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Abstract—The Mock Database Generator and Seeder project aims to provide a streamlined and automated 

solution for generating, validating, and seeding mock data into databases, particularly for development and 

testing environments. The tool is designed to handle complex database schemas by utilizing a configuration file 

that specifies data structure, types, and constraints, ensuring realistic and representative mock data. It supports 

both data generation from scratch and the integration of pre-existing datasets, such as external SQLite mock data, 

to enhance the testing process. With the ability to connect to a variety of database systems, including PostgreSQL, 

the tool automates the seeding process, reducing the manual overhead involved in setting up test databases. This 

project is particularly beneficial for developers, testers, and data engineers who require reliable, consistent mock 

data for system testing, performance benchmarking, or data validation. By automating these processes, the Mock 

Database Generator and Seeder significantly reduces time, effort, and errors, making it a vital tool for efficient 

software development cycles. 
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I. INTRODUCTION 

The Mock Database Generator and Seeder project is a response to the lingering problem of the generation 

and management of realistic datasets, which have become important in present-day software development and the 

testing sphere. In the current software world, testing applications in-depth is tremendously crucial for insuring 

reliability, security, and performance. Although there are other problems like data privacy, limited access to real 

data, and the size and complexity of production databases, it is most impractical for tests to work directly on 

production data. The data privacy concerns are aggravated by the existence of extant regulations-fast proliferating 

in modern times, such as GDPR, CCPA-which govern the use of sensitive data. Additionally, testing with 

production data may lead to the risk of exposing private information of the user or breach compliance. That is 

why there is an increasing need for an alternative: safe, scalable, and automated mock data generation for tests. 

Mock Database Generator and Seeder do provide a solution to the problem by automating the initial parts 

of generating, validating, and seeding mock data into databases such as PostgreSQL with little manual 

intervention. It empowers developers, testers, and data engineers to create and manage realistic test datasets in 

minutes that resemble the actual data in the sense of structure, relationships, and constraints. It greatly reduces 

time-consuming manual data entry, but above all gives the added benefit of having minimal scope for human error 

and scalable operation. 

Mock data creation is not casually referred to as random data creation just for testing; it traditionally 

reflects how this data would behave in production scenarios, which is important for the testing of performance, 

integrity, and functions of a software application under realistic conditions. Mock data has to be created with a 

good degree of fidelity in mind, representing a wide range of real-world situations including variable user inputs, 

edge cases, and complicated data relationships. Realism is the cornerstone of these tests, and without it, issues 

that might arise in production can be missed. The Mock Database Generator and Seeder advocate this by allowing 

their users to define their configurations in detail and to assure that the mock data complies with the same 

constraints, patterns, and relations as the production data so that the test is thorough and credible. The 

infrastructure enables developers and testers to create realistic data responsive to real-world scenarios, allowing 

themselves to simulate user behavior on one hand, and on the other, load the system up to help validate 

performance plus ensure the system handles different data structures, which is popular for isolating potential 

bottlenecks or bugs before production. 

What makes this mock data generator unique is its flexibility in defining the structure and characteristics 

of mock data. Users can specify schema, data types, relationships, and constraints within the data, making it very 

close to real business scenarios. This is the reason why this tool fits all kinds of verticals - from small applications 

having simple data models to large enterprise systems with complex database structures. Configuring these aspects 
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makes this project worth its salt, owing to the datasets generated fitting customized specifications for any testing 

scenarios, equipping the developer's toolbox very nicely with this versatile tool. 

Along with mock data generation from scratch, there is also an ability to incorporate third-party data 

sources, such as pre-existing SQLite mock data assets. This is another great means of ensuring increased 

versatility, enabling one to use previously developed mock datasets and thus generate timesaving mock data that's 

just that much realer. Regardless of whether the data is drawn from an existing dataset or generated live in real-

time, the Mock Database Generator and Seeder guarantees the generated data is entirely appropriate for the given 

test scenario, and datasets produced are extremely representative and closer to real-world applications. 

Ultimately, the Mock Database Generator and Seeder addresses a pertinent need in software development 

and testing: the demand to generate and manage mock data automatically, flexibly, and scalably. Thus, it enables 

developing projects to generate representative datasets for effective testing, thus speeding up the development 

cycle, decreasing errors, and improving the overall quality and reliability of the software being developed. This 

software project will allow the generation of ready-test data that closely reflects real-world situations, thereby 

now allowing teams to conduct clearer testing in identifying possible glitches at an earlier stage of development 

and confidently release much faster. The able-bodied ability to automate creation with consistent reliable data 

makes it particularly unique and this makes it indispensable in accelerating the work flow of developing software 

products. 

 

II. BACKGROUND 

 

A. Mock Data Generation 

Mock data generation has gained tremendous importance in testing and validation processes for modern 

software development [1]. It allows one to simulate certain scenarios that would not warrant the use of actual 

production data to evaluate the developed software. Automated testing, performance evaluation, or API 

development may sometimes require using real data, where security, privacy, or unavailability may pose 

challenges [10]. Existing methods of mock data generation span manual creation, rule-based generation, and tools 

operating in a programmed manner, generating mock data based on prescribed schemas and structures [14]. 

Various implementations lack adequate flexibility to generate exhaustive sets of realistic and scalable test datasets 

[20]. 

 

B. Data Seeding  

Data seeding is a technique where an application database is preloaded with initial data for testing and 

development [1]. The idea of seeding is to set up the conditions under which it is believed an application should 

run as expected before it is finally deployed [10]. The testing frameworks apply this in order that tests can depend 

on any specific datasets in validating functional requirements [14]. Traditional means of seeding involve static 

datasets that were inserted by hand into the database; this method can sometimes be quite tedious and susceptible 

to human error [20]. For example, automated seeding solutions create structured data in a more dynamic manner 

to cover a variety of testing cases and can thus improve testing even more [1]. A well-built seeder also promotes 

reproducibility to enable development teams to test software behaviors under all possible conditions [10]. 

 

C. Data Validation 

Data validation and testing are crucial for ensuring the accuracy, consistency, and reliability of mock data 

used in software applications [10]. They involve a multiple-step process that includes data validation, schema 

validation, constraint enforcement, and data integrity checks [1]. Schema validation ensures the mock data fits the 

expected structure, while constraint enforcement maintains business logic parameters [14]. Data integrity checks 

ensure logical consistency and avoid duplicate records or missing references [20].Mock data should be diverse to 

cover more scenarios, especially in automated software testing [1]. Validation tools blended with the mock data 

generation framework can improve performance and security testing reliability [14]. However, challenges remain 

regarding realism, scale, and efficiency [10]. Large-scale applications require large amounts of mock data to 

represent realistic distributions without burdening computational functionality [1]. Automated validation 

techniques improve test setup reliability and reduce company overhead, especially in terms of application defects 

[14]. 

 

D. Database Schema Validation 

Database schema validation is a critical aspect of mock data generation and seeding for various database 

types [5]. A well-defined schema enhances data integrity, linking those schemas, and making sure consistency is 

attained, which prevents errors resulting from invalid data structures [1]. It checks that the mock data also follows 

certain rules in conformity with table structures predefined, data types used, primary keys, foreign keys, as well 

as uniqueness on some values set [10]. Validation mechanisms integrated with mock data generation frameworks 

enhance software reliability by simulating realistic database conditions without needing to be provided with actual 
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production data [14]. Combined with schema validation within mock data generation, developers would be 

producing realistic datasets very similar to those found within production, bringing on improvements to the 

effectiveness of database-driven testing for software [5]. 

 

 
 

Database Connection through YAML file 

 

III. PROPOSED APPROACH ARCHITECTURE 

 
 

The following section discusses the proposed architecture for a command-line interface tool to automate 

the creation, validation, and seeding of mock data in a PostgreSQL database. This automated flow is started by 

the Input Configuration File, which is a central document that describes the structure, constraints, and other details 

for how to generate mock data. The config file describes the database schema, including tables, fields, data types, 

relationships between them, and constraints such as primary keys, foreign keys, and uniqueness conditions. The 

config file could also include database connection settings, predefined constraints on data, and external data 

sources that the user might want to leverage to add additional realistic features to the generated mock data. Only 

then, once the configuration file has been specified, does the system step into the parsing phase where the tool 

reads and interprets the file to extract meaningful information. The highlighted parsing would include the 

identification of the underlying schema of the database, the relations among the records under consideration, and 

the constraints the mock data needs to abide by so that it would represent a real-world scenario. 

Then follows the validation process, wherein checks are carried out to ensure that during the construction 

of the configuration file, the file is adhered to, according to certain predefined guidance and formats. This 

particular step also serves the ultimate aim of a technician by making sure no errors come that are going to 

propagate into later steps in the process. The validation mechanism will look into checking the inconsistencies 
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and missing fields as well as whether the data type has been set out appropriately in the schema definition and 

whether the logical definition stands to what they set forth. If any discrepancies are found within the process, then 

properly identified error messages will be sent out to the user, calling for the areas that need amendments and 

why. Following validation of the configuration file, the tool will advance into mocked data generation, wherein 

fake data is produced according to the specifications in the input file. 

In addition, the tool allows external SQLite mock data assets to be integrated so a user can enhance 

datasets generated or rely upon existing structured data in order to provide consistency with a historical or 

production-like dataset. A connection with the PostgreSQL database is established, once the mock data is 

generated, using the credentials and connection parameters as specified in the configuration file. A CLI tool 

assures that an authenticated session to create a connection is safe and stable in all respects and allows seamless 

interaction with the database system by offering the intelligence for authentication and session management to 

create seamless interaction with the database system. It is after this that the tool proceeds to do the seeding, 

whereby the generated mock data is inserted into their respective tables while always ensuring constraints among 

those tables and their dependencies are there to look into. The process of seeding is optimized in such a way that 

it can handle large volumes of data while also ensuring the minimization of insert time and data consistency.  

The end result of the proposed system architecture is a pipeline that is modular and structured enough to 

ensure data quality, scalability, and reliability. The whole workflow, from configuration parsing and validation to 

data generation, database connection, and data seeding, is totally automated in this CLI tool and provides a very 

powerful and very efficient solution for the mock data handling of large size. This methodology ensures a high 

level of compatibility with a variety of testing and development scenarios by allowing teams to set up test 

databases and populate them from source just perfectly and without any manual interference. On top of that, the 

integration of external datasets and schema validation makes the tool enhance flexible and thus an appealing 

solution to software developers, testers, and data engineers who in their work demand generating accurate and 

representative mock data for the application. 

 

IV. EXPERIMENTS 

Experiment Design 

Experiment Subject 

The experiment aims to evaluate the correctness, efficiency, and scalability of our CLI tool, which parses a YAML 

configuration file, validates the parsed data, fetches data from external SQLite files, validates the fetched data, 

and seeds a PostgreSQL database accordingly. 

We will conduct three experiments using different configuration files, each with varying complexity in terms of: 

• The number of tables 

• The number of records to be seeded 

• The structure and depth of SQLite data references 

The experiments will help assess: 

1. The correctness of data seeding. 

2. The performance of validation and database seeding. 

3. The impact of increasing data size on execution time. 

 

Environment Setup: 

 

i.Hardware: 

• CPU: Intel i7 / AMD Ryzen 7 (or equivalent) 

• RAM: 16GB 

• Storage: SSD (at least 100GB free) 

 

ii.Software Dependencies: 

• PostgreSQL 15 

• SQLite 3.x 

• Golang 1.21+ 

• Docker (optional, for containerized PostgreSQL) 

 

iii.Dataset: 

• Three different YAML configuration files defining various seeding scenarios. 

 

Experiment 1: Small Dataset 

 

Goal: Validate the correctness of parsing, validation, and seeding on a small dataset. 
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Configuration File: 

• Tables: 1 (users) 

• Records: 2000 

• SQLite Files: 2 (names.sqlite, surname.sqlite) 

• Complexity: Low (single table, straightforward column mapping) 

Metrics to Measure: 

• Execution time 

• Number of records successfully inserted 

• Number of validation failures 

 

Experiment 2: Medium Dataset with Multiple Tables 

 

Goal: Test the performance of the tool with multiple tables and increased complexity. 

Configuration File: 

• Tables: 3 (users, orders, products) 

• Records: 5000 (users), 10,000 (orders), 2000 (products) 

• SQLite Files: 3 (names.sqlite, orders.sqlite, products.sqlite) 

• Complexity: Medium (multi-table, relational references) 

Metrics to Measure: 

• Execution time for each phase (parsing, validation, fetching, seeding) 

• Number of records successfully inserted per table 

• Database consistency check after seeding 

 

Experiment 3: Large Dataset with Complex Dependencies 

 

Goal: Test scalability and stress limits of the tool. 

 

Configuration File: 

• Tables: 5 (users, orders, products, payments, reviews) 

• Records: 

o users: 20,000 

o orders: 50,000 

o products: 10,000 

o payments: 30,000 

o reviews: 25,000 

• SQLite Files: 4 (names.sqlite, orders.sqlite, products.sqlite, reviews.sqlite) 

• Complexity: High (foreign key relationships, multiple dependencies) 

Metrics to Measure: 

• Execution time for parsing, validation, and seeding 

• CPU and memory usage during execution 

• Failure rate due to validation constraints 

• PostgreSQL performance impact (query latency before and after seeding) 

 

Experiment Results: 

 

Observations: 

• The small dataset runs efficiently with minimal validation errors. 

• The medium dataset introduces a slight increase in execution time but remains manageable. 

• The large dataset tests the scalability of the tool, highlighting any bottlenecks in validation, fetching, or 

database insertion. 
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V. ALGORITHM: 

Application Setup: 

 
The Setup function initializes the PostgreSQL database connection using the provided configuration. If the 

connection fails, it logs an error and terminates execution. Upon success, it stores the connection in the application 

context for further use. 

 

Application Run: 

 
The Run function validates the provided YAML configuration, checks if the referenced SQLite data files exist, 

and establishes connections to them. It then verifies whether the data sources are valid and usable for seeding the 

PostgreSQL database. 
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Application Execute: 

 
 

The Execute function iterates over the table definitions in the config, fetches the required data from SQLite, and 

inserts it into the PostgreSQL database. If any step fails, it logs an error and terminates; otherwise, it confirms 

successful data insertion. 

 

VI. RESULT 

 

 
 

The terminal output shows the successful execution of a mock data seeding process using a YAML config file. It 

validates two SQLite files (names.sqlite and surname.sqlite), checks schema correctness, connects to a 

PostgreSQL database, and inserts 20,000 user records. Each phase is logged with timestamps and shows efficient 

data loading, validation, and integration into the users table. 

 

 
 

The image displays the result of an SQL query executed in PostgreSQL to verify data insertion. The command 

SELECT count(*) FROM users; confirms that exactly 20,000 records have been successfully inserted into the 

users table. This aligns with the expected outcome of the data seeding process and validates its success. 
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This image shows a terminal output displaying the first few rows from the users table after data seeding. Each 

row includes a name, surname, and unique id, confirming successful parsing and insertion from the names.sqlite 

and surname.sqlite files. The sequence and completeness of records validate the expected structure and content of 

the inserted mock data. 

 

VII. RESULT ANALYSIS 

 

 
 

This bar chart illustrates memory consumption in megabytes during each major phase of the experiment. The most 

memory was used during the DB Insert phase (12.4 MB), while YAML Parsing consumed the least (4.2 MB). It 

shows how resource load increases as the processing pipeline progresses. DB Insert took the longest time (310 ms), 

whereas Validation was the fastest (95 ms). The timing distribution highlights which stages dominate 

overall execution time. 
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It highlights execution time, records inserted, CPU usage, and validation failures, showing sharp increases with 

complexity. The results illustrate how system load and data integrity issues grow as the dataset and schema become 

more complex. 

 

VIII. CONCLUSION 

The Mock Database Generator and Seeder project provides a comprehensive solution to the challenges 

of generating and managing mock data for software testing environments. By automating the creation, validation, 

and seeding of realistic mock data into databases, the tool addresses a critical gap in modern development 

workflows, significantly reducing the time and manual effort involved. Its flexible configuration system, support 

for external datasets, and compatibility with various database systems like PostgreSQL make it a powerful tool 

for developers, testers, and data engineers. Through its ability to generate scalable, accurate, and representative 

data, the tool ensures more effective testing, leading to improved software quality and reliability. As organizations 

increasingly prioritize fast and secure development cycles, the Mock Database Generator and Seeder proves to be 

an essential asset in optimizing the testing process, minimizing errors, and enhancing overall productivity. 
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