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Abstract— Al has become essential in dermatology, where deep learning models like CNNs and Vision
Transformers achieve strong performance in classifying skin diseases using large, well-established datasets. At
the same time, generative models such as GANs, StyleGAN2, and Diffusion Models can now create highly realistic
synthetic skin images, raising concerns about detection reliability and medical image authenticity. Comparing
these discriminative and generative approaches is therefore important to understand their strengths, limitations,
and impact on clinical settings. Developing a multi-task learning detector—capable of predicting disease type,
skin tone, and severity—is relevant because it reflects real diagnostic needs and helps evaluate robustness across
diverse conditions. The observed performance drop when the detector is exposed to high-fidelity synthetic images
is consistent with recent findings that diffusion models can closely mimic real dermatology images, challenging
existing detection systems. Finally, the emphasis on ethical standards, fairness, and forensic methods is
warranted, as synthetic medical data can influence diagnostic accuracy, bias, and trust in Al-assisted healthcare.

Keywords— Artificial Intelligence and Deep Learning capture the overall methodological foundation of the
work, while Generative Adversarial Networks (GANs) and Diffusion Models represent the generative techniques
responsible for producing synthetic dermatology images. Vision Transformers relate to modern discriminative
models used for lesion classification. Synthetic Data is central to the study’s focus on evaluating detectors against
Al-generated images. Dermatology identifies the specific medical domain of application. Detection
Algorithms and Digital Forensics are essential because the research investigates how well Al systems can
distinguish real skin images from generated ones and highlights the need for reliable forensic methods. Together,
these keywords accurately reflect the paper’s technical focus, medical relevance, and forensic implications.

Date of Submission: 07-12-2025 Date of acceptance: 19-12-2025

I.  INTRODUCTION

Artificial Intelligence is fundamentally changing dermatology, enabling skin analysis that is faster,
automated, and more precise than ever before. Deep learning models can now detect skin cancers and other
conditions with an accuracy that rivals expert dermatologists [1], [2]. At the same time, a new wave of "generative
AI" has unlocked the ability to create highly realistic synthetic skin images, which are valuable for research,
training, and cosmetic simulation.

However, this powerful advancement comes with a significant catch—a dual-use dilemma. The very
technology that can enhance diagnostic training by generating synthetic data can also be misused to create falsified
or manipulated medical images [3], [9]..This has sparked what we call a "detection versus design arms race," where
Al systems are in a constant competition: one side strives to create ever-more realistic synthetic content, while the
other works to detect it with greater precision[6], [10].

.This paper directly explores this "arms race" by comparing two sides of Al Al work in dermatology
mainly falls into two categories: systems that detect and classify skin conditions, and systems that generate or
enhance skin images. These two areas form the basis of the comparison discussed in this paper.

We examine their core architectures, the data they use, how they are evaluated, and the crucial ethical
implications of their use.

The key contributions of this work include providing a clear comparison between Al models that generate
skin images and those that detect diseases, analyzing the performance trade-offs between these two approaches,
and highlighting the ethical and security concerns that arise from the use of synthetic medical data.

WWwWW.ijres.org 145 | Page



Detection vs Design: Comparing Al-Generated Content in Dermatology

II. RELATED WORK

Progress in automated dermatology has been fueled by publicly available, well-labeled datasets and
standardized community benchmarks. The HAM10000 collection is a cornerstone in this field—a widely-used,
multi-source dataset containing over 10,000 labeled images of common pigmented skin lesions[1]. Researchers use
it both to train diagnostic models and to analyze fairness across different patient subgroups.

Similarly, the ISIC archive and its annual challenges have been instrumental. They provide standardized
tasks—Ilike segmenting lesions, detecting attributes, and classifying diseases [2]—along with public leaderboards.
These resources act as essential baselines, allowing for fair and reproducible comparisons between different Al
models.

Platforms like Kaggle also play a key role, hosting mirrors and aggregated versions of these datasets (such
as ISIC-2019 and HAM 10000 variants), which enable researchers to rapidly experiment and build upon established
baselines [1], [2].

The evolution of Al detection systems in dermatology has seen remarkable progress. Early approaches
relied on Convolutional Neural Networks (CNNs) like VGG and ResNet, which achieved groundbreaking,
dermatologist-level accuracy in classifying skin lesions [1], [2].

This was followed by more efficient architectures like EfficientNet, which delivered better performance
with fewer parameters, making them practical for real-world clinical systems. Most recently, Vision Transformers
(ViTs) and hybrid CNN-Transformer models have emerged. These models can capture broader contextual
information in images and have demonstrated performance that matches or even surpasses traditional CNNs on
several benchmarks.

This rapid architectural evolution makes it crucial to systematically compare different detector types—
from classic CNNs to modern Transformers—to understand their strengths and weaknesses in both standard
classification and robustness testing [10].

On the other side of the arms race, the technology for creating synthetic dermatology images has advanced
at an incredible pace.

The journey began with GANs (Generative Adversarial Networks). Early models like DermGAN proved
that Al could generate clinically plausible skin lesions, with control over type, position, and skin tone. In fact, these
early fakes were so convincing that clinicians in blinded studies sometimes couldn't tell them apart from real patient
images [3].

The next leap came with StyleGAN2, which significantly boosted image resolution and fidelity. This
allowed for the creation of highly detailed skin textures and lesions, opening up new possibilities for cosmetic
simulation and high-quality data augmentation [4].

Most recently, Diffusion Models have taken center stage. These models, including fine-tuned versions
like LesionGen, now produce synthetic images with superior diversity and realism, often outperforming earlier
GANsSs on technical metrics [5], [6]. This rapid progress on the "design" side has dramatically intensified the arms
race. Detection systems trained to spot older GAN-based fakes are often completely fooled by these new, high-
fidelity outputs from diffusion models.

Synthetic dermatology images are useful in several ways. They help balance datasets by adding examples
of rare conditions, increase dataset size without risking patient privacy, and provide realistic visuals for medical
training. Research also shows that when high-quality synthetic images are included, Al models often perform better,
especially for skin conditions that are not well represented in real clinical data [3], [6].

However, this powerful capability comes with serious risks—a true double-edged sword. The same
technology that creates helpful training data can also be misused to fabricate clinical evidence, mislead diagnoses,
or inadvertently bias medical Al systems if synthetic artifacts introduce hidden patterns. As synthetic images
become more realistic, telling them apart from genuine medical images becomes increasingly difficult. This
growing concern has led to urgent calls for ethical guidelines, traceability systems, and detailed metadata tracking
to ensure synthetic data is used responsibly in healthcare settings [9].

A well-known and persistent problem in dermatology Al is that most datasets heavily under-represent
people with darker skin tones. This leads to Al models that are less accurate for minority populations, creating
unfair and potentially dangerous diagnostic disparities [6].

To combat this, researchers have turned to synthetic generation as a potential solution. By specifically
guiding Al models to create images of conditions on darker skin, tools like S-SYNTH and other controlled pipelines
aim to build more balanced and representative datasets [6].

However, this approach comes with its own challenges. While synthetic augmentation can help reduce
performance gaps, it's not a perfect fix. If the Al-generated images don't perfectly match the complex appearance
of real clinical cases, they can introduce new problems [6], [9]. Therefore, any fairness intervention using synthetic
data must be carefully validated by dermatologists and rigorously tested to ensure it truly improves real-world
clinical reliability.
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As Al-generated images become more realistic, researchers are fighting back with sophisticated forensic
tools designed to spot the tiny traces that distinguish synthetic images from real ones. These detection strategies
typically fall into three categories:

Detection methods in dermatology for spotting synthetic images generally fall into three categories.
Model-based detectors are trained specifically to identify whether an image is real or Al-generated by analyzing
deep visual features [9], [10]. Activation-space forensics focuses on finding subtle statistical traces left during
image generation, including artifacts or unusual frequency patterns that are not visible to the human eye [9]. Finally,
explainability-centered checks use tools such as Grad-CAM to visualize where a model is focusing its attention
[10]; synthetic images often lead to scattered or unusual focus patterns compared to real lesions.

The most robust strategy combines all these forensic clues into a single hybrid detector [9], [10]. However,
this is a constant battle—as soon as a new detection method emerges, the generators can be optimized to evade it.
This cycle of improvement and countermeasure is the very heart of the ongoing "design vs. detection" arms race.
To fairly compare different Al models, the field relies on standardized metrics and benchmarks.

For detection models, standard performance measures include Accuracy, Precision, Recall, F1-Score, and AUC-
ROC. These metrics collectively tell us how reliable a diagnostic Al is [1], [2].

For generative models, the most common quality metric is the Frechet Inception Distance (FID), which quantifies
how realistic and diverse the generated images are. A lower FID score means the synthetic images are closer to the
real thing [4]-[6].

In medical applications, the ultimate test for synthetic images is often a blinded expert review (a kind of "Turing
test" for doctors) and checking whether they actually improve the performance of diagnostic Al systems when used
for training [1], [2].

To ensure all comparisons are fair and reproducible, the community uses public benchmarks like the ISIC
Challenge and maintains shared repositories for generative models. These resources provide common ground for
researchers to measure progress and compare results [2], [4], [5].

H. Summary of Gaps and How the Present Work Differs

Although significant progress has been made in both diagnosing and generating dermatology images,
our review highlights three important gaps that remain unaddressed. First, most dermatology detectors are
evaluated only on real images and are not rigorously tested against the latest, highly realistic synthetic images
produced by modern diffusion models [4]-[6]. Second, while synthetic data is often suggested as a solution to
skin-tone bias, many studies do not fully examine the trade-offs involved, which can introduce new challenges.
Finally, current forensic techniques for detecting synthetic images are still limited and lack strong, combined
strategies capable of identifying the newest and most convincing Al-generated fakes [5], [6].

Our study directly addresses these gaps by testing detectors against a wide range of Al-generated
images—from early GAN-based models to the latest diffusion models—allowing us to evaluate their robustness
in realistic scenarios. We also examine how detection performance changes as the proportion of synthetic data
increases, providing a clearer understanding of its impact on reliability. In addition, we conduct thorough fairness
evaluations across all skin tones to ensure that any improvements benefit all groups equally. The following section
describes the multi-task framework and experiments we developed to meet these objectives [9], [10].

IIL METHODOLOGY

The core goal of this study is to understand the dynamic interplay between Al systems that detect skin
conditions and those that generate synthetic skin images. To achieve this, we developed a versatile multi-task
learning (MTL) dermatology detector and rigorously tested its resilience against a wide spectrum of synthetic
images—from those created by earlier GANs to the most advanced outputs from StyleGAN2 and Diffusion
Models.

Our multi-task learning (MTL) detector is built to perform three important clinical tasks simultaneously:
it classifies the skin condition, predicts the Fitzpatrick skin tone, and estimates the severity of the lesion.

A single, efficient backbone network (EfficientNetV2-B0) serves as the foundation, extracting features
that are shared across all tasks. We then systematically challenged this detector with synthetic datasets to measure
its robustness against progressively more realistic Al-generated imagery.

For the real dermatology datasets, we trained and evaluated our detection models using two well-
established public sources. The first is HAM10000, a widely used dermatoscopic image collection that includes
10,015 images representing seven common types of pigmented skin lesions. Its diversity—coming from multiple
sources—makes it a strong benchmark for classification research. The second dataset is ISIC 2019, a large-scale
challenge dataset containing over 25,000 labeled dermoscopic images. It offers a standardized training and
evaluation protocol with reliable ground-truth diagnoses, making it an essential resource for building and testing
dermatology Al systems.
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To ensure our results were robust and prevent data leakage, we split the data by patient. The real datasets were
divided into 70% for training, 15% for validation, and 15% for testing.

To thoroughly evaluate how well our system handles synthetic images, we used data generated from
three major families of Al models. The first was DermGAN, which creates clinical dermatology images based on
specific lesion features. The second was StyleGAN2-ADA, a high-fidelity generator known for producing images
with detailed and realistic skin textures. Finally, we included fine-tuned diffusion models such as Stable Diffusion
and LesionGen, which represent the current state of the art in generating highly realistic and diverse
dermatological imagery.

We generated these synthetic images in a class-balanced manner. To systematically measure their
impact, we created mixed datasets with varying proportions of synthetic content: 0%, 25%, 50%, 75%, and 100%
synthetic images. This allowed us to precisely evaluate how increasing exposure to Al-generated data affects
model robustness.

To maintain consistency across the dataset, all images were processed through a standardized preparation pipeline.
Each image was first resized to 224x224 pixels and then normalized using standard ImageNet statistics to stabilize

training, following the formula
[ —[0.485,0.456,0.406]

I =
morm = 7710.229,0.224,0.225]

During training, we applied several data augmentation techniques to improve the model’s ability to
generalize. These included random rotations of up to £15°, random cropping of 90—100% of the original image
area, horizontal flipping, brightness and contrast adjustments, and the addition of slight Gaussian noise. Together,
these steps helped the model become more robust to common variations in real-world dermatology images.

This augmentation process is crucial as it helps the model generalize better to new, unseen data and
prevents it from overfitting to specific skin textures or lighting conditions found in the training set.

We selected EfficientNetV2-B0 as the core of our model because it offers an excellent balance of
computational efficiency and high accuracy. This network processes the input image and extracts its fundamental
features.

A final step, called Global Average Pooling (GAP), then condenses these features into a compact, 1280-
dimensional vector. This vector serves as a shared knowledge base for all the subsequent tasks:

Fsharea = GAP(CNNg(Inorm))

This component is responsible for diagnosing the skin condition. It uses a simple neural network structure
that takes the shared features and produces a classification across ten different dermatological conditions. The
network employs dropout and batch normalization to ensure stable training and prevent overfitting. The model is
trained using standard cross-entropy loss, which effectively measures how well the predicted diagnoses match the
actual conditions.

Loss:

N 10
Leona = _Z yi,cl()g (yi,c)
i=1 c=1

This part of the model classifies the skin tone into one of the six Fitzpatrick types. It uses a smaller neural
network structure with appropriate regularization to ensure reliable predictions. The model is trained using cross-
entropy loss to accurately match the predicted skin tones with their true classifications.
Loss:
N 6
Lione == D yidog (i)
—

i t=1

This component estimates the severity of the condition on a continuous scale from 0 to 2. It uses a
regression-based approach with mean squared error loss to predict accurate severity scores. The architecture
includes appropriate regularization to maintain prediction stability across different cases.
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Loss:
N
1 5\2
Lgey ZNZI (Yi _YL')
=

The total loss combines all task losses with empirical weights:
Liotar = @Lcona + BLtone + VLsev

The weights for the combined loss function were determined empirically, assigning oo = 1.0, B = 0.5, and y = 0.8.
This weighting scheme prioritizes diagnostic accuracy as the main objective while still maintaining balanced
learning for skin-tone classification and severity estimation.

For training, we used the AdamW optimizer with a weight decay of 0.01 and applied a cosine learning rate
schedule that gradually decreased the rate from 1x10—41 \times 10"{-4}1x10—4 to 1x10—61 \times 10"{-
6} 1x10—6. The model was trained with a batch size of 32 for approximately 80 to 120 epochs, and training was
stopped early based on validation AUC performance. This setup provided a good balance between efficiency and
accuracy, allowing smooth convergence while reducing the risk of overfitting.

Three generative pipelines were evaluated:

For the GAN-based generation pipeline, we used DermGAN, which creates synthetic dermatology images by
conditioning on lesion boundaries, lesion class, and skin tone. It is trained using an adversarial setup with a
PatchGAN discriminator and produces 256x256 synthetic dermoscopic images.

The second generative pipeline used in our study was StyleGAN2-ADA. This model incorporates adaptive
discriminator augmentation to improve training stability and is capable of generating high-resolution images up
to 1024x1024 pixels. Its ability to produce fine-grained details makes it especially effective for simulating realistic
skin textures, which is valuable in cosmetic dermatology applications.

The third generative pipeline consisted of diffusion-based models, including fine-tuned versions of Stable
Diffusion and LesionGen. These models support text- and attribute-conditioned sampling, allowing more
controlled and flexible image generation. They achieved greater diversity and lower FID scores compared to
GAN-based methods, and produced highly realistic features such as pigmentation patterns, lesion borders, and
smooth texture transitions. The quality of the generated images was evaluated using the Fréchet Inception Distance
(FID) metric and, when possible, reviewed by dermatologists for additional validation.

For classification and detection, we evaluated the model using standard metrics such as accuracy, precision, recall,
Fl-score, and AUC-ROC. These metrics were calculated on both the real-only test sets and the evaluation sets
that included synthetic images, allowing us to assess performance across different data conditions.

For the regression task, we evaluated performance using three standard metrics: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and the R? coefficient. These measures helped quantify how accurately the
model predicted continuous severity scores.

For evaluating generative quality, we used the Fréchet Inception Distance (FID), which measures how closely the
synthetic images resemble real ones. Lower FID scores indicate higher realism and better diversity in the generated
outputs.

To ensure our model performed equitably across all skin tones, we evaluated its performance separately for each
Fitzpatrick skin type (I-VI). We measured fairness using a performance disparity metric, defined as the maximum
accuracy difference between any two skin types:

Disparity = max |Accuracyu - Accuracyp|

We enforced a strict target disparity of less than 5%. Additionally, we analyzed whether using synthetic images
from GANSs or diffusion models helped improve fairness for underrepresented skin tones in our dataset.

Gradient-weighted Class Activation Mapping (Grad-CAM) was applied to visualize critical regions influencing
model decisions. Feature-map importances were computed as:

X 12 Z ay°
af == —
Z i ; aAi]-
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The final saliency map:
GradCAM = ReLU(Z aka®)
k

We used Grad-CAM visualizations to understand where our model was focusing when making decisions. By
comparing attention patterns between real and synthetic images, we could identify unusual focus areas that might
reveal the presence of synthetic artifacts.

To evaluate “design vs detection” resilience:

To assess the system’s resilience in the “design versus detection” setting, we evaluated each detector under
different types of test data. Performance was measured on real-only test sets to establish a baseline, on synthetic-
only sets to understand pure detection capability, and on mixed sets containing varying proportions of synthetic
images (25%, 50%, and 75%). This setup allowed us to analyze how detection reliability changes as the influence
of increasingly sophisticated generative models grows.

We also performed generator-specific stress testing by evaluating the detectors separately on images created by
GAN:s, StyleGAN2, and diffusion models. This targeted analysis allowed us to determine which type of synthetic
imagery posed the greatest challenge for the detection systems and where the models were most likely to struggle.

We carried out a series of ablation studies to validate our design choices. These experiments examined how
different proportions of synthetic data influence performance, compared alternative backbone architectures such
as EfficientNetV2, ResNet-50, and ViT-B/16, and explored the impact of adjusting the loss weights (a,f,y)(\alpha,
\beta, \gamma)(a.,f3,y) in the multi-task learning setup. We also evaluated how data augmentation affects fairness
across skin tones and compared the usefulness of GAN, StyleGAN2, and diffusion-based synthetic images for
augmentation. Each study was assessed using AUC, F1-score, fairness disparity, and FID to ensure a thorough
and reliable analysis.

IV. RESULTS AND DISCUSSION
In this section, we present the performance of our multi-task dermatology model across its three core
functions: classifying skin conditions, predicting skin tone, and assessing severity. We then test the model's
robustness against synthetic images from GAN [3], StyleGAN?2 [4], and diffusion models [5], [6], analyzing how
increasing amounts of Al-generated content impact diagnostic reliability. Finally, we conduct a fairness evaluation
across Fitzpatrick skin types to ensure equitable performance [6]. The following sections detail our key findings.

Model Type Architecture | Dataset Accuracy | 1- ucC-
(%) Score | ROC
CNN (Detection) ResNet-50 HAM10000 | 4.2 0.91 0.96
ViT (Detection) ViT-B/16 ISIC 2019 95.8 0.93 0.97
GAN (Design) StyleGAN2 DermGAN FID =| - -
18.4
Diffusion Model Stable S-SYNTH FID =1 - -
Diffusion 11.7
Fine-tuned
Hybrid Detector | Custom Real + | 875 0.84 0.88
(CNN+Transformer) Synthetc
Mix

Table I. Performance Comparison of Detection and Generative Models Across Architectures and Datasets

Our analysis revealed how synthetic data influences diagnostic performance. As we increased the
proportion of Al-generated training images from GAN, StyleGAN2, and diffusion models, we observed a clear
pattern: the model's diagnostic reliability (measured by macro-AUC) varied significantly based on both the quantity
and quality of synthetic data [3]-[6]. Figure 1 illustrates this relationship, demonstrating how our detector
maintains—or in some cases loses—robustness when faced with increasingly realistic synthetic inputs.
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Fig. 1. Macro-AUC under varying synthetic data proportions.

We measured the realism of synthetic images using Fréchet Inception Distance (FID), where lower scores indicate
images that are more realistic and diverse. Our results confirmed that diffusion models achieved significantly lower
FID scores than both GANs and StyleGAN?2, aligning with previous research showing diffusion models' superior
performance in generating medical imagery [4]-[6].

FID
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DermGAN StyleGAN2 Diffusion
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Fig. 2. FID comparison between GAN, StyleGAN2, and Diffusion generators.

We assessed fairness by measuring diagnostic accuracy for each Fitzpatrick skin type. Figure 3 shows that
performance disparities across skin tones decreased after we added targeted synthetic augmentation. These results
confirm previous findings that synthetic data can help address performance gaps for underrepresented skin tones,
though it requires careful implementation to avoid introducing new biases [6].

Disparity (%)
15
10
5 -
0

Before After

Fig. 3. Accuracy disparity across skin tones before and after augmentation.

We calculated per-class F1 scores to understand how the model performs for each specific skin condition. This
analysis helps identify which diseases our model detects reliably and where it struggles, following established
evaluation methods from leading dermatology Al research [1], [2].
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Fig. 4. Per-class F1 scores across 10 dermatological conditions.

We measured accuracy separately for each of the six Fitzpatrick skin types. The results reveal clear performance
variations across different skin tones, highlighting the well-documented disparities in dermatology Al systems and
underscoring the critical need for fairness-focused evaluation practices[6].
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Fig. 5. Tone-wise accuracy across Fitzpatrick types I-V1.

V. CONCLUSION
This research explored the competitive dynamics between Al systems that detect skin conditions and
those that generate synthetic imagery—a "design versus detection" arms race that is rapidly evolving in
dermatology[3]-[6], [9], [10]. Our multi-task model proved effective across three key clinical areas—diagnosing
conditions, classifying skin tones, and assessing severity—achieving strong overall performance. However, we
also confirmed the presence of performance disparities across different skin tones, with reduced accuracy on
darker skin, echoing known challenges with dataset diversity in the field [6].

Critically, we found that the latest generative Al, particularly diffusion models, creates synthetic skin
images of remarkable quality [4]-[6]. While this technology offers promising ways to enhance datasets and
improve fairness, it also poses a significant challenge: these high-quality fakes can easily deceive current detection
systems. This reveals a vulnerability in diagnostic Al that is trained only on real images [5], [9], [10].

Our findings point to an urgent need for more robust solutions. The future of trustworthy dermatology
Al depends on developing better forensic detectors, creating fairer data augmentation methods, and establishing
clearer evaluation standards [9], [10]. As the technology advances, maintaining a careful balance between
innovation and ethical responsibility will be crucial for ensuring these powerful tools benefit all patients safely
and equitably. [2], [6]
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