
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 13 Issue 6 ǁ June 2025 ǁ PP. 124-133

www.ijres.org 124 | Page

Mock Data Generator and Seeder

Dr. Nilesh Mali, Vedant Ghodekar, Prasanna Baviskar, Piyush Mali, Subham

Patro
Ajeenkya D. Y. Patil School of Engineering, Pune – 412105

Abstract—The Mock Database Generator and Seeder project aims to provide a streamlined and automated

solution for generating, validating, and seeding mock data into databases, particularly for development and

testing environments. The tool is designed to handle complex database schemas by utilizing a configuration file

that specifies data structure, types, and constraints, ensuring realistic and representative mock data. It supports

both data generation from scratch and the integration of pre-existing datasets, such as external SQLite mock data,

to enhance the testing process. With the ability to connect to a variety of database systems, including PostgreSQL,

the tool automates the seeding process, reducing the manual overhead involved in setting up test databases. This

project is particularly beneficial for developers, testers, and data engineers who require reliable, consistent mock

data for system testing, performance benchmarking, or data validation. By automating these processes, the Mock

Database Generator and Seeder significantly reduces time, effort, and errors, making it a vital tool for efficient

software development cycles.

Index Terms—Mock Data Generation, Database Seeding Automation, Data Validation and Testing

--- ----------

Date of Submission: 01-06-2025 Date of acceptance: 10-06-2025

--- ----------

I. INTRODUCTION

The Mock Database Generator and Seeder project is a response to the lingering problem of the generation

and management of realistic datasets, which have become important in present-day software development and the

testing sphere. In the current software world, testing applications in-depth is tremendously crucial for insuring

reliability, security, and performance. Although there are other problems like data privacy, limited access to real

data, and the size and complexity of production databases, it is most impractical for tests to work directly on

production data. The data privacy concerns are aggravated by the existence of extant regulations-fast proliferating

in modern times, such as GDPR, CCPA-which govern the use of sensitive data. Additionally, testing with

production data may lead to the risk of exposing private information of the user or breach compliance. That is

why there is an increasing need for an alternative: safe, scalable, and automated mock data generation for tests.

Mock Database Generator and Seeder do provide a solution to the problem by automating the initial parts

of generating, validating, and seeding mock data into databases such as PostgreSQL with little manual

intervention. It empowers developers, testers, and data engineers to create and manage realistic test datasets in

minutes that resemble the actual data in the sense of structure, relationships, and constraints. It greatly reduces

time-consuming manual data entry, but above all gives the added benefit of having minimal scope for human error

and scalable operation.

Mock data creation is not casually referred to as random data creation just for testing; it traditionally

reflects how this data would behave in production scenarios, which is important for the testing of performance,

integrity, and functions of a software application under realistic conditions. Mock data has to be created with a

good degree of fidelity in mind, representing a wide range of real-world situations including variable user inputs,

edge cases, and complicated data relationships. Realism is the cornerstone of these tests, and without it, issues

that might arise in production can be missed. The Mock Database Generator and Seeder advocate this by allowing

their users to define their configurations in detail and to assure that the mock data complies with the same

constraints, patterns, and relations as the production data so that the test is thorough and credible. The

infrastructure enables developers and testers to create realistic data responsive to real-world scenarios, allowing

themselves to simulate user behavior on one hand, and on the other, load the system up to help validate

performance plus ensure the system handles different data structures, which is popular for isolating potential

bottlenecks or bugs before production.

What makes this mock data generator unique is its flexibility in defining the structure and characteristics

of mock data. Users can specify schema, data types, relationships, and constraints within the data, making it very

close to real business scenarios. This is the reason why this tool fits all kinds of verticals - from small applications

having simple data models to large enterprise systems with complex database structures. Configuring these aspects

Mock Data Generator and Seeder

www.ijres.org 125 | Page

makes this project worth its salt, owing to the datasets generated fitting customized specifications for any testing

scenarios, equipping the developer's toolbox very nicely with this versatile tool.

Along with mock data generation from scratch, there is also an ability to incorporate third-party data

sources, such as pre-existing SQLite mock data assets. This is another great means of ensuring increased

versatility, enabling one to use previously developed mock datasets and thus generate timesaving mock data that's

just that much realer. Regardless of whether the data is drawn from an existing dataset or generated live in real-

time, the Mock Database Generator and Seeder guarantees the generated data is entirely appropriate for the given

test scenario, and datasets produced are extremely representative and closer to real-world applications.

Ultimately, the Mock Database Generator and Seeder addresses a pertinent need in software development

and testing: the demand to generate and manage mock data automatically, flexibly, and scalably. Thus, it enables

developing projects to generate representative datasets for effective testing, thus speeding up the development

cycle, decreasing errors, and improving the overall quality and reliability of the software being developed. This

software project will allow the generation of ready-test data that closely reflects real-world situations, thereby

now allowing teams to conduct clearer testing in identifying possible glitches at an earlier stage of development

and confidently release much faster. The able-bodied ability to automate creation with consistent reliable data

makes it particularly unique and this makes it indispensable in accelerating the work flow of developing software

products.

II. BACKGROUND

A. Mock Data Generation

Mock data generation has gained tremendous importance in testing and validation processes for modern

software development [1]. It allows one to simulate certain scenarios that would not warrant the use of actual

production data to evaluate the developed software. Automated testing, performance evaluation, or API

development may sometimes require using real data, where security, privacy, or unavailability may pose

challenges [10]. Existing methods of mock data generation span manual creation, rule-based generation, and tools

operating in a programmed manner, generating mock data based on prescribed schemas and structures [14].

Various implementations lack adequate flexibility to generate exhaustive sets of realistic and scalable test datasets

[20].

B. Data Seeding

Data seeding is a technique where an application database is preloaded with initial data for testing and

development [1]. The idea of seeding is to set up the conditions under which it is believed an application should

run as expected before it is finally deployed [10]. The testing frameworks apply this in order that tests can depend

on any specific datasets in validating functional requirements [14]. Traditional means of seeding involve static

datasets that were inserted by hand into the database; this method can sometimes be quite tedious and susceptible

to human error [20]. For example, automated seeding solutions create structured data in a more dynamic manner

to cover a variety of testing cases and can thus improve testing even more [1]. A well-built seeder also promotes

reproducibility to enable development teams to test software behaviors under all possible conditions [10].

C. Data Validation

Data validation and testing are crucial for ensuring the accuracy, consistency, and reliability of mock data

used in software applications [10]. They involve a multiple-step process that includes data validation, schema

validation, constraint enforcement, and data integrity checks [1]. Schema validation ensures the mock data fits the

expected structure, while constraint enforcement maintains business logic parameters [14]. Data integrity checks

ensure logical consistency and avoid duplicate records or missing references [20].Mock data should be diverse to

cover more scenarios, especially in automated software testing [1]. Validation tools blended with the mock data

generation framework can improve performance and security testing reliability [14]. However, challenges remain

regarding realism, scale, and efficiency [10]. Large-scale applications require large amounts of mock data to

represent realistic distributions without burdening computational functionality [1]. Automated validation

techniques improve test setup reliability and reduce company overhead, especially in terms of application defects

[14].

D. Database Schema Validation

Database schema validation is a critical aspect of mock data generation and seeding for various database

types [5]. A well-defined schema enhances data integrity, linking those schemas, and making sure consistency is

attained, which prevents errors resulting from invalid data structures [1]. It checks that the mock data also follows

certain rules in conformity with table structures predefined, data types used, primary keys, foreign keys, as well

as uniqueness on some values set [10]. Validation mechanisms integrated with mock data generation frameworks

enhance software reliability by simulating realistic database conditions without needing to be provided with actual

Mock Data Generator and Seeder

www.ijres.org 126 | Page

production data [14]. Combined with schema validation within mock data generation, developers would be

producing realistic datasets very similar to those found within production, bringing on improvements to the

effectiveness of database-driven testing for software [5].

Database Connection through YAML file

III. PROPOSED APPROACH ARCHITECTURE

The following section discusses the proposed architecture for a command-line interface tool to automate

the creation, validation, and seeding of mock data in a PostgreSQL database. This automated flow is started by

the Input Configuration File, which is a central document that describes the structure, constraints, and other details

for how to generate mock data. The config file describes the database schema, including tables, fields, data types,

relationships between them, and constraints such as primary keys, foreign keys, and uniqueness conditions. The

config file could also include database connection settings, predefined constraints on data, and external data

sources that the user might want to leverage to add additional realistic features to the generated mock data. Only

then, once the configuration file has been specified, does the system step into the parsing phase where the tool

reads and interprets the file to extract meaningful information. The highlighted parsing would include the

identification of the underlying schema of the database, the relations among the records under consideration, and

the constraints the mock data needs to abide by so that it would represent a real-world scenario.

Then follows the validation process, wherein checks are carried out to ensure that during the construction

of the configuration file, the file is adhered to, according to certain predefined guidance and formats. This

particular step also serves the ultimate aim of a technician by making sure no errors come that are going to

propagate into later steps in the process. The validation mechanism will look into checking the inconsistencies

Mock Data Generator and Seeder

www.ijres.org 127 | Page

and missing fields as well as whether the data type has been set out appropriately in the schema definition and

whether the logical definition stands to what they set forth. If any discrepancies are found within the process, then

properly identified error messages will be sent out to the user, calling for the areas that need amendments and

why. Following validation of the configuration file, the tool will advance into mocked data generation, wherein

fake data is produced according to the specifications in the input file.

In addition, the tool allows external SQLite mock data assets to be integrated so a user can enhance

datasets generated or rely upon existing structured data in order to provide consistency with a historical or

production-like dataset. A connection with the PostgreSQL database is established, once the mock data is

generated, using the credentials and connection parameters as specified in the configuration file. A CLI tool

assures that an authenticated session to create a connection is safe and stable in all respects and allows seamless

interaction with the database system by offering the intelligence for authentication and session management to

create seamless interaction with the database system. It is after this that the tool proceeds to do the seeding,

whereby the generated mock data is inserted into their respective tables while always ensuring constraints among

those tables and their dependencies are there to look into. The process of seeding is optimized in such a way that

it can handle large volumes of data while also ensuring the minimization of insert time and data consistency.

The end result of the proposed system architecture is a pipeline that is modular and structured enough to

ensure data quality, scalability, and reliability. The whole workflow, from configuration parsing and validation to

data generation, database connection, and data seeding, is totally automated in this CLI tool and provides a very

powerful and very efficient solution for the mock data handling of large size. This methodology ensures a high

level of compatibility with a variety of testing and development scenarios by allowing teams to set up test

databases and populate them from source just perfectly and without any manual interference. On top of that, the

integration of external datasets and schema validation makes the tool enhance flexible and thus an appealing

solution to software developers, testers, and data engineers who in their work demand generating accurate and

representative mock data for the application.

IV. EXPERIMENTS

Experiment Design

Experiment Subject

The experiment aims to evaluate the correctness, efficiency, and scalability of our CLI tool, which parses a YAML

configuration file, validates the parsed data, fetches data from external SQLite files, validates the fetched data,

and seeds a PostgreSQL database accordingly.

We will conduct three experiments using different configuration files, each with varying complexity in terms of:

• The number of tables

• The number of records to be seeded

• The structure and depth of SQLite data references

The experiments will help assess:

1. The correctness of data seeding.

2. The performance of validation and database seeding.

3. The impact of increasing data size on execution time.

Environment Setup:

i.Hardware:

• CPU: Intel i7 / AMD Ryzen 7 (or equivalent)

• RAM: 16GB

• Storage: SSD (at least 100GB free)

ii.Software Dependencies:

• PostgreSQL 15

• SQLite 3.x

• Golang 1.21+

• Docker (optional, for containerized PostgreSQL)

iii.Dataset:

• Three different YAML configuration files defining various seeding scenarios.

Experiment 1: Small Dataset

Goal: Validate the correctness of parsing, validation, and seeding on a small dataset.

Mock Data Generator and Seeder

www.ijres.org 128 | Page

Configuration File:

• Tables: 1 (users)

• Records: 2000

• SQLite Files: 2 (names.sqlite, surname.sqlite)

• Complexity: Low (single table, straightforward column mapping)

Metrics to Measure:

• Execution time

• Number of records successfully inserted

• Number of validation failures

Experiment 2: Medium Dataset with Multiple Tables

Goal: Test the performance of the tool with multiple tables and increased complexity.

Configuration File:

• Tables: 3 (users, orders, products)

• Records: 5000 (users), 10,000 (orders), 2000 (products)

• SQLite Files: 3 (names.sqlite, orders.sqlite, products.sqlite)

• Complexity: Medium (multi-table, relational references)

Metrics to Measure:

• Execution time for each phase (parsing, validation, fetching, seeding)

• Number of records successfully inserted per table

• Database consistency check after seeding

Experiment 3: Large Dataset with Complex Dependencies

Goal: Test scalability and stress limits of the tool.

Configuration File:

• Tables: 5 (users, orders, products, payments, reviews)

• Records:

o users: 20,000

o orders: 50,000

o products: 10,000

o payments: 30,000

o reviews: 25,000

• SQLite Files: 4 (names.sqlite, orders.sqlite, products.sqlite, reviews.sqlite)

• Complexity: High (foreign key relationships, multiple dependencies)

Metrics to Measure:

• Execution time for parsing, validation, and seeding

• CPU and memory usage during execution

• Failure rate due to validation constraints

• PostgreSQL performance impact (query latency before and after seeding)

Experiment Results:

Observations:

• The small dataset runs efficiently with minimal validation errors.

• The medium dataset introduces a slight increase in execution time but remains manageable.

• The large dataset tests the scalability of the tool, highlighting any bottlenecks in validation, fetching, or

database insertion.

Mock Data Generator and Seeder

www.ijres.org 129 | Page

V. ALGORITHM:

Application Setup:

The Setup function initializes the PostgreSQL database connection using the provided configuration. If the

connection fails, it logs an error and terminates execution. Upon success, it stores the connection in the application

context for further use.

Application Run:

The Run function validates the provided YAML configuration, checks if the referenced SQLite data files exist,

and establishes connections to them. It then verifies whether the data sources are valid and usable for seeding the

PostgreSQL database.

Mock Data Generator and Seeder

www.ijres.org 130 | Page

Application Execute:

The Execute function iterates over the table definitions in the config, fetches the required data from SQLite, and

inserts it into the PostgreSQL database. If any step fails, it logs an error and terminates; otherwise, it confirms

successful data insertion.

VI. RESULT

The terminal output shows the successful execution of a mock data seeding process using a YAML config file. It

validates two SQLite files (names.sqlite and surname.sqlite), checks schema correctness, connects to a

PostgreSQL database, and inserts 20,000 user records. Each phase is logged with timestamps and shows efficient

data loading, validation, and integration into the users table.

The image displays the result of an SQL query executed in PostgreSQL to verify data insertion. The command

SELECT count(*) FROM users; confirms that exactly 20,000 records have been successfully inserted into the

users table. This aligns with the expected outcome of the data seeding process and validates its success.

Mock Data Generator and Seeder

www.ijres.org 131 | Page

This image shows a terminal output displaying the first few rows from the users table after data seeding. Each

row includes a name, surname, and unique id, confirming successful parsing and insertion from the names.sqlite

and surname.sqlite files. The sequence and completeness of records validate the expected structure and content of

the inserted mock data.

VII. RESULT ANALYSIS

This bar chart illustrates memory consumption in megabytes during each major phase of the experiment. The most

memory was used during the DB Insert phase (12.4 MB), while YAML Parsing consumed the least (4.2 MB). It

shows how resource load increases as the processing pipeline progresses. DB Insert took the longest time (310 ms),

whereas Validation was the fastest (95 ms). The timing distribution highlights which stages dominate

overall execution time.

Mock Data Generator and Seeder

www.ijres.org 132 | Page

It highlights execution time, records inserted, CPU usage, and validation failures, showing sharp increases with

complexity. The results illustrate how system load and data integrity issues grow as the dataset and schema become

more complex.

VIII. CONCLUSION

The Mock Database Generator and Seeder project provides a comprehensive solution to the challenges

of generating and managing mock data for software testing environments. By automating the creation, validation,

and seeding of realistic mock data into databases, the tool addresses a critical gap in modern development

workflows, significantly reducing the time and manual effort involved. Its flexible configuration system, support

for external datasets, and compatibility with various database systems like PostgreSQL make it a powerful tool

for developers, testers, and data engineers. Through its ability to generate scalable, accurate, and representative

data, the tool ensures more effective testing, leading to improved software quality and reliability. As organizations

increasingly prioritize fast and secure development cycles, the Mock Database Generator and Seeder proves to be

an essential asset in optimizing the testing process, minimizing errors, and enhancing overall productivity.

REFERENCES:
[1]. D. T. H. Thu, L. D. Quang, D. -A. Nguyen and P. N. Hung, "A Method of Automated Mock Data Generation for RESTful API Testing,"

2022 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 2022

[2]. Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. Restest: Automated black-box testing of restful web apis. ISSTA
2021, New York, NY, USA, 2021. Association for Computing Machinery.

[3]. Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. A black box tool for robustness testing of rest services. IEEE Access, 9, 2021.

[4]. Doan Thi Hoai Thu, Duc-Anh Nguyen, and Pham Ngoc Hung. Automated test data generation for typescript web applications. In
2021 13th International Conference on Knowledge and Systems Engineering.

[5]. A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts. McGraw Hill, 6th ed., 2010

[6]. Andrea Arcuri. Restful api automated test case generation with evomaster. ACM Trans. Softw. Eng. Methodol., 28(1), January 2019.
[7]. Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. CLOSER 2016, page 137–146, Setubal, PRT, 2016.

SCITEPRESS - Science and Technology Publications, Lda.

[8]. Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.
[9]. Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. Testing & verification in service-oriented architecture: A survey. Software

Testing, Verification and Reliability, 23, 06 2013.

[10]. Tuya, J., Cabal, M.J.S., de la Riva, C.: Full predicate coverage for testing SQL database queries. Softw. Test. Verif. Reliab. 20(3),
237–288 (2010).

[11]. Tahbildar, Hitesh & Kalita, Bichitra. (2010). Automated Test Data Generation Based On Individual Constraints and Boundary Value.

International Journal of Computer Science Issues.
[12]. Ashalatha Nayak and Debasis Samanta, “Automatic Test Data Synthesis using UML Sequence Diagrams", Journal of Object

Technology, vol. 09, no. 2, March-April 2010, pp. 75(104).

[13]. Gerardo Canfora and Massimiliano Di Penta. Service-Oriented Architectures Testing: A Survey, pages 78–105. 01 2009.
[14]. C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai. Wsdl-based automated test data generation for web service. In 2008 International

Conference on Computer Science and Software Engineering, volume 2, pages 731–737. IEEE, 2008.

[15]. Minh Ngoc Ngo *, Hee Beng Kuan Tan, “Heuristics-based infeasible path detection for dynamic Test Data generation", International
Journal Information and Software Technology, ELSEVIER, Page 641-655, 2008.

[16]. Ruilian Zhao, Qing Li, “Automatic Test Generation for Dynamic Data Structures", Fifth International Conference on Software

Engineering Research, Management and Applications, 2007.
[17]. Shahid Mahmood, “A Systematic Review of Automated Test Data Generation Techniques”, Master Thesis Software Engineering

Thesis no: MSE-2007:26 October 2007.

[18]. Xiao Ma, J. Jenny Li, and David M. Weiss, “Prioritized Constraints with Data Sampling Scores for Automated Test Data Generation",
Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed

Computing, 2007.

Mock Data Generator and Seeder

www.ijres.org 133 | Page

[19]. Jun-Yi Li, Jia-Guang Sun, Ying-Ping Lu, “Automated Test Data Generation Based on Program Execution", In Proceedings of the

Fourth IEEE International Conference on Software Engineering Research, Management and Applications (SERA'06), 2006.
[20]. Phil McMinn, “Search-based Software Test Data Generation: A Survey, Software Testing, Verification and Reliability, Wiley”, VOL

14., No. 2, Page 105-156, June 2004.

[21]. Roy T. Fielding. Architectural styles and the design of network-based software architectures; doctoral dissertation. 2000.
[22]. Richard A. DeMillo, A. Jefierson Offutt, “Constraint-Based Automatic Test Data Generation", IEEE Transactions on Software

Engineering, 17(9):900-910, September 1991.

[23]. W. E. Howden, "A functional approach to program testing and analysis", IEEE Trans. Software Eng., vol. SE-12, no. 10, Oct. 1986.
[24]. C.V. Ramamoorthy, S.F. Ho, W.T. Chen, “On the automated generation of Program Test Data", IEEE Transaction on Software

Engineering, Vol. SE-2, No-4, December 1976.

