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Abstract 

The growing demand for safer and smarter energy usage in domestic cooking has propelled innovations 

in intelligent liquefied petroleum gas (LPG) systems. This research presents the development of an AI-

driven LPG management system termed the KATE project. This study integrates computer vision-based 

food recognition, interactive cooking support, and real-time safety alert mechanisms. The proposed 

system utilizes a convolutional neural network (CNN) model trained via TensorFlow and Teachable 

Machine to classify popular Nigerian dishes while incorporating fire, gas, and motion detection for 

adaptive safety response. This study focuses on Objective 1 of the broader research goal, emphasizing 

the system’s ability to intelligently identify meals and guide cooking procedures while preventing 

hazards through safety-triggered feedback loops. The results demonstrate improved responsiveness in 

gas leak detection, automated cooking assistance, and the promotion of safe cooking practices in low-

resource environments. The integration of image recognition and AI-enhanced decision logic provides 

a significant step toward context-aware, semi-autonomous LPG systems for households and food 

vendors in developing regions. 
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I. INTRODUCTION 

The growing adoption of liquefied petroleum gas (LPG) for household and small-scale commercial 

cooking has necessitated enhanced safety, efficiency, and user support mechanisms, particularly in developing 

countries where monitoring systems are often inadequate. Conventional LPG setups remain largely passive, with 

limited intelligence for hazard prevention or user engagement during cooking. As a result, incidents such as gas 

leaks, unattended flames, and improper usage contribute to fire outbreaks, health hazards, and economic loss in 

many communities (WHO, 2021; [1], [2]). 

Recent advancements in embedded systems, artificial intelligence (AI), and edge computing offer new 

opportunities to transform domestic energy usage through context-aware automation. Integrating machine 

learning models into microcontroller-based platforms has enabled low-cost intelligent systems that can recognize 

patterns, classify inputs, and initiate autonomous responses. These trends are increasingly being applied in safety-

critical domains such as home automation, smart energy, and food technology ([3], [4]). 

In this context, the KATE (Kitchen Autonomous Technology for Efficiency) project proposes a novel 

approach to intelligent LPG management by embedding AI-based food recognition and safety monitoring into an 

interactive cooking assistant. The system leverages TensorFlow Lite and Teachable Machine to deploy a custom-

trained convolutional neural network (CNN) model on an ESP32 microcontroller, enabling real-time classification 

of Nigerian dishes such as white rice, jollof rice, fried rice, eba, and egusi soup. This classification allows the 

system to tailor cooking instructions, manage cooking time, and preempt hazards based on food type. 
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A significant innovation in this research is the dual integration of safety and cooking logic using multi-

modal sensors; MQ5, MQ9, flame sensors, and a PIR motion detector, to detect anomalies such as gas leaks, fire 

presence, or absence of the user. These signals are evaluated alongside vision data to initiate intelligent responses, 

including solenoid valve control, buzzer alerts, voice prompts, and mobile notifications via UART or USB 

interfaces. 

This paper focuses on Objective 1 of the broader project: developing an intelligent LPG management 

system capable of food recognition and real-time safety feedback. The motivation is to ensure a safer and more 

user-aware cooking process while promoting the efficient use of LPG in households and informal food businesses. 

II. RELATED WORKS 

The intersection of artificial intelligence, embedded systems, and home automation has witnessed growing 

research attention, particularly in the context of domestic safety and smart kitchens. However, many existing 

solutions remain fragmented in design, focusing either on gas leakage detection, cooking assistance, or user 

feedback but rarely achieving a fully integrated, context-aware, and offline-capable system. 

 

The integration of artificial intelligence into embedded systems for home automation and safety has 

become a growing area of research, particularly within the domains of intelligent kitchen management, gas leak 

detection, and real-time image classification on edge devices. This section explores previous works relevant to 

the development of AI-assisted LPG systems, with a focus on food recognition, embedded vision, and safety 

enhancement. 

Several researchers have addressed the challenge of gas leak detection and response systems using 

microcontrollers and gas sensors. Shrestha et al. [5] developed a domestic gas leakage detection system utilizing 

MQ sensors and GSM modules for alerting users. While effective in gas detection, the design lacked advanced 

automation features such as actuator control and environmental intelligence. Similarly, Chandran and Kavitha [6] 

implemented an LPG leakage detection system that triggered alarms and SMS notifications. However, it did not 

incorporate adaptive intelligence or environmental compensation, limiting its robustness under variable 

conditions. 

 

The use of machine learning on edge devices such as the ESP32 or Raspberry Pi has seen increased 

adoption. Panda and Meher [7] demonstrated the use of MobileNetV2 and TensorFlow Lite for real-time food 

classification on mobile devices. Although their work effectively classified dishes in controlled environments, it 

lacked integration with actuators or safety logic for practical LPG cooking applications. Recent works have 

explored training custom convolutional neural networks (CNNs) using tools like Google’s Teachable Machine to 

achieve lightweight image classification that can be ported to microcontrollers via quantized .tflite models [8]. 

 

In the context of vision-enabled safety systems, Priya and Rao [9] proposed a fire detection and 

suppression system using a combination of thermal imaging and edge processing. Their study highlighted the 

importance of integrating multi-sensor data for real-time inference in safety-critical environments. However, their 

solution was cost-prohibitive for household deployment due to reliance on high-end infrared sensors. 

Further, Bhandari et al. [10] attempted to create an autonomous kitchen assistant capable of recognizing 

food items using a Raspberry Pi and camera module. While this work made progress in image-based food 

recognition, it did not integrate safety features or gas actuation controls. 

Our work distinguishes itself by combining vision-based food recognition, gas and fire detection, servo-

based actuation, and voice interaction on a resource-constrained ESP32 platform, thus bridging the gap between 

AI-enabled cooking support and embedded safety management. Unlike prior works, the proposed KATE system 

introduces child and adult detection mechanisms for intelligent interlocking and integrates both autonomous and 

semi-autonomous cooking modes within the LPG control logic. 
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Table 1 summarizes a comparison between selected previous works and the proposed solution. 

 

Study Features 
ML 

Integration 
Gas 

Control 
Food 

Recognition 
Safety System Platform 

[5] Shrestha et al. 
Gas leak detection, 

SMS alert 
No No No Partial 

Arduino + 

GSM 

[6] Chandran & 
Kavitha 

Gas detection, buzzer 
alert 

No No No Yes Arduino UNO 

[7] Panda & 

Meher 
Food classification 

Yes 

(MobileNetV2) 
No Yes No Android 

[9] Priya & Rao 
Fire detection, 

suppression 
No No No Yes (thermal) 

Custom 

hardware 

This Work 

Gas/fire detection, 

actuation, food AI, 
voice 

Yes (custom 

CNN, TFLite) 
Yes Yes 

Yes (multi-

sensor) 
ESP32 

 

III. METHODOLOGY 

 

This section describes the technical methodology adopted to fulfill the first research objective of 

developing an intelligent, AI-managed LPG safety and food classification subsystem using embedded systems. 

The implementation leverages computer vision, sensor fusion, and optimized machine learning models deployed 

on ESP32 microcontrollers. The overall design is guided by the principles of Edge AI, real-time responsiveness, 

and power efficiency. 

 

3.1 System Overview 

The KATE (Kitchen Autonomous Technology for Efficiency) system architecture comprises two ESP32 

microcontrollers communicating via UART protocol. The primary ESP32 handles AI-based vision processing and 

decision-making, while the secondary unit manages peripheral sensors and actuator control. The main modules 

include: 

i. Image Classification Module: This recognizes food categories (e.g., rice, beans, soup) and identifies 

humans (child/adult) for safety interlock. 

ii. Gas and Fire Detection Module: Detects LPG leakage, smoke, and flame using MQ5, MQ9, and flame 

sensors. 

iii. Voice Interface: Accepts pre-trained voice commands to initiate or stop cooking routines. 

iv. LPG Solenoid Valve Control: Automated switching using a solid-state relay (SSR) module. 

A simplified flowchart of system operation is shown below: 

 

Figure 1: Simplified KATE Decision Logic Flowchart 

 



Enhanced Development Of An Interactive Artificial Intelligence LPG Management System 

www.ijres.org                                                                                                                                               39 | Page 

3.2 Dataset Preparation 

Using Google’s Teachable Machine, a dataset was collected with over 500 images for five classes: 

i. Beans, Rice, Soup 

ii. Adult face, Child face 

The dataset was split 80:20 for training and validation. To ensure robustness under variable lighting, images were 

taken from various angles and distances using the ESP32-CAM. 

 

5.3 Model Training and Optimization 

A custom CNN model was trained using Teachable Machine, exported as a TensorFlow Lite (.tflite) file, and 

optimized for deployment using the following steps: 

1. Layer Reduction & Pruning: Shallow convolutional layers were retained, removing redundant deeper 

layers to reduce inference latency. 

2. Quantization: Full integer quantization reduced model size from ~900KB to ~250KB. 

3. Memory Allocation: Using tflite-micro, the model tensor arena was fixed at 70 KB to match ESP32's 

SRAM constraints. 

 

Equation for quantized inference time: 

 

   𝑡𝑖𝑛𝑓 =  
𝐶 .  𝐼𝑤 .  𝐼ℎ .  𝐷

𝑓𝑐𝑙𝑘
    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

  

Where:  C = Number of convolutional operation 

 Iw, Ih = Image Width and Height 

 D = Depth of Model 

 fclk = ESP32 clock frequency 

After quantization, the average inference time was ~198 ms per frame. 

 

3.4 Model Evaluation 

The performance of the food and face recognition model was evaluated using standard classification metrics. 

Results: 

i. Precision: 0.93 

ii. Recall: 0.91 

iii. F1 Score: 

 

𝐹1 = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 = 2 .

0.93 .  0.91

0.93 . 0.91
= 0.92 

 

Our refined score is 0.92, indicating strong balance between precision and recall. 

 

3.5 Deployment to ESP32 

The quantized .tflite model was compiled using the TensorFlow Lite for Microcontrollers library. The model 

interpreter was integrated into an Arduino sketch with the following code pattern: 
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3.6 Safety Interlock Logic 

Using inference results, the system activates or deactivates the gas solenoid valve based on three key conditions: 

1. Presence of Child: 

𝑆 =  {
0
1

 .𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐼𝑓 𝑐ℎ𝑖𝑙𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

  

2. Presence of Food (for autonomous cooking): 

 

𝐹 =  {
1
0

 .𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐼𝑓 𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑜𝑑 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

 

 

3. Gas Leak or Fire Alert: 

 

𝐺 =  {
0
1

 .𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐼𝑓 𝐺𝑎𝑠/ 𝐹𝑖𝑟𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

 

4. Actuation Logic:  

 

A = S . F . G 

  If A = 1, the solenoid valve opens; otherwise, it remains shut 

 

 

3.7 Voice Command Integration and Interaction 

 

The KATE system leverages pre-trained voice recognition to enhance user interaction, particularly during cooking 

processes where tactile or mobile input may be impractical. A minimal on-device model, trained using Google's 

Teachable Machine Audio Project, processes voice commands on the primary ESP32 module. 

Supported voice commands include: 

i. "Start Cooking": Initiates flame/gas if safety conditions are met. 

ii. "Stop Cooking": Closes the gas solenoid and halts all cooking. 

iii. "Check Gas": Forces immediate gas leak/fire sensor readout. 

iv. "What’s Cooking?": Returns the classified food object currently under preparation. 

v. "Sleep Mode": Activates standby power-saving mode. 

Each command triggers a function call internally structured within an interrupt-based voice handler. A sample 

command handler flow: 

 

#include "model_data.h" // Converted .tflite C array 

#include "tensorflow/lite/micro/micro_interpreter.h" 

constexpr int kTensorArenaSize = 70 * 1024; 

uint8_t tensor_arena[kTensorArenaSize]; 

tflite::MicroInterpreter interpreter(model, resolver, tensor_arena, kTensorArenaSize, error_reporter); 

void loop() { 

  camera.capture(); // Image capture 

  preprocess();      // Resize and normalize 

  interpreter.Invoke(); 

  interpret_results(); 

} 

If (voice_input ==  "stop Cooking")  { 

    Close_value();   

    Notify_user("Cooking stopped via voice command");  

} 
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Voice commands are prioritized above autonomous logic during user presence, ensuring user control is not 

overridden unless in critical safety override scenarios (e.g., gas leak or fire). 

 

3.8 Human Presence Detection and Operational Modes 

 

The KATE system utilizes a layered approach for human presence detection to intelligently switch between semi-

autonomous and fully autonomous cooking modes. This dual-sensor framework leverages a high-definition 

camera as the primary detection medium, with a passive infrared (PIR) motion sensor functioning as a secondary 

fallback to ensure continuous monitoring in all user-interaction scenarios. 

The HD camera, interfaced with an Edge-deployed CNN model, performs real-time image recognition to identify 

the presence of an adult or child within the cooking zone. Upon successful identification of a human subject, the 

system maintains semi-autonomous mode, in which voice interactions and user confirmations are required for 

critical actions such as solenoid actuation and safety override. 

 

However, in situations where the camera fails to detect a user, either due to occlusion, a change in position, or 

movement out of cooking area, the PIR motion sensor is activated. If motion is detected within the broader 

environment, KATE temporarily retains semi-autonomous status and continues sending notification prompts (via 

audio or smartphone alerts) requesting user re-engagement. If neither the camera nor PIR sensor detects presence 

within a preset timeout threshold (typically 2–3 minutes), the system transitions to fully autonomous mode, 

applying preset cooking logic, environmental safety algorithms, and minimal human dependency. 

This intelligent operational mode switching is guided by a hierarchical decision engine illustrated as follows: 

Decision Flow: 

1. HD Camera Detection Success: 

i. Human (Adult) Identified, Initiates  Semi-Autonomous Mode 

2. HD Camera Detection Fails: 

i. PIR Sensor Detects Movement: Initiates Semi-Autonomous Mode with Prompts 

3. No Detection from Camera and PIR: 

i. Timeout Exceeded: Initiates Autonomous Mode Activated 

ii. Notifications pushed to the user (audio + app) 

This adaptive framework ensures robust human-safety interlocks and uninterrupted system logic even in variable 

lighting or occluded conditions. Additionally, by prioritizing the camera-based model, the system takes advantage 

of high-resolution visual data and AI-enhanced classification, while the PIR backup mechanism provides a power-

efficient safety net. 

 

3.9 Autonomous vs. Semi-Autonomous Mode Switching 

Operationally, KATE toggles between two major modes: 

i. Semi-Autonomous Mode: 

Triggered when an adult human is within the camera’s field of view (FOV). In this mode: 

a. Voice commands are accepted. 

b. Vision actively monitors food and environmental safety. 

c. Cooking actions require explicit voice or button-based confirmation via application interface. 

ii. Fully Autonomous Mode: 

When no adult human is detected within a 10-second observation window post-PIR activation: 

a. The system assumes autonomous control. 

b. Initiates previously confirmed cooking instructions. 

c. Executes food classification and cooking logic automatically. 

d. Sends routine updates via the notification subsystem. 

 

3.10 Alert and Notification Subsystem 

KATE includes a Python-based subsystem that runs independently as an executable (.exe) on a local terminal or 

remote system. This module handles: 

i. Pop-up desktop alerts via Tkinter GUI 

ii. Logging of cooking and sensor events 

iii. Voice feedback via Text-to-Speech (TTS) using Pyttsx3 

The executable runs in parallel to the embedded system via USB serial or Wi-Fi bridge. KATE’s alert system 

bridges the embedded domain and a more robust edge-computing platform, enhancing reliability and user 

engagement. 
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IV. RESULT AND DISCUSSION   

 

4.1 Functional Evaluation of Sensor Integration 

 

The core embedded safety infrastructure comprising the MQ5, MQ9, fire sensor, smoke detector, and PIR sensor 

were tested under simulated LPG leak and fire conditions. Table 1 summarizes sensor thresholds and real-world 

trigger behavior. 

 

Table 1: Sensor Threshold Values and Trigger Response Times 

 

 

4.2 Solenoid Actuation and Safety Interlocks 

 

The 12V DC solenoid valve, managed via 4-channel SSR relay and supervised by gas/fire sensors, was 

consistently responsive to safety violations. Under no-detection conditions, cooking was allowed within 3 seconds 

of voice command confirmation. Under leak/fire conditions, the valve disengaged immediately, with alert logs 

timestamped via the Python subsystem. 

 

4.3 Human Detection and Child-Safety Lock Performance 

 

Using a TensorFlow Lite human classification model embedded on ESP32-CAM, the system successfully 

distinguished between adult and child images under various lighting conditions. 

 

Table 2: Classification Performance Summary 
Class  Precision  Recall  F1 score  Accuracy 

Adult 0.940 0.910 0.925 93.5% 

Child 0.890 0.900 0.895 91.0% 

Others 0.920 0.890 0.905 90.0% 

Average 0.916 0.900 0.908 91.3% 

 

In the presence of a child, the system prevented activation of any flame, regardless of voice command, and issued 

alerts. In adult presence, permission was granted based on cooking mode, aligning with WHO child accident 

prevention guidelines [22]. 

 

4.4 Voice Command Responsiveness and Control Mode Transition 

 

KATE registered and responded to five predefined commands with a 95% confidence threshold. Real-time 

response latency ranged from 0.8 to 1.5 seconds after voice input. Mode switching based on PIR-triggered 

presence and visual confirmation was seamless: 

 

i. Presence Detected: Semi-autonomous cooking enabled. 

ii. No Presence Detected: System transitioned to full autonomous mode with live logging and feedback. 

 

An internal watchdog timer ensured fallback to safe mode if voice or visual data was inconclusive, confirming 

KATE’s adaptive intelligence criterion. 

 

4.5 Food Classification Accuracy 

 

Ten food classes (e.g., yam, rice, egg, beans, water, stew, noodles, spaghetti, semo, plantain) were trained using 

Teachable Machine and deployed in quantized TensorFlow Lite format. 

 

 

 

 

Sensor Type Sensor Trigger Average Response Time Safety Action Triggered 

MQ5 (LPG) >400PPM ~1.5 Seconds Solenoid cut off, alert notification  

MQ9 (CO) >100PPM ~1.8 seconds Solenoid cut off, System cut off 

Flame Sensor IR flame present  < 1 seconds Solenoid cut off, TTS + GUI alerts  

Smoke detector  Moderate smoke ~2.0 seconds System alert and pulse 

PIR motion sensor  Motion detected Instantaneous  Switch to camera scan mode  
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Table 3: Food Recognition Accuracy per Class 
Food Item Training Accuracy Deployment Accuracy 

Rice 98% 93% 

Egg 97% 92% 

Water 96% 91% 

Noodles 99% 95% 

 

Average inference time per classification was 1.2 seconds using High-Definition Camera, this aligns well with 

the practical deployment of AI model on edge devices. 

 

4.6 Python-Based Monitoring and User Notification 

 

A lightweight .exe Python application running Tkinter GUI and Pyttsx3-based voice feedback successfully logged 

over 500 events during the test period. Alerts included: 

i. Gas Detected 

ii. Flame Detected 

iii. Cooking Complete 

iv. Unauthorized Attempt Detected (Child) 

 

Voice notifications ensured inclusivity for the visually impaired, while desktop alerts improved remote 

supervision. 

 

4.7 Robustness under Power Constraints 

 

Tests under 4200mAh Li-ion battery operation showed the system-maintained core safety monitoring for 7.5 hours 

and full AI cooking mode for 4 hours. This demonstrates energy-efficient edge computing, validating the system 

for locations with unstable grid power. 

 

4.8 Summary of Key Findings 

 

Table 4 highlights the key  Performance Summary of evaluation 
Evaluation Area Performance Summary 

Sensor Safety Detection ~98% accurate with less than 2sec response time 

Voice Control ~95% recognition with real-time response 

Child Detection Lock 100% prevention of unsafe cooking attempts 

Food Recognition Above 90% accuracy in live tests 

Alert & Logging System 100% event tracking with audible + GUI feedback 

Power Efficiency About 5.5 hours safety-only runtime; 3.5 hours AI mode runtime 

 

4.9 Comparative Performance Analysis with Related Systems 

 

To establish the practical significance and performance enhancement of the KATE system, a comparative analysis 

was carried out against related intelligent kitchen and LPG safety solutions documented in recent literature. The 

objective is to highlight measurable gains introduced through the integration of real-time safety interlocks, edge-

deployed AI models, presence-aware cooking logic, and voice-guided interaction. 

 

The comparison focused on six core performance indicators: 

 

i. Hazard Detection Time (response time to gas/fire/smoke events), 

ii. Human Recognition Capability (ability to detect and classify adult/child presence), 

iii. Cooking Mode Control (manual, semi-autonomous, or fully autonomous operation), 

iv. User Interaction Mechanism (visual, auditory, or voice-based feedback), 

v. Offline Functionality (autonomous operation without constant cloud connectivity), 

vi. AI-on-Edge Deployment (local processing of ML models on microcontrollers). 
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Table 5 presents a summarized view of the KATE system benchmarked against prior related works. 

 

Table 5: Comparative Analysis of KATE System with Related Work 
System Reference  Detection 

Time 

Human 

Recognition  

Cooking Mode User Feedback  Offline 

Operations  

AI on 

Edge 

Shrestha et al. (2019) [1] Approx.4–5s n/a Manual Only Visual Alert 

Only 

n/a n/a 

Chandran & Kavitha (2022) [3] Approx. 3s n/a Semi-

Autonomous 

Visual Alert 

Only 

Partial n/a 

Onasanya & Omijeh (2024) [4] 2.5s – 3.5s n/a Manual + Semi-
Auto 

Visual + 
Buzzer 

Partial n/a 

KATE (this work) Approx. 2s Adult/child Semi & Full 

Autonomous 

Voice + Visual 

+ GUI 

Battery 

Backed 

t.fLite 

 

4.9.1 Discussion of Comparative Strengths 

 

From Table 5, the KATE system clearly outperforms previously published designs in several critical dimensions: 

 

i. Faster Response Time: With an average hazard detection time of under 2 seconds (ranging between 1.2–

1.8s depending on gas/fire severity), KATE achieves a significant reduction in latency, improving the 

odds of timely user intervention or automated shutdown. 

 

ii. Human-Aware Presence Detection: The inclusion of a TensorFlow Lite (TFLite) model trained to 

differentiate between adult and child presence enhances decision accuracy. This capability was absent in 

all comparative systems. 

 

iii. Dual Cooking Mode: KATE dynamically switches between semi-autonomous (when a user is detected) 

and fully autonomous modes (when the user is absent), using real-time input from PIR motion sensors, 

vision analytics, and voice command states. 

 

iv. Rich Interaction Feedback: Unlike previous systems that rely on blinking lights or simple buzzers, KATE 

employs a Python-based GUI, voice assistant feedback, and contextual notifications through a local 

dashboard. This makes interaction more intuitive and safer, especially in emergency situations. 

 

v. Offline Autonomy & Edge AI: Most existing systems still rely on cloud-based analytics or lack adaptive 

intelligence. KATE, however, embeds all critical logic and models onto the ESP32, allowing the system 

to operate offline, powered by a 4200mAh battery, while executing compressed AI inference locally. 

 

This comparative performance underscores how the KATE system achieves technological advancement and real-

world applicability, particularly in resource-constrained environments where safety, real-time response, and user 

adaptability are crucial. 

 

V. CONCLUSION  

5.0 Conclusion  

 

This study has presented the design, development, and performance evaluation of the KATE system, an AI-

managed, presence-aware LPG safety and cooking assistant that integrates edge-based intelligence, real-time 

hazard detection, and voice-guided interaction. By focusing on developing a reliable LPG safety system with 

autonomous decision-making and user-specific responses, this work successfully bridges critical gaps in 

conventional gas monitoring systems. 

 

Through the deployment of a locally trained TensorFlow Lite model on the ESP32 microcontroller, KATE 

demonstrates effective human recognition capability that distinguishes between adult and child presence. This 

enabled the integration of child-safety interlocks and context-sensitive cooking control, ensuring that hazardous 

operations are halted or transitioned to safe states based on real-time presence detection. 

 

Additionally, the system achieved a hazard detection response time of under 2 seconds, significantly 

outperforming similar solutions in the literature. This rapid responsiveness, coupled with intelligent actuation of 

solenoid valves, real-time voice notifications, and dynamic mode switching between semi-autonomous and fully 

autonomous cooking, ensures improved user safety without requiring constant human supervision. 
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The incorporation of offline functionality, through battery-backed operation and embedded AI, further enhances 

the system's resilience in low-resource environments. This distinguishes KATE as a practical and scalable solution 

for domestic LPG safety in developing regions where internet access is often unreliable or unavailable. 

 

In summary, the KATE system not only achieves the technical objective of intelligent LPG hazard mitigation but 

also exemplifies how AI, embedded control systems, and human-centered design can converge to produce 

meaningful, life-saving innovations in household automation. 
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