Graph of change of optimum power loss according to iteration number 

 

 Figure 4 shows the graph of the change in the optimum power loss according to the number of 

iterations. When the graph is obtained, the number of nutrient sources given in Table 4: 300 and the number of 

iterations 100 are entering program to obtain Ploss value that is plotted as p.u and its value is calculated as 

0.04214. When Table 2 is analyzed, the power loss before the optimization process is 5.811 MW. The optimal 

values of the control variables were obtained from the program written in Matlab GUI and the values are given 

in Table 5. The proposed algorithm’s results were compared with DE, GSA, BBO, PSO, CLPSO and OGSA 

algorithms. The results of the comparison algorithms were obtained from the relevant references. The best 

optimized Ploss value obtained in the improved firefly algorithm is 4.4214 MW. Among the algorithms given in 

Table 5, the Ploss value of the OGSA algorithm with the best value is 4.4984 MW. The result of the proposed 

algorithm is 0.077 MW better than this value and smart grid optimization has been achieved with 1.711 % less 

power loss. The initial power loss of the IEEE-30 busbar test system was 5.81MW which decreased to 4.4214 

MW as a result of the improved firefly algorithm. The power loss value decreased by 1.3886 MW and 23.9%. 

 

V. CONCLUSION  
 Power loss in the smart grid affects system performance and reliability. One of the algorithms used to 

optimize power loss is the firefly algorithm. In this study, using the firefly algorithm in the Matlab GUI 

environment for the optimum power loss calculation in the smart grid, the program was applied to the IEEE30-

busbar system and the results were compared with the other heuristic and herd algorithms. The firefly algorithm 

has calculated a more optimized value than other algorithms. The most important disadvantage is the number of 

parameters used is more. The values obtained by the firefly algorithm are within the permissible limits for the 

optimum power loss in the smart grid and will allow the system to run more stable. Standard deviation and 

simulation time are less than other comparative algorithms. Therefore, the algorithm can be proposed as a 

promising method to solve other optimization problems in the smart grid (optimum fuel cost, voltage profile 
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improvement, etc.). In the following studies, the algorithm will be applied to different current bus test systems 

and robustness and superiority will be investigated for different optimization problems. 
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