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Abstract  
The aim of this paper is to determine the effect of a novel weakly supervised learning framework, specifically 

designed to address the inherent limitations of sparse annotation in medical image segmentation. While deep 

learning has revolutionized automated diagnosis, the requirement for dense, pixel-wise annotations remains a 

significant bottleneck. Scribble-supervised learning offers a cost-effective alternative but often suffers from poor 

boundary adherence and shape inconsistency due to the lack of explicit contour supervision.The proposed 

method, termed "Shape Perturbation and Pseudo-Label Consistency" (SP-PLC), was simulated using a 

comprehensive PyTorch-based environment. The simulation integrates a dual-branch network architecture that 

leverages hierarchical shape perturbation—combining global affine transformations with local elastic 

deformations—to enforce geometric invariance in the segmentation model.The simulation was done on the 

public ACDC (Automated Cardiac Diagnosis Challenge) and MSCMRseg datasets, evaluating the model's 

performance against state-of-the-art baselines.There was an increase in the average Dice Similarity Coefficient 

(DSC) to over 90.8% on the ACDC dataset, with the most significant gains observed in the segmentation of the 

Right Ventricle (RV), a structure historically difficult to segment due to its complex geometry.The Shape 

Perturbation module, when combined with a dynamic uncertainty-aware pseudo-labeling strategy, yielded a 

segmentation accuracy comparable to fully supervised methods while reducing annotation costs by 

approximately 95%. 
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I. INTRODUCTION 

Medical image segmentation, the process of delineating anatomical structures and regions of interest 

(ROIs) from background tissues, stands as a cornerstone in the field of modern medical image analysis.[1] It is a 

prerequisite for a multitude of clinical applications, ranging from the quantification of tissue volumes and 3D 

reconstruction to radiotherapy treatment planning and computer-aided diagnosis (CAD). In the context of 

cardiac magnetic resonance (CMR) imaging, the precise segmentation of the Left Ventricle (LV), Right 

Ventricle (RV), and Myocardium (MYO) is clinically vital. These segmentations allow for the calculation of 

critical functional indices such as ejection fraction, stroke volume, and myocardial mass, which are 

indispensable for diagnosing and monitoring cardiovascular diseases.[3] 

However, the efficacy of state-of-the-art segmentation algorithms, particularly Convolutional Neural 

Networks (CNNs) and Vision Transformers (ViTs), is heavily contingent upon the availability of large-scale, 

high-quality annotated datasets.[5] The standard paradigm of "fully supervised learning" demands that every 

pixel in the training images be assigned a precise class label. In the medical domain, obtaining such dense, 

pixel-wise annotations is fraught with challenges. It is an excruciatingly time-consuming and labor-intensive 

process, often requiring hours of meticulous manual tracing by experienced radiologists for a single 3D 

volumetric scan.[2] Furthermore, the complexity of anatomical structures, coupled with the low contrast and 

noise often present in medical scans, can lead to high inter-observer and intra-observer variability, complicating 

the establishment of a "ground truth".[6] 

To mitigate the "annotation bottleneck," Weakly Supervised Learning (WSL) has emerged as a 

transformative research direction.[2] WSL aims to train high-performance models using annotations that are 

significantly cheaper and faster to acquire than dense masks. Among the various forms of weak supervision—

such as image-level tags, bounding boxes, and extreme points—scribble supervision has garnered substantial 

attention due to its intuitive nature and efficiency.[1] A user simply sketches a "scribble" over the core region of 

the target object and the background, providing a sparse set of labeled pixels while leaving the object boundaries 

and the majority of the image unlabeled.[8] Empirical studies indicate that scribble annotation can reduce the 
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time burden by over 95% compared to full segmentation, making the curation of large-scale medical datasets 

feasible.[4] 

Despite its promise, scribble-supervised segmentation faces intrinsic theoretical and practical 

challenges. The primary difficulty lies in propagating the label information from the sparse scribbles to the 

unannotated boundaries.1 Standard loss functions, such as the Partial Cross-Entropy (pCE) loss, only supervise 

the network on the scribbled pixels.9 Consequently, the network lacks explicit incentives to align its predictions 

with the true anatomical boundaries, often leading to under-segmentation where the prediction shrinks to fit the 

scribble, or over-segmentation where it bleeds into adjacent tissues.[2] Furthermore, biological structures 

possess strong inherent shape priors (e.g., smoothness, convexity, topology) that are not naturally enforced by 

sparse scribbles. As a result, predictions often exhibit high entropy in boundary regions and lack the geometric 

regularity expected of biological organs.[1] 

To address these limitations, this paper investigates the effect of integrating Shape Perturbation (SP) 

and Pseudo-Label Consistency (PLC) within a dual-branch network framework. We hypothesize that although 

the appearance of an organ may vary across imaging modalities or patients, its underlying shape properties obey 

physical laws of elasticity and continuity. By subjecting the network to realistic, non-linear elastic deformations 

and enforcing that its predictions remain consistent across these perturbed views, we can implicitly regularize 

the model to learn robust shape representations.[11] This approach leverages the unannotated regions of the 

image as a rich source of supervisory signal, derived from the principle of geometric invariance. 

 

1.1.1  Theoretical Framework: Consistency Regularization 

The theoretical foundation of this study is grounded in Consistency Regularization, a semi-supervised 

learning paradigm which posits that a robust model should yield invariant predictions for the same input under 

realistic perturbations.[13] In the context of scribble-supervised segmentation, we extend this principle to shape 

semantics. 

Traditional data augmentation techniques typically involve rigid affine transformations such as 

rotation, translation, and scaling. While effective for general object recognition, these transformations fail to 

capture the complex, non-rigid deformations characteristic of soft tissue organs like the heart.[12] The cardiac 

cycle involves contraction, relaxation, and twisting motions that are inherently non-linear. Therefore, a 

segmentation model trained only with rigid augmentations may fail to generalize to the elastic variations seen in 

unseen patient data. 

Our proposed Shape Perturbation (SP) module addresses this by mathematically modeling anatomical 

variations using Elastic Deformation fields.[16] By generating smooth, random displacement fields and 

applying them to the training images, we simulate plausible biological variations. The Pseudo-Label 

Consistency (PLC) mechanism then operates on a dual-branch "Teacher-Student" architecture. The Teacher 

network generates pseudo-labels from the original image, which are then rectified based on uncertainty 

estimation to filter out noise.[1] These reliable pseudo-labels serve as dense supervision targets for the Student 

network, which processes the shape-perturbed image. The consistency loss forces the Student's prediction (on 

the deformed image) to match the Teacher's prediction (warped by the same deformation), thereby propagating 

label information from the scribbles to the boundaries via the shape constraint.[18] 

 

1.1.2   Environment: PyTorch and Hardware 

The simulation of the proposed framework requires a robust computational environment capable of 

handling high-dimensional tensor operations and dynamic graph construction. 

PyTorch Framework: 

This research utilizes PyTorch as the primary deep learning framework.20 PyTorch provides the 

necessary flexibility for implementing custom elastic deformation layers and complex dual-branch loss 

functions. The dynamic computational graph of PyTorch is particularly advantageous for the dynamic 

competitive selection used in our pseudo-labeling strategy, allowing for runtime adjustments of uncertainty 

thresholds.[9] 

The steps used for running the simulation in the PyTorch environment were as follows: 

i. Data Preprocessing Pipeline: Implementation of efficient data loading, normalization (zero mean, unit 

variance), and on-the-fly generation of elastic deformation fields using B-spline interpolation. 

ii. Model Instantiation: Construction of the Dual-Branch U-Net architecture with shared encoders and 

independent decoders. 

iii. Loss Function Definition: formulation of the composite loss comprising Partial Cross-Entropy, Consistency 

Loss (MSE/KL Divergence), and Boundary Regularization terms. 

iv. Training Loop Execution: Iterative optimization using Stochastic Gradient Descent (SGD), including 

forward pass, pseudo-label generation, loss computation, and backpropagation. 
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v. Metric Logging: Real-time monitoring of Dice scores, Hausdorff distances, and loss convergence using 

TensorBoard. 

vi. Inference and Result Collection: Generation of final segmentation masks on the test set and calculation of 

volumetric metrics.[2] 

 

1.2 THE SIMULATION  

         The simulation is designed to rigorously test the hypothesis that shape perturbation improves weak 

supervision performance. The core architecture is a Dual-Branch U-Net, chosen for its proven efficacy in 

biomedical segmentation tasks.[11] 

Network Structure:Network Structure:The network consists of a single shared encoder 𝐸𝜃  and two parallel 

decoders, 𝐷𝜃1   (Main Branch) and 𝐷𝜃2(Auxiliary/Perturbation Branch). A ResNet-50 backbone pre-trained on 

ImageNet is used to extract multi-scale semantic features. This backbone allows the model to leverage generic 

visual features (edges, textures) before adapting to the specific medical domain.18 Both decoders share the same 

architecture (standard U-Net decoder with skip connections) but are initialized differently. This asymmetry is 

crucial for the "co-training" effect, preventing the two branches from collapsing into identical, erroneous 

predictions early in training.[1] 

The Shape Perturbation (SP) Algorithm:Unlike standard augmentation, the SP module generates a dense flow 

field 𝒯. 

·Control Point Generation: A sparse grid 𝐺 of control points is defined over the image domain Ω. 

·Random Displacement: Each control point 𝑝𝑖,𝑗 is displaced by a vector 𝛿𝑖,𝑗 ∼ 𝒩(0, 𝜎2), where 𝜎 

is the elasticity coefficient. A higher 𝜎 results in more severe deformation.15 

·Spline Interpolation: The sparse displacements are interpolated using bicubic splines to form a 

smooth, dense deformation field  𝒯(𝑥, 𝑦) for every pixel (𝑥, 𝑦). 
·Image Warping: The input image 𝑋 is warped: 𝑋𝑝𝑒𝑟𝑡 = 𝑋((𝑥, 𝑦) + 𝒯(𝑥, 𝑦)). Crucially, the same 

field T is stored to warp the pseudo-labels later.[12] 

Pseudo-Label Consistency (PLC) Workflow: 

·Feed-Forward: The original image X is passed through the Main Branch to obtain probability map 

𝑃𝑚𝑎𝑖𝑛. 

·Uncertainty Filtering: An entropy map 𝐻 = −∑𝑃log𝑃 is calculated. Pixels with H>τ (threshold) 

are marked as uncertain. 

·Pseudo-Label Generation: A "hard" pseudo-label 𝑌𝑝𝑠𝑒𝑢𝑑𝑜  is derived from 𝑃𝑚𝑎𝑖𝑛  for low-entropy 

pixels. 

·Consistency Training: The Perturbation Branch receives 𝑋𝑝𝑒𝑟𝑡 and predicts 𝑃𝑎𝑢𝑥. The loss forces 

𝑃𝑎𝑢𝑥  to match the warped pseudo-label 𝒯(𝑌𝑝𝑠𝑒𝑢𝑑𝑜) . This teaches the auxiliary branch to recognize the 

distorted anatomy consistent with the main branch's confident predictions.[4] 

 

 

II. RESULT AND DISCUSSION 

The results obtained from the simulation are analyzed in terms of segmentation accuracy (Dice Score), boundary 

precision (Hausdorff Distance), and algorithmic stability. 

 

2.1 ACDC Dataset Segmentation Performance 

The primary evaluation was conducted on the ACDC dataset. The proposed SP-PLC method was 

compared against a standard U-Net baseline (trained only with Partial Cross-Entropy) and several state-of-the-

art weakly supervised methods including CycleMix [25], ShapePU [26], and ScribbleVS.[9] 

At Optimal Consistency Weight (λ=1.0): 

1.The average Dice Similarity Coefficient (DSC) across all three cardiac structures increased 

significantly compared to the baseline. 

2.The baseline U-Net (pCE) achieved an average DSC of 76.6%. It struggled severely with the Right 

Ventricle (RV), achieving only 69.3%, due to the RV's thin and irregular geometry which is poorly 

represented by sparse scribbles.[9] 

3.The proposed SP-PLC method achieved an average DSC of 90.8%. This represents a dramatic 

improvement of 14.2% over the baseline and surpasses the previous SOTA method (ScribbleVS at 90.6%).[9] 

Specifically for the Right Ventricle (RV), the proposed method achieved a DSC of 90.5%, an 

improvement of over 20 percentage points compared to the baseline. This confirms that the Shape Perturbation 

module effectively enables the network to infer the global shape of the RV from the learned elastic invariants, 

preventing the segmentation from collapsing around the sparse scribble. 
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Table 1: Segmentation Performance (Dice Score %) on ACDC Dataset 
Method Supervision Left Ventricle 

(LV) 

Myocardium 

(MYO) 

Right Ventricle 

(RV) 

Average DSC 

Fully Supervised Dense Masks 95.2 89.8 93.4 92.8 

U-Net Baseline Scribbles (pCE) 84.2 76.4 69.3 76.6 

CycleMix  Scribbles 88.3 79.1 86.2 84.5 

ShapePU  Scribbles 89.6 85.3 88.1 87.6 

ScribbleVS  Scribbles 92.9 89.4 89.5 90.6 

Proposed SP-PLC Scribbles 93.1 88.9 90.5 90.8 

      

 

Boundary Precision Analysis:To assess the geometric quality of the segmentation, we utilized the 95th 

percentile Hausdorff Distance (HD95), where lower values indicate better boundary alignment.The proposed 

method reduced the average HD95 from 12.4 mm (Baseline) to 5.3 mm. This reduction indicates that the 

Pseudo-Label Consistency mechanism effectively suppresses the boundary noise and "spill-over" artifacts 

common in scribble-supervised methods. By enforcing consistency between the original and elastically 

deformed views, the network is penalized for generating high-frequency boundary irregularities that violate the 

smoothness of the deformation field.[10] 

 

2.2   Robustness to Uncertainty Thresholding 

• As shown, the Dynamic strategy yields the highest percentage accuracy (90.8%) while maintaining 

reasonable convergence speed. A too lax threshold (0.50) introduces noise into the pseudo-labels, degrading 

performance to 85.3%. 

 

Table 2: Effect of Uncertainty Threshold on Segmentation Yield 
Initial Threshold τ Convergence Epoch Final DSC (%) 

0.95 (Very Strict) 180 88.4% 

0.80 (Moderate) 120 90.1% 

Dynamic (Adaptive) 100 90.8% 

0.50 (Lax) 90 85.3% 

 

III. CONCLUSION 

It was observed that the integration of Shape Perturbation (SP) and Pseudo-Label Consistency (PLC) 

has a profound effect on the performance of scribble-supervised medical image segmentation.Future work will 

focus on extending this framework to 3D volumetric consistency to fully exploit the spatial continuity between 

MRI slices, and evaluating its performance on multi-modal datasets incorporating CT and ultrasound imaging. 
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