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Abstract 

The emergence of 5G networks has brought transformative capabilities in terms of speed, latency, and 

connectivity, while also introducing new cybersecurity challenges, particularly at the network edge. Cameroon’s 

telecom infrastructure is undergoing modernization with the progressive deployment of 5G-ready technologies by 

operators like Camtel, MTN Cameroon, and Orange Cameroon. These developments, including the installation 

of fiber optic backbones and edge computing nodes (e.g., MEC—Multi-access Edge Computing), create an 

environment where distributed computing and localized AI inference become feasible. An AI-driven IDS using 

federated learning mitigates these issues by processing data locally and only sharing model updates. This is 

particularly relevant in Cameroon’s mixed urban-rural landscape, where edge nodes must detect anomalies (e.g., 

DoS attacks or malware infiltration) independently and in real time without relying on high-bandwidth centralized 

servers. Traditional centralized Intrusion Detection Systems (IDS) are no longer viable in this decentralized 

architecture due to concerns over scalability, latency, and data privacy. To address these issues, this research 

proposes an AI-driven Intrusion Detection System based on Federated Learning (FL) for 5G edge networks. The 

proposed system leverages distributed machine learning to collaboratively train detection models across multiple 

edge nodes without requiring the sharing of raw data. By integrating deep learning techniques with FL, the system 

ensures accurate, real-time threat detection while preserving user privacy and minimizing communication 

overhead. The framework is designed to detect various network intrusions efficiently, even in resource-

constrained environments, such as edge computing devices. Through extensive simulation using benchmark 

datasets and realistic 5G edge scenarios, the system’s performance will be evaluated in terms of detection 

accuracy, model convergence, and resource utilization. This work aims to provide a scalable, secure, and privacy-

aware solution to intrusion detection in modern mobile networks and lays the groundwork for similar applications 

in future 6G environments. 
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Deep Learning, AI Security, Privacy-Preserving Machine Learning, Anomaly Detection, Distributed Intelligence. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 24-05-2025                                                                            Date of acceptance: 04-06-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 

Cameroon’s digital transformation strategy, led by the Ministry of Posts and Telecommunications 

(MINPOSTEL) and the National Agency for Information and Communication Technologies (ANTIC), 

emphasizes cybersecurity as a national priority. The Law [1] on cybersecurity and cybercrime provides a legal 

framework for data protection, cyber defense, and digital infrastructure protection. However, existing regulations 

largely focus on centralized systems and may lack provisions tailored to the decentralized and privacy-preserving 

nature of federated learning (FL). Cyberattacks targeting telecom infrastructure, financial systems (e.g., mobile 

money services), and government platforms have been on the rise in Central Africa. Cameroon’s increasing 

reliance on digital platforms for services like e-government, telehealth, and e-education has expanded the attack 

surface. 

Implementing AI-based IDS through FL aligns with the national need for advanced threat detection 

mechanisms while complying with data privacy laws. Since FL allows training models without transferring 

sensitive data outside local nodes (e.g., telco edge servers or base stations), it supports regulatory compliance with 

data sovereignty requirements that may evolve in Cameroon’s future digital policies. 

Abeshu et al [2] mentioned in one his paper, that, the rapid deployment of 5G networks has revolutionized 

mobile communications by enabling ultra-low latency, massive device connectivity, and high data throughput. 

However, one of the defining features of 5G is its support for edge computing, which allows data processing to 

occur closer to the source, significantly reducing response time and alleviating the burden on centralized 

infrastructure. Lu et al [6], while decentralized architecture also introduces new security challenges, particularly 
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in terms of intrusion detection. Shellman et al, [3], highlighted that, Traditional Intrusion Detection Systems (IDS), 

rely on centralized data aggregation and analysis, are increasingly inadequate in 5G environments due to privacy 

concerns, bandwidth limitations, and the sheer scale of edge nodes. Moreover, these limitations necessitate a shift 

toward more decentralized and intelligent security mechanisms that can adapt in real-time to emerging threats 

without compromising user privacy.  

The concept of federated learning (FL), “one of the most promising distributed AI approaches, has been 

proposed for designing AI-empowered mobile network management in a cost-effective and privacy-enhanced 

manner” [5], [6], [7]. Li & Sahu et al, [8], who said, Federated Learning (FL), is a distributed machine learning 

paradigm, that offers a promising solution by enabling multiple edge nodes to collaboratively train a shared model 

without exchanging raw data. Fadlullah et al, [9] added that, when combined with artificial intelligence (AI) 

techniques such as deep learning, FL can empower IDS to detect and mitigate cyber threats locally, while 

benefiting from collective learning across the network. In this context, the global “AI model is constructed by the 

repeated aggregation process of locally trained models”. 

This research aims to develop and evaluate an AI-driven IDS framework based on federated learning for 

5G edge networks. The proposed system will ensure privacy-preserving, real-time threat detection while 

addressing the computational and communication constraints of edge devices. The goal is to enhance the resilience 

and security of next-generation mobile networks in an increasingly distributed and data-sensitive ecosystem. 

Literature review shows that several survey papers and articles about FL for AI democratization have been 

published. Articles in [10], [11] presented the concept of FL with a basic introduction to definitions, architectures, 

software, platforms, and protocols. The study in [13] specifically analyzed the use of FL for 5G communications.  

 

II. Methodology 

This research adopts a multi-phase methodology to design, implement, and evaluate an AI-driven Intrusion 

Detection System (IDS) using Federated Learning (FL) within a simulated 5G edge network environment. The 

approach is structured into the following stages: 

1. Data Acquisition and Preprocessing 

● Dataset Selection: Publicly available benchmark datasets such as CICIDS2017 or NSL-KDD has been 

used to simulate realistic network traffic and intrusion scenarios. 

● Preprocessing Tasks: 

o Data cleaning (handling missing values, outliers) 

o Feature selection and normalization 

o Encoding of categorical features 

o Dataset partitioning across simulated edge nodes to reflect distributed data ownership 

 

2. System Architecture Design 

● Edge Simulation: Simulated 5G edge devices will act as local clients, each holding a portion of the 

dataset to mimic decentralized environments. 

● Model Architecture: 

o Deep learning models (CNN, LSTM) are used for pattern recognition in network traffic. 

o Lightweight architectures support to prioritized for compatibility with edge device limitations. 

 

● Federated Learning Framework: 

o The FedAvg (Federated Averaging) algorithm has been used to aggregate model updates at a central 

server without sharing raw data. 

o Integration of security measures such as differential privacy or secure aggregation may be included in 

later iterations. 

3. Training and Optimization 

● Local Training: Each edge node trains the model on its local data. 

● Global Aggregation: A central server collects and averages the local model weights. 

● Iterative Process: The global model is redistributed to the edge nodes, and training continues over 

multiple rounds until convergence. 

● Hyperparameter Tuning: Learning rate, batch size, number of communication rounds, and model depth 

will be optimized. 

 

4. Evaluation Metrics 

● Detection Performance: 

o Accuracy, Precision, Recall, F1-Score, and AUC-ROC 

● Resource Efficiency: 

o CPU/GPU utilization, memory consumption, and training time at the edge 
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● Communication Cost: 

o Number of bytes exchanged per round of training 

● Privacy Assessment: 

o Effectiveness of FL in protecting sensitive data compared to centralized learning 

 

5. Comparative Analysis 

● Baseline Comparison: 

o Performance of the federated IDS will be compared with a traditional centralized IDS and a non-AI 

heuristic-based IDS. 

● Attack Scenarios: 

o Evaluation will include common network threats such as DoS, DDoS, brute-force, and probe attacks. 

 

a). Experimental Environment Setup 

1.1 Simulation of Edge Nodes: 

     - Toolkits: Use virtualized environments ( Docker, Mininet, or Kubernetes) to simulate multiple edge devices. 

    - Configuration: Each simulated edge node will be assigned a unique portion of the dataset and limited compute 

resources (CPU caps, memory limits) to mimic real-world constraints. 

 

1.2 Central Aggregator: 

• Acts as the federated server, responsible for model aggregation (FedAvg). 

• Deployed on a higher-resource virtual node to simulate an edge orchestrator or mobile edge computing 

(MEC) server. 

b). Dataset Distribution and Preprocessing 

• Dataset: CICIDS2017 (primary) or NSL-KDD (for comparative analysis) 

• Distribution Strategy: Horizontally partition data across nodes (by attack type, time frames, or balanced 

class samples). 

• Preprocessing Tasks: Standardization, encoding, and normalization performed locally at each node. 

 

c). Model Architecture 

 

Local Model: 

   1) Convolutional Neural Networks (CNNs) are a class of deep learning models highly effective for 

processing data that has a grid-like topology, such as images, time series, or even network traffic matrices. 

They are biologically inspired by the visual cortex and have become the foundation for many modern computer 

vision, cybersecurity, and medical imaging systems.  

The Typical Architecture for Intrusion Detection: 

 

 

 

Figure_1: Architecture for Intrusion Detection 

   

i) Layer-wise Description: 

Layer Description 

Input Layer Takes a vector of network features (e.g., 70 features in CICIDS2017) 

Conv1D Applies filters (kernels) to extract local feature patterns 

ReLU Activation function to introduce non-linearity 

MaxPooling Reduces dimensionality and retains dominant features 

Flatten Converts 3D output to 1D for Dense layers 

Dense Fully connected layers for classification 

Output SoftMax for multi-class or sigmoid for binary classification 

 Table 1: Layers 

 

a) Mathematical Formulation 

⮚ Convolutional Operation: 

 

Let I € ꞦHxW be the input image and K € Ꞧkxk the convolution kernel: 

 S(𝑖, 𝑗) = 𝐼 ∗ 𝐾)(𝑖 ∗ 𝑗) = ∑𝑘−1
𝑚=0 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛). 𝐾(𝑚, 𝑛) … … … 𝐸𝑞𝑛 1 

Input Layer → Conv1D Layer → ReLU → MaxPooling → Conv1D Layer → 

ReLU → MaxPooling → Flatten → Dense Layer(s) → Output 

(SoftMax/Sigmoid) 
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This operation extracts local features by sliding the kernel over the input and computing a dot product at each 

position. 

⮚ Activation Function: 

After convolution, an activation function f is applied: 

 

                          A (i, j) = f (S (i, j))……………………………..Eqn 2 

Common choices include: 

● ReLU : max (0, x) 

● Leaky ReLU: max (0.01x, x) 

● ELU, GELU (in more modern models) 

 

For Fully Connected layer; Final stage where all extracted features are combined for classification/regression 

              y = α (Wx + b) …………………………………. Eqn 3 

 

 

CNNs are trained using gradient-based optimization (e.g., SGD, Adam) with backpropagation to minimize a 

loss function (e.g., cross-entropy for classification): 

 

𝐿 = −𝛴𝑦𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑦̂𝑖) … … … … … … … … 𝐸𝑞𝑛 4 
 

 

𝑤 ⇐ 𝑤 − 𝜂
𝛥𝐿

𝛥𝑤
… … … … … … … … … 𝐸𝑞𝑛 5 

ii) Typical Hyperparameters: 

Hyperparameter Typical Values 

Number of filters 32, 64, 128 

Kernel size 3, 5 

Pooling size 2 

Dense units 64, 128 

Dropout 0.2–0.5 

Optimizer Adam 

Learning rate 0.001–0.0001 

Batch size 32, 64 

Epochs 20–100 

Loss function Binary or categorical crossentropy 

Table 2: Hyperparameters 
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iii) Python_Model_Coding_Script_Implementation 

 
Figure_2: Python Implementation code 

 

 
Table_3: Output results 
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Figure 3: Python codes Implementation 

 

Output 

 
Figure 4: Output results 
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Figure 5: Py-code Implementation 

 

Output 

 

 
Figure 6: Output results 

 

Output results Interpretations 

Average inference time per flow: 4.98 ms 

Estimated bandwidth per flow: 0.62 KB 

Average total latency per flow: 5.98 ms 
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iv) 5G-specific threats Synthetic Data Generation 

 

 
Figure 7: 5G network Slicing code attacks 

 
slice_id source_ip destination_ip protocol packet_size duration label attack_type 

slice_2 192.168.1.1 10.0.0.1 UDP 290 0.12 Benign None 

slice_3 172.16.5.20 10.0.0.2 TCP 1050 0.67 Attack Unauthorized 

Access 

slice_1 10.0.1.30 192.168.1.100 ICMP 315 0.05 Benign None 

Table 4: Output of Network Slicing attacks 

 

5G threats like network slicing attacks involve unauthorized access, DoS, or resource abuse within isolated virtual 

network segments ("slices"). Synthetic data can reflect this by mimicking: 

● Normal traffic for various slices 

● Malicious traffic (e.g., DDoS, unauthorized access) targeted at specific slice 
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V) Real-World Setup experimentations 

● Using OpenAirInterface (OAI) testbed for 5G to inject traffic and place the model in the data plane. 

● We Measure packet round-trip time (RTT) before and after adding model inference. 

● We equally Track CPU/memory utilization to assess scalability. 

 
Metric Value (Example) 

Avg. inference time 5.1 ms 

Bandwidth per flow 7.2 KB 

Added latency +5.1 ms 

Impact on throughput Negligible at <1000 flows/sec 

 

2.) LSTM for temporal sequence analysis.   

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network (RNN) specifically 

designed to handle sequential data and long-range temporal dependencies. LSTMs incorporate specialized units 

called memory cells that can retain information over extended time intervals.   

 

i) Typical Architecture for Cybersecurity: 

 

 

 

 

 

Figure 8: Architecture for Cybersecurity 

 

ii)Layer-wise Description: 

Layer Description 

Input Sequence of time steps (e.g., 10–50) where each step contains network feature 

vectors 

LSTM Recurrent layer that maintains temporal memory using gates 

Dropou

t 

Prevents overfitting by randomly disabling neurons 

Dense Fully connected layer(s) for classification 

Output softmax for multi-class, sigmoid for binary classification 
Table 5 
 
iii) Typical Hyperparameters: 

Hyperparameter Typical Values 

LSTM units 64, 128, 256 

Sequence length 10–50 

Dropout 0.2–0.5 

Dense units 64, 128 

Optimizer Adam 

Learning rate 0.001–0.0001 

Batch size 32, 64 

Epochs 20–100 

Loss function Binary/categorical crossentropy 

Table 6 

 

Input Sequence → LSTM Layer(s) → Dropout → Dense Layer(s) → Output 

(SoftMax/Sigmoid) 
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Figure 8: LSTM Model 

 

 
Table 7: Model Sequential_1 results 
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Figure 9: Coding_Simulations_Evalautions 
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Figure 10: Output Results 

 

2.1) LSTM Cell Structure 

Each LSTM cell has three gates and a cell state: 

Component Function 

Forget Gate Decides which information to discard from the cell state. 

Input Gate Determines which values should be updated. 

Output Gate Controls the output based on the cell state. 

Cell State Acts as a memory conveyor, carrying relevant information forward. 

Table 8: LSTM cell Structure 

 

These gates are implemented using sigmoid and tanh activations and are trained to balance learning and 

forgetting information. 

 

2.4) Use Case Example 

     In cybersecurity log analysis, an LSTM can learn patterns of normal behavior and detect deviations that 

signal potential threats. For instance, a sudden spike in packet loss or CPU usage across a time window might 

indicate a DDoS attack. 

 

Global Model: 

  - Averaged across rounds using Federated Averaging (FedAvg). 

 Federated Averaging (FedAvg) is a foundational algorithm in Federated Learning (FL) that enables 

collaborative model training across multiple decentralized clients (for example mobile devices, edge nodes, or 

institutions) without sharing raw data. Furthermore, instead of sending data to a central server, each client trains 

a local model using its own dataset. After a few local training steps, the model weights (parameters) are sent to a 

central aggregation server. The server averages these weights to update the global model. 

  

Working principle: Round-by-Round Averaging 

1. Global Model Initialization: The server initializes a global model w0 

2. Client Selection: In each round t, a random subset of clients is selected. 

3. Local Training: 

o Each selected client downloads the global model wt 

o Trains the model on local data for E epochs using SGD or another optimizer. 

o Obtains an updated local model 𝑤𝑡
𝑘 

4. Model Aggregation (FedAvg): 
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o The server receives the updated models from all participating clients. 

o It averages them using: 

      𝑤𝑡+1 = ∑𝐾
𝑘=1

𝑛𝑘

𝑛
𝑤𝑡

𝑘………………………………Eqn (1) 

Where: 

▪ K= number of clients, 

▪ nk = number of samples on client k, 

▪ n=∑k nk = total number of samples from all clients. 

5. Repeat: Steps 2–4 continue for several rounds until convergence. 

Moreover, why Use Weighted Averaging? 

Using weighting by the number of local samples ensures that: 

● Clients with larger datasets have a greater influence on the global model. 

● The aggregation reflects the true data distribution across all clients. 

 This is because FedAvg is beneficial in: 

● Privacy-preserving: Data remains on the device. 

● Efficient: Communication is only for model weights, not data. 

● Scalable: Works with many clients in real-world FL applications. 

 

d). Training Protocol 

• Rounds: Fixed number of communication rounds (50–100). 

•  Epochs per Round: Each client trains for a small number of local epochs (2-5) 

• Batch Size & Learning Rate: Tuned through pilot experiments. 

•  Loss Function: Binary or multi-class cross-entropy depending on attack categorization. 

e). Evaluation Metrics 

● Accuracy: Overall classification correctness 

●  Precision / Recall: Attack detection relevance and completeness 

●  F1-Score: Balance between precision and recall 

● AUC-ROC: Model performance across thresholds 

●  Communication Overhead: Bytes exchanged during training rounds 

● Computational Overhead: Local resource usage: CPU, RAM, and training time per round 

● Privacy Evaluation: Qualitative analysis of data exposure vs. centralized IDS 

 

f). Comparative Baselines 

• Centralized IDS (DL-based): Same model trained using global data centrally 

•  Heuristic-based IDS: Rule-based detection (e.g., Snort) for baseline performance 

•  Federated IDS (Proposed): FL model across edge nodes without sharing data 

 

  g). Attack Scenarios 

• Denial of Service (DoS) 

• Distributed DoS (DDoS) 

• Brute Force Login 

• Botnet/Command & Control 

• Port Scans and Probes 

Each scenario will be simulated and analyzed for detection accuracy and latency. 

 

h). Tools and Frameworks 

• Frameworks: TensorFlow Federated (TFF) / PySyft / Flower 

• Visualization: Tensor Board, Matplotlib for learning curves and resource tracking 

• Deployment: Docker/Kubernetes for container-based simulation 

 

III. Results 

This section presents the performance results of the proposed Federated Learning-based Intrusion Detection 

System (FL-IDS) implemented in a simulated 5G edge network environment. The model was evaluated over 10 

federated learning communication rounds using the CICIDS2017 & CICIDS2023 datasets, which was distributed 

across multiple edge nodes. 

 

1. Model Performance Over Federated Rounds 

The FL-IDS demonstrated consistent improvement in all key performance indicators as federated rounds 

progressed. The following metrics were tracked and evaluated at each round: 
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● Accuracy: Improved from 78% in the first round to 93% in the final round. 

● Loss: Reduced from 0.45 in the first round to 0.16. 

● Precision: Increased from 75% to 92%. 

● Recall: Increased from 72% to 92%. 

These results confirm that the distributed training using federated learning can converge toward a highly accurate 

and reliable intrusion detection model without centralized data aggregation. 

 

2. Performance Metrics per Round 

Round Accuracy Loss Precision Recall 

1 0.78 0.45 0.75 0.72 

2 0.81 0.39 0.78 0.76 

3 0.84 0.34 0.81 0.80 

4 0.86 0.31 0.84 0.83 

5 0.88 0.28 0.86 0.85 

6 0.89 0.25 0.88 0.87 

7 0.90 0.22 0.89 0.89 

8 0.91 0.20 0.90 0.90 

9 0.92 0.18 0.91 0.91 

10 0.93 0.16 0.92 0.92 

Table 9: Performance metrics per round 

 

3. Observations 

● Stability: The performance curves (accuracy and loss) showed consistent improvement with minimal 

variance, indicating model stability. 

● Communication Efficiency: Despite the distributed nature of training, communication overhead 

remained within acceptable limits. 

● Privacy Preservation: At no point was raw data shared among nodes, ensuring that the training 

preserved user privacy. 

 

4. Comparative Analysis 

Compared to a centrally trained version of the same model (with access to the entire dataset), the FL-IDS 

achieved near-equivalent accuracy with significantly better privacy and scalability: 

Model Type Accuracy Data Privacy Scalability 

Centralized DL IDS 94% ✗ Moderate 

FL-Based IDS 93% ✓ High 

Table 10: DL IDS Vs FL-Based IDS 
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Figure 11: FL Implementation 

 

 
Figure 12: Graphical Representation of Results 
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Figure 13: FL Model Performance Graphical Representations 

 

Accuracy has increased from 0.78 to 0.93 (+0.15) over 10 rounds. 

✔ High accuracy indicates strong model performance. 

Loss has decreased from 0.45 to 0.16 (-0.29) over 10 rounds. 

✔ Very low loss suggests excellent model fit with low error. 

Precision has increased from 0.75 to 0.92 (+0.17) over 10 rounds. 

✔ High precision indicates strong model performance. 

Recall has increased from 0.72 to 0.92 (+0.20) over 10 rounds. 

✔ High recall indicates strong model performance. 

 

This research makes the following key contributions to the fields of cybersecurity, artificial intelligence, and next-

generation mobile networks: 

1. Federated Learning-Based Intrusion Detection System (FL-IDS): Developed and implemented a 

decentralized intrusion detection system using federated learning, enabling effective threat detection without the 

need to centralize sensitive 5G edge network data. 

2. Privacy-Preserving Security Model: Proposed a privacy-enhancing approach that addresses the critical 

challenge of data confidentiality in AI-driven security systems for 5G by eliminating the need to share raw traffic 

data between edge nodes. 

3. Performance Evaluation on Real-World Dataset: Validated the proposed IDS using the CICIDS2017 

& CICIDS2023 datasets, demonstrating that the federated model achieves high detection accuracy (93%) and low 

model loss (0.16), confirming its effectiveness. 

4. Metric-Based Comparative Analysis: Performed in-depth evaluation across multiple metrics, including 

accuracy, loss, precision, and recall, across federated rounds to highlight model improvements and robustness 

over time. 

5. Scalable Design for 5G/6G Networks: Designed the system to be scalable and adaptable to the 

distributed and heterogeneous architecture of 5G and future 6G edge networks. 

6. Framework for Future Extensions: Established a foundational architecture that can be extended to 

include reinforcement learning, real-time inference, adversarial defense mechanisms, and application in 

IoT/vehicular edge environments. 

 

IV. Conclusion 
Federated Learning-Based Intrusion Detection System (FL-IDS), Privacy-Preserving Security Model, 

Performance Evaluation on Real-World Dataset, Metric-Based Comparative Analysis, Scalable Design for 5G/6G 

Networks, Framework for Future Extensions presents a novel AI-driven intrusion detection system (IDS) tailored 

for 5G edge networks, utilizing federated learning (FL) to enhance both security and data privacy. The proposed 

system demonstrated that machine learning models can be effectively trained across distributed edge devices 

without centralizing sensitive network traffic data, thereby preserving user privacy while maintaining high 

detection accuracy. 

Through simulated experiments over 10 federated learning rounds using the CICIDS2017 & 

CICIDS2023 datasets, the FL-based IDS achieved competitive performance, with an accuracy of 93%, precision 
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and recall at 92%, and a loss reduction to 0.16. These results confirm that federated learning not only maintains 

model quality but also significantly reduces privacy risks associated with centralized approaches with results 

oriented Continuous performance improvement of an accuracy from 78% to 93%, loss from 0.45 to 0.16.   

Moreover, the system exhibits strong scalability and resilience, both of which are crucial for deployment 

in dynamic and heterogeneous 5G environments. Compared to traditional centralized intrusion detection models, 

the FL-IDS offers a better balance between security, efficiency, and privacy. 

Finally, federated learning provides a viable path forward for intelligent, privacy-preserving intrusion 

detection in future 5G and 6G networks. Future work will focus on extending this framework to real-time threat 

detection, incorporating reinforcement learning, and addressing challenges such as model drift, non-IID data, and 

adversarial attacks in decentralized environments. 
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ABBREVIATIONS 

NSL-KDD: "Network Security Laboratory – Knowledge Discovery in Databases" 

IDS: Intrusion Detection System. 

FL: Federated Learning 

FL-IDS: Federated Learning-based Intrusion Detection System 

ROC: Receiver Operating Characteristic curve 

AUC: Area Under the Curve 

DL: Deep Learning 

CPU: Central Processing Unit 

RAM: Random Access Memory 

TFF: TensorFlow Federated 

AI: Artificial Intelligence 

eMBB: Enhanced Mobile Broadband 

mMTC: Massive Machine-Type Communications 

URLLC: Ultra-Reliable Low-Latency Communications 


