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Abstract

The purpose of this article is to extended lommel wright k-function and establish a new inequalities of this function.
Also we have proved some new Polya—Szego and chebyshev type inequality. The outcome of this paper also
provides a lot of Polya—Szego and chebyshev type inequality for several well known fractional integral operator
via parameter substitutions.
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I. INTRODUCTION

Fractional Calculus is an essential research area, which is equally useful not only in pure Mathematics
but also in applied mathematics,physics,biology, engineering,economics and control theory etc. In recent years
integral and derivative operator of fractional order are simple and important tools to generalize the classical
theories and well known problem related to integer order derivative and integrals. These days, fractional
integral/derivative operator are very frequently considered by the researchers working on Mathematical
inequalities to extend the classical literature. one can see the well known inequalities related to integer order
derivatives and integrals have been extended to fractional order derivative and integrals, These includes the
inqualities of chebyshev[4], Hadmard[5], Polya—Szegd[6], Gruss[25], Ostrowski[7], and many others.

The chebyshev inequality provide the comparision of integral mean of product of two positive function
of same monotonicity to the product of their integral means.After chebyshev inequality,people start to analyze the
error bounds of this inequality. For instance the well -known Gruss inequality gives the error bounds of difference
of terms of the chebyshev inequality(which is well-known as chebyshev functional). the well-known Pdlya—Szegd
inequality gives the estimation of quotient in terms of the chebyshev inequality for bounded function. these
inquelities have been studied for Riemann-Liouville and other fractional integral operators in [9-15].

Next for the result of this paper.First we give chebyshev functional and then the chebyshev functional
inequality[4] as follows:
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where f and g are two positive and integrable function over the interval [a,b]. if f and g are synchronous
on [a,b] then chebyshev inequality T(f, g) > 0 is obtained.

also one of the famous inequalities related to functional is the Gruss inequality[25] stated as follows:
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where the positive and integrable function f and g satisfy
usf(r)sUv<g)sV
T€ [a,b] &u,U,v,VER

Another more appealing and useful inequality which established the essential key of motivation in our
study, which we can indicate as follows:
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Dragomir and Diamond [16] introduced the following Gruss type integral inequality..
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Where positive and integrable function f and g satisfy.
0<f()sU<0<v<sg(®)sV<t€lab]landuyUv,VER

The purpose of this paper is to give some new Poélya—Szegd and chebyshev inequalities for generalized k-
fractional integral operator containing generalized lommel wright k- function in it's kernal. In upcoming section,
with define a new k- fractional integral operator containing generalized lommel wright k- function. In next section,
we will utilized this k- fractional integral operator to obtain the P6lya—Szeg6 and chebyshev type inequalities.

1. Fractional Integral Operators

Fractional integral operators are very useful in Mathematical inequalities. A large number of fractional integral
inequalities due to different types of fractional integral operators have been establish [9,14,17-24] and references.
The first formulation of fractional operators is the Riemann-Liouville fractional integral operator define as
follows.

Definition 1: Let f € L, [a, b]. Then Riemann -Liouville fractional integral of order ¢ € C, R(o) > 0 are defined

by:
(9 — 1 * o—1
€N =155 f (x—Dof@dr  x>a ©)
@GN0 =5 [ -0 0 x<h ®

Where I'(a) is the gamma function defined as: I'(a) = fom ™ le .

n [1] Andric et al. introduced the generalized fractional integral operators as follows:
Definition 2: Let @, 8, y € ¢, R(6), R(y) > 0,R(m) > R(W) >0, u =0, z € C(—o,0]

Letf € L,[a, b] and x € [a, b] then the generalized fractional integral operators are defined by:

1 X
(Eﬂhcpa f) (x) = @L (x =D (e(x — D) f (Ddr %)
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(8700 f) ) = 1755 f (T = 0T Y (o(x — 2)°)F (D ©)

Where | g_ ;\n (2) is generalized lommel wright k- function defined by.

(o0}
2n+9+2A

m (=" z
Jsi" = LT +n+ DO +np+A+1) (E) ®

(z €C(=00,0],meN,,AeCpu> 0)
In [2], Farid introduced the unified integral operator as follows:

Definition 3: Let f, a: [a, b] » R, 0 < a < b be the function such that f be a positive and integrable and a be a
differentiable and strictly increasing. also 5 be an increasing function on [a, ) and 6, m, p € ¢, 8 = 0 then for

X € [a, b] the integral operators are defined by:

b
Wl F@ = | 1,(;8—;((:))) 7 (#(a - a@)") r@d(a) an

The following generalized integral operators involving lommel wright k- function with some modification is

produced, for ¢p(x) = x% withk > 0 in[7]and [25].

Definition 4: Let f, a: [a, b] = R, 0 < a < b be the function such that ' be a positive and integrable and a be a
differentiable and strictly increasing.let 6, m, p € C, 6 = 083 then for x € [a, b] , k > 0 the integral operators
are defined by:

(685 pa-) ) = f (a(x) — Ol(T)("1 INRCICIOR Oc(T))" f@d(a(D) (12)

BT - P)@) = j (@() - a@E) 1 (p(ao) - a)F Fd(a) (13)

Wherejg h"; (2) is generalized lommel wright k- function defined by.

oo 2
2n+N+ h

ym _ (- (E) % (14)
Rk O1“,€(h+k+nk)ml"k(x+h+mp+k) 2
n=

Remark 1:

1.The following integral operator can be deduced from (8) and (9) 1.The following integral operator produced
for a(x) = x in (8)

(50100 = [ = OF U (06— 0F) e as)

2.The following generalized Hadamard integral operator is produced for a(x) = log(x) in (8).

x (4
800 = [ (gD} i <<p (1og§)") o (16)
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3.The following generalized katugampola integral operator is produced, for a(x) = %, p > 01in (8).

6
X xP — 1P %_1 wm xP — 1P\k 5
( swa f) () = J- < o ) I e (P( ) fOtP~dt 17)
a
4.The following generalized (k,n) integral operator is produced, for a(x) = n+1 >0 in (8).
[ 0
X [l _ ANk 1 XML — o INE
(nEB)\(pa+f(X) = f <—n 1 ) ]Nhk () <n—+1> f(‘f)‘[nd‘[ (18)
a

T+t
5.The following generalized conformable k integral operator is produced, for a(x) = % in (8).

X xr+1 _.Er+1 % 1 xr+1 _.Er+1 %
¢ttt = [ () | o( ) Jrove >
6.The following generalized conformable (k,n) integral operator is produced for a(x) = Eat ,n>01n (8) and
a(x) = "2 120 in (8).
O e L N (e L
(ke of) G0 = f < . ) A ( - ) fO( - a)y*tdr (20)
a

"((b —x)" —

n

o 0
b —1)" 1 bh—x)" — (b —1)"\%
¢-0 ) gln";c ‘F’(( a2 n ¢-9 ) f(©® -1 tdr2D)

(K ef) 00 = |

X

Remark 2: For different choice of parameter involving in the generalized lommel wright k - function (10), one
can obtain new generalized integral operator.

3. Pélya Szegé and Chebyshev Type Inequalities for Generalized k - Fractional Integral Operators

In this section we obtain polya szego and chebyshev type ineqalities for generalized k-fractional integral operators
containing Lommel Wright k- function in their kernels.For the reader's convenience we will use a simplified

notation:

KAof () = (87 of) () = f (@() - a@ED) 4 (p(ato) - a)F F(a() (22)
© (_l)n 2 2n+x+T2h

Js ]Nhk Ln=o Tk (h+k+nk)MTy (R+h+ny+k) (2) (23)

ZEC(—,0, meEN, 9 AEC, u>0

Theorem-1 : Suppose that (a) J; and J,be two positive and integrable function on [0, ©);

(b) a'[a, b] = R be an increasing and differentiable function with ov € [a, b];
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there exist four positive integrable function {,, {, n,andmn, such that

0 <61(0) </i(0) < 62(0), 0 <M(D) < Jo(D) < (D), T€[a,x],x>a

Then for generalized k-fractional integral operator containing Lommel Wright k- function, we have

(’é Aa(1(2]22)(x)(-§ AUTI1772]12)(X) < l (24)
[(KA;(Gim + Gn)J )02~ 4
proof: From (20) for T € [a, x] with x > a, we can write
O O\ G
<n1(r) b(r)) (]z(r) m(r)) =0 (25)
which implise
(Z1 (On1 () + ¢, (T)T]z('f))(h Q)P (T))
2 1, (0N (V)70 + (0% (0/F(0) (26)

Multiplying (20) with (a(x) - a(r){%'l}) JE (p(a(x) — a(r)e)a’(r)) on both side and integrating, we get

[ @@ — a@E 5 p(at) - a®)° GO (0 + GEM @V (00 « (©dr = [Xa () -
a@) ) JECp(al) = a(®) n (O @L2O @dt + [ (@) — @) 75 (o(at) -

() (0%, (O, (D« (Ddt @7)

Now by using k-fractional integral operator, we get

KA (@GN + TN/ ) () = (BAsG3J2(x) + (BAs i, J2 (X)) (28)

By applying AM-GM inequality, we get

k k
(A (Qany + &) (x) = 2\/(0(146(1(2]22) (x) (aAGT]1712]12> (x) (29)

which leads to the required inequality(19).
COROLLARY 1.1

If; =u,{, = U,n; =vandn, =V, then we have

2
EagI) 0 (kAoI3)) _ 1( w g)

[(gAcrh]z)(x)]z T4 uv. - uv
(30)
THEOREM-2 :Under the assumptions of Theorem 1 with ¢ > 0, we have
(I&Achz)(x) (ZAc]zz)(x)(514651]1)(96).(’éAom]z)(X) + (§A502J1) (§Acn2)2) (X)) < l 31)
(§A5¢142) () (§Asmn2) . 4

Proof. From (218), for (t,k € [a, x]) with (x > a), we can write
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[€163) [AOAVAOCTWHC) 01 (D% (1)
(m nl(m) O CRERCING (32)
which implies
AGIAGLAGIAGEIAGIAGLACIACIERRGILN (k)]12 (M + 4 (DG, (T)lzz k) (33)

Multiplying (22) with (a(x) — @(t) &Y (a0 — a0 JE (a0 — at®) /¥ (@(atx) — al®)e’ (Da (0
on both side and integrating, we get

217 (@) — @)Y (@) - @) (o (al) — a))E ((at) -

a()) )6 (O O (O O () () drde + [ [ () — a@)EY (@) — a@) &) 4 (ato) -
«(0)°VE (0(at) - a0) ) @ O, (L (0 () () dedk = [* [ (@(x) — a@) T (@) -
(k)& 15 (ale) — () W (@(a) — ak)) ) (DG @E W (k) (x) drdk +

217 (@) — a@) ) (@) - aten®E™) JE e (at) — a()’VECp(ato) -

a0) "I G, (2 (@ () (v) ddk
(34)

Now by using k-fractional integral operator, we get

EAs8D) () (EAMT2) (%) + (EAsT)1) () (EAM2J2) () = (AT () (KAMM2) (X) + (EA:L3) () (EAcGi3) (x) (35)

By applying AM-GM inequality, we get

EAsC D) ) (KA () + (§A502)1) () (EAM2J) (x) = ZJ EAJD ) EAMM) () EAJZ) (1) (KAs010) (x) (36)

which leads to the required inequality (21).
corollary 2.1

If¢; =u,;, =U,n; =vandn, =V then we have

U XD EATD D EATDE _1( [uw oV o

(BAD)@EAT) @)~ AUV w
Theoram 3
Under the assumption of Theorem 1 with (c > 0), we have

§45 D)) GAJD ) < (4G 2/ () (KA 2/8) (x) (38)

Proof: From (18), for T € [a, x] with x > a, we can write
02 (0))1(0)]2 (1) 2

nm 00 >
N2 (/1 (1)) (1) 2

Lo =0 0
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Multiply by (a(x) - a(e) &) JE (p(at) — a(®) ol (@) and (@(x) - a@FY J ((alx) -
a(k))e)(x’(k) on both side and integrating. we get

| @@ - a@) & ¢ (o - a@) W2 @ds

< [t - a®) 1t (ola) - a)’) 2 ((311@/2 @« (Dde (41)
And
[ @ - ) g (o) - a) 20’ (9

x c . k

< [ @t - a0l o) - a9)") 1 007,00 G (42)
Now by using k - fractional integral operator we get.
(A D) < (§As(G2))2/m1)) () (43)
and

§AJH) < (§Ac(M2J1)2/%)) (x) (44)
Multiplying (26) with (27) , we obtain (23).
Corollary 3.1
if(; =u,{; =U,ny =vandn, =V then we have
(@As D) @A) UV 45)

Ao ()]2(0)) GA1 ()]2(x) ~ uv
The chebyshev type inequalities for generalized k-fractional integral operators given as follows:
Theorem 4
Under the assumptions of Theorem 1 with (c > 0), we have
Xo () (§A6J1J2) () + X () (§A6J1J2) (x) — (I&chl)(x)(]{t‘chz)(x) = (§AsJ2) ) (GAJ) ()] )
< |Go‘,c(]1' 01, G (%) + Ges(J2, Gy Zz(x)F X IGo,c(h,nl,nz(x) + Gc,c(lz.m.nz(x)F (46)

Proof: Let fand g be two positive and integrable functions on ([0, 00)). For (t,k € [a, x]) with (x > a), we
define L(t, k) as

Ltk = (h( -1 (K00 - (k) (47)
which implies

Lt k) = 1(0/2(0) + J1(K)/2(K) = J1(0)]2(K) — )1 (k)5 () (48)

Multiplying (30) by (@) — a)&E (@) - () TVJE p(ate) — () )¥ (9(al) - ak)Ha' (k') and integrating, we get

L1 @) - a@)EY (@00 - at) &) 5o (at) - a@)VE (0(a) - al) )LD (o () drdk (49)

Now by using k-fractional integral operator, we have
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YO GAT) () + % () CA ) () = CGAJD 0O (A () — CAJ) ) (AL ()
By using Cauchy - Schwartz inequality, we have
[ (@) = a@) &Y (@) - a(0) & 5@ (at) — a) )k o(at) -
a(i)) )L o ()l () draie < [[7 7 (@@ — a@)EFY (@) - at)) &) jE () -
() ) () — 1)) YL(T e (R)ed (0) J2(x) ek + [ [ (@) — a (@) &) (@) -

(50)

(k)& 15 (alx) — a(0))E (@ (alx) — 1) IL(T K (e (1) J2 () dedk — 2 [ [* ((x)

a(@) &) (@) — a ()T JE(p(ale) — a(0) )E (@(a) -
a(k)) L0 (e (0) 1y (O (K)drai]” < [e() EAD(0) + X () EASD () —
2(5A0)1) () BATD (T X e (0) (EAGI2) () + Xo () EASD @) — 2(EAe)) () A ()2

By taking 1, (t) = n,(t) = J,(t) = 1 in theorem 1, we get following inequality

[((I&Ac@l"'Zz)h)(x)]z
4((5AcJ?) (€152)) (x)

(A () <

this implise

Xe CICAJD () = CAD () (L) ) < BLIBLTEISOL _ (.0 1,) () () () = 6,01, 81, ()

and

Xe CICAIDI () = CAJD () (A1) () < BTERAEOL — (.4 ) () (A2) () = 6., 01,8 &) ()

Apply the same procedure for J,(t) = {;(t) = {,(t)=1we get following inequality:

X CGATH () = GAJ) () GAJ) () < G,.(J2M1,m2) ()

and

X GATE) () = GAJ) () GAJ) (x) < G,,(2,81,3) (x)
Finally considering (31) to (35), we arrive at the desired result in (28).
Theorem-5

Under the assumptions of Theorem 4, we have
1
|Xo‘ (X) (I&Ac]LIZ) (X) - I&Aojl)(x) (IO{(AOJZ)(x) < |GO',0'(]1’ Zli cz)(x)Go,O'(]Z' 111: T]z)(x) |E

o @(Eaonroym)co]”
Where Gao (1, 0) () = XL RalEIIOL _ (6,m) (o) (5t m) ()

Corollary-4

If(, =u,{, =U,n; = v,m, =V then we have

U-wV-v)

X0 00 (iAo () — By (1) (Ao (0)) < 22D (p 1) () (54o)2) ()

Remark: In Th. 4 and Th.5, for a(x) = x, k = 1,we get Th. 4, Co.4.

€3]

(52)

(53)

(54)

(55)

(56)

(57

(58)

(59
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II. CONCLUSIONS

We have proved some new Polya—Szegd and chebyshev type inequality for generalized k-fractional

integral operator involving Lommel Wright k-function in their kernels. The outcomes of this paper also provides
a lot of Polya—Szegd and chebyshev type inequalities for several well known fractional integral operators via
parameter substitutions.
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