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Abstract 
Intestinal obstruction is a common clinical emergency, where the application of catheters plays a critical role in 

treatment. However, traditional catheter materials face limitations such as high friction and poor 

biocompatibility. In recent years, natural polymer-based double-network hydrogel coatings have attracted 

widespread attention due to their superior acid resistance, low swelling, and enhanced lubricity. This review 

summarizes recent advances in the application of natural polymer-based double-network hydrogel coatings for 

intestinal obstruction catheters, focusing on their acid resistance, low swelling, and lubricity, and discusses 

their clinical potential and challenges. 
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I. Introduction 

The mortality of intestinal obstruction is closely associated with complications, particularly in acute 

cases. For instance, patients with complicated colonic diverticular disease (CCDD) exhibit significantly 

increased 1-year mortality rates[1]. Acute intestinal obstruction accounts for a high proportion of all cases, 

especially in malignant colonic obstruction, which often requires emergency surgery or stent placement[2]. 

Additionally, acute intestinal diseases (rotavirus infection) are highly prevalent worldwide, further highlighting 

the importance of addressing acute intestinal obstruction and related conditions[3]. The treatment of intestinal 

obstruction includes a variety of strategies such as pharmacologic therapy, minimally invasive surgery, and 

biomodulation[4][5], all of which have shown favorable clinical outcomes. For example, lanreotide microspheres[6] 

and 5-HT4 receptor agonists[7] have demonstrated significant efficacy in relieving inoperable and postoperative 

intestinal obstruction, while colonic stenting[2] is superior to emergency surgery in acute malignant colonic 

obstruction. Minimally invasive techniques have demonstrated significant benefits in the treatment of intestinal 

obstruction, reducing the risk of postoperative complications and improving long-term prognosis. Studies have 

shown that minimally invasive surgery can reduce the incidence of intestinal obstruction in duodenal obstruction, 

small bowel obstruction associated with colon cancer, and diaphragmatic hernia repair [8]~[10]. In addition, 

minimally invasive techniques have been used in the treatment of acute superior mesenteric artery 

obstruction[11]and malignant colonic obstruction[12], further confirming their safety and efficacy in complex 

cases. Catheters for intestinal obstruction are effective in relieving intestinal pressure through mechanical 

evacuation or drainage, buying time for subsequent treatment[13]. There are still many challenges in the 

performance of catheter materials, and the traditional catheter materials for the gastrointestinal tract are 

polyvinyl chloride (PVC) and polyurethane (PUA)[14]. There are many limitations including high friction[15], the 

risk of retention for long periods of time in complex environments such as plastid migration of PVC catheters 

that may trigger inflammatory reactions[16], and problems with biocompatibility[17], which may cause patient 

discomfort and complications. These issues limit the the effectiveness of catheter technology. The key to clinical 

care is early diagnosis and timely intervention[18]. 

To overcome the limitations of traditional catheter materials, coating technology is widely used to 

modify the catheter surface. Hydrogel coatings have become an important direction for catheter modification 

due to their excellent hydrophilicity and low friction, antimicrobial properties, biocompatibility and 

modifiability, self-healing, and temperature-sensitivity[19]~[24]. Natural polymers (chitosan[25], dopamine[26][27] and 

sodium alginate[28]~[30]), are widely used for the preparation of hydrogel coatings due to their good 

biocompatibility, degradability and sustainability. Compared with conventional synthetic materials, natural 

polymer-based hydrogels can significantly reduce friction during catheter insertion while improving the 

lubricity and acid resistance of the material [31][32].  
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Figure 1. Schematic of an intestinal obstruction catheter entering the gastrointestinal tract 

 

II. Double Network Hydrogels 

Double Network Hydrogels (DNHs)[33] are composites consisting of two interconnected networks, 

whose unique structure confers excellent mechanical properties (e.g., high strength and toughness)[35]~[37]. 

Compared to conventional single network hydrogels, DNHs show significant advantages in acid resistance[38], 

low swelling properties[39] and lubricity, which show significant advantages. These properties make it an ideal 

candidate for catheter coatings for intestinal obstruction. 

 

2.1. Classification of natural hydrogels 

Chitosan has good bioactivity and utilizes charged antimicrobial properties[40]. It is commonly used to 

promote tissue healing and anti-infective therapy[41][42]. Gelatin is derived from the degradation of collagen[43], 

which has excellent biocompatibility and promotes cell growth[44][45]. Sodium alginate, an anionic 

polysaccharide, is easily formed into gels, is non-toxic to cells, and is suitable for use in drug delivery systems 

and trauma dressings[46][47]. Cellulose, one of the most abundant renewable resources on earth, provides good 

mechanical support and can be modified to suit different application scenarios[48][49]. Hyaluronic acid, which 

possesses excellent moisturizing ability and improves lubrication[50], is widely used in medical applications such 

as ophthalmic surgery and joint injections[51].  

 

Table 1. Applications of natural polymers. 
Polymer Applications Key Data 

Chitosan Tissue repair, anti-infection[52] Accelerates healing by 74.46%[53] 

Gelatin Drug carriers[54] Drug release efficiency: 84.4%[55] 

Sodium alginate Drug carriers, wound dressings 
Solubilisation of insoluble drugs, anticancer drug 
delivery, gene and immunotherapy[56]~[58] 

Cellulose Scaffolds, structural reinforcement Porous aerogels 96% porosity[59][60] 

Hyaluronic acid Lubricants, fillers Cof ≈ 0.001[61] 

 

2.2. Synthesis strategies for dual network hydrogels 

In order to prepare high-performance dual network hydrogels, several cross-linking techniques are 

commonly employed to achieve desired mechanical properties and functionality. These methods include, but are 

not limited to: physico-chemical hybrid cross-linking[62][63], one-pot methods[64], and reciprocal network 

cross-linking[65]. The primary network polymers provide the backbone[66] through covalent or physical 

cross-linking[67] , and the secondary networks such as polymer networks of polyacrylamides[68], polypyrroles[69] 

dissipate the energy. The design of composite bi-network hydrogels achieves significant optimization of 

properties through the synergistic interaction of different biomolecules (polysaccharides, proteins). For example, 

the synergistic combination of collagen and chitosan improves antimicrobial properties and 

cytocompatibility[70] , whereas hybridized networks of gelatin with other natural materials enhance mechanical 

strength and tunability through dynamic cross-linking strategies[71]. These designs typically employ a 

multilayered network construction strategy of physical entanglement, chemical cross-linking (covalent bonding, 

hydrogen bonding), and dynamic interactions (metal coordination, π-π stacking)[72]~[74]. For example, the 

interpenetrating network (IPN) structure forms dual cross-links via enzymatic or chemical triggering, allowing 

the material to obtain mechanical properties close to those of a natural tendon (rupture stress up to 23.5 MPa, 

fracture energy 210 MJ/m³) while maintaining a highwater content[75]. In addition, the introduction of 

biomimetic hierarchical structures (e.g., nanofibers-micropore composites) has allowed hydrogels to mimic the 

extracellular matrix. gels to mimic the mechanical properties of the extracellular matrix while realizing 

multifunctional integration such as controlled drug release and antimicrobial properties[76][77]. 
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III. Preparation, Design, and Evaluation System of Double Network Hydrogel Coatings 
To prepare double network hydrogel coatings with excellent performance, several techniques can be 

employed. According to Li and colleagues' research, immersion-crosslinking involves alternating soaking in 

CaCl₂  solution and sodium alginate/chitosan solutions to achieve stable double network structures[78]. Another 

approach by Li et al. utilizes photopolymerization, combining methacrylated hyaluronic acid (GelMA) with 

sodium alginate, which forms double networks through UV-initiated polymerization[79]. Surface grafting 

methods, as described by Zhang and coworkers, involve grafting hyaluronic acid onto substrates to enhance 

anti-fouling properties[80]. 

The mechanical performance of these coatings can be assessed through various metrics. Wang and 

associates investigated adhesion strength, abrasion resistance, and flexibility using standard testing 

methods[81]~[83]. Functionality evaluations include assessing lubricity, acid resistance, and swelling ratio. For 

instance, friction coefficients are measured according to ASTM D1894 standards using in vitro intestinal friction 

tests to evaluate coating lubricity [83]. Acid resistance is tested by exposing the coatings to simulated gastric 

fluids (pH = 1.2-3.5) and intestinal fluids (pH = 6.8), observing changes in mass and morphology[84]. The 

swelling ratio is determined under physiological conditions over 24 hours, with the target being less than 5%[85]. 

Biological evaluations are crucial for ensuring the safety and efficacy of these coatings. Yang and 

colleagues conducted cytotoxicity tests using intestinal epithelial cells such as Caco-2 to assess 

biocompatibility[86]. Immunomodulatory effects are also evaluated, with studies by Hasani-Sadrabadi and 

co-workers providing insights into immune responses[87]. In vivo degradation behavior and inflammatory 

reactions have been further examined in animal models, confirming the safety and effectiveness of the 

coatings[88][89]. 

 

3.1. Functionalized design for acid resistance 

When designing the dual network hydrogel coating for intestinal obstruction catheters the challenge of 

acidic conditions (pH=1.5-3.5) in the intestinal environment was taken into account for the stability of the 

material, in order to improve the adaptability of the material in acidic environments the following strategy can 

be adopted Chitosan undergoes protonation under acidic conditions thus forming a more stable network 

structure this property makes chitosan becomes an ideal acid-resistant material according to Nie et al[90]. By 

introducing pH-sensitive groups hydrogels can be made to exhibit different swelling behaviors in different pH 

environments thus enhancing their stability in acidic environments as noted by Protsak and Morozov[91]. 

Restriction of chain segment movement adjustment of crosslinker density as well as hydrophobic modification 

to regulate the crosslink density reduces the swelling of the material under acidic conditions maintaining its 

mechanical properties and stability[92]~[94]. 

 

3.2. Low Swellability 

Swellability has a significant impact on the mechanical strength and lubricity of the catheter increasing 

the risk of clinical complications such as infection[95] or thrombosis[96] and therefore needs to be optimized to 

ensure efficient catheter function. By increasing the number of cross-linking points effectively reduces the 

swelling of the hydrogel improves its mechanical strength as demonstrated by Nakano et al[97] High-density 

covalent cross-linking or dynamic physical cross-linking like hydrophobic interactions ligand bonding restricts 

the penetration of water molecules. Polyacrylamide/poly(vinyl alcohol) (PVA/PAAc-N+) porous hydrogels 

achieve ultra-low swelling (0.29) by forming a stabilizing network by phase separation-solvent exchange 

method[98]. Enhancement of hydrogel network density by adjusting cross-linking agents such as HMBA content 

limits water absorption and swelling PVA-PAH bi-network hydrogels achieved low swelling rate volume change 

of less than 5% by optimizing the ratio of cross-linking agents[99]. Addition of delignin can significantly reduce 

the swelling rate of polyacrylamide hydrogels while enhancing the overall mechanical properties of the 

material[100]. Addition of hydrophobic polymers such as polyvinyl alcohol can reduce the swelling of hydrogels 

without affecting the biocompatibility Varadarajan et al. discussed[101]. Nanofillers such as cellulose nanocrystals 

(CNCs) can significantly reduce the swelling rate of hydrogels according to the literature[102] Dynamic 

crosslinked networks can automatically adjust the network structure to achieve adaptive shrinkage to further 

reduce swelling when external conditions change[103][104]. 

 

3.3. Enhanced lubrication 

Lubricity is critical for catheter insertion and patient comfort and a variety of strategies can be used to 

enhance lubricity Many polymeric materials have good hydrophilic properties and can be used to coat catheters 

to improve lubricity PAM[105], PEG, the natural polymer HA[106], and hydrophobic polymer coatings can provide 

additional lubrication[107]. Reversible lubrication layers formed by cross-linking sodium alginate with Ca²⁺  have 

strong adhesion and can dynamically adjust lubrication properties according to changes in ionic concentration 

suitable for complex physiological environments in the intestinal tract[108][109]. As shown in Fig. 3, the gradient 
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network design simulates the lubrication characteristics of biological soft tissues to obtain a lubrication effect 

closer to the natural state[110]. By modulating the coating porosity and surface morphology e.g. 3D porous 

structure hydrogel can form fluid lubrication layer-like self-assembly technology prepared hydrogel film under 

acidic conditions due to pore shrinkage to enhance the surface smoothness and reduce the friction resistance[111]. 

 
Fig.3. Schematic illustration for the resemblance of our conformal hydrogel coating with the mucosa[109]. 

 

IV. Clinical Applications and Case Studies 

In recent years, multifunctional integrated coatings have shown significant potential for clinical 

applications in the development of catheters for intestinal obstruction. It was found that chitosan and 

polyacrylamide are often combined through a dual network (DN) structure, in which polyacrylamide provides a 

high-strength backbone (e.g., shear modulus of about 10 Pa and tensile strength of about 100 kPa), while 

chitosan enhances the toughness through physical cross-linking (hydrogen bonding, ionic bonding) or chemical 

cross-linking (Schiff base bonding) to enable the hydrogel to reach a fracture elongation of more than 

1,000%[112][113]. The study The effectiveness of the coating in preventing microbial adhesion and reducing 

friction during surgical manipulation was verified in an animal model. This coating provides additional safety 

and ease of handling for medical devices and lays the foundation for clinical applications[114].  

Acid-resistant hydrogel coatings for artificial joints or catheters can reduce corrosion by acidic body 

fluids and decrease friction-induced inflammatory reactions[115][116]; hydrogels containing dynamic bonds (e.g., 

hydrogen bonding, coordination bonding) can self-repair after damage and maintain lubricating properties. For 

example, hydrogels based on tannic acid-modified cellulose (TA@CNC) can still rapidly self-heal in acidic 

environments, ensuring long-term lubrication[117][118].  

As shown in Fig. 4 polydimethylsiloxane (PDMS) modified by hydrogel coating significantly reduces 

the contact angle and enhances the hydrophilicity, which inhibits bacterial (e.g., Escherichia coli and 

Staphylococcus aureus) adherence[119]. In addition a drug-loaded chitosan-polylactone (PLC) bi-networked 

hydrogel coating, which achieves targeted drug release of 5-fluorouracil by pH modulation. The results of the 

study showed that the coating had significant advantages in pH modulation of drug release and provided new 

ideas for the treatment of intestinal neoplastic obstruction[120][121].  

 
Fig.4. Cell viability on the surfaces of bare poly(dimethylsiloxane) PDMS and PDMS modified with 

gelatin and hydrogel composed of CHO–HA/Gel–NH2. (The scale bar represents 100 µm.)[118].  
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V. Conclusion and Perspectives 

Natural polymer-based double network (DN) hydrogel coatings demonstrate significant potential for 

improving intestinal obstruction catheters by providing acid resistance, low swelling, and enhanced lubricity. 

Innovations such as temperature-responsive hydrogels, enabled by hydrogen-bonded networks incorporating 

glycerol, exhibit enhanced mechanical stability over 14 days and enable thermally triggered antimicrobial 

release[122]. Light-responsive systems, such as PAM/agarose/TA-B hydrogels, combine antibacterial activity with 

optical and conductive properties, offering potential for real-time monitoring via wearable sensors[123]. However, 

challenges persist, including degradation in complex gastrointestinal environments due to enzymatic corrosion, 

mechanical erosion, and microbial colonization[124] as well as the need for disease-specific adaptations to 

balance properties like hardness and lubricity across diverse etiologies[125]. Scalability and standardization for 

clinical translation remain critical barriers[126]. Future work should focus on optimizing crosslinking strategies 

(e.g., light-initiated polymerization), integrating smart materials with technologies like magnetic robotics or 

optogenetics, and fostering interdisciplinary collaboration to address complex gastrointestinal 

pathologies[127][128]. These advancements could revolutionize catheter design, enhancing patient safety and 

treatment outcomes while paving the way for broader applications in gastrointestinal medicine. 
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