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Abstract 
Medical image segmentation models often suffer significant performance degradation during deployment due to 

distributional differences between the training source domain and the clinical target domain. Single-Source 

Domain Generalization (SSDG) aims to train a model robust to any unknown domain using only data from a 

single source domain, possessing significant clinical value. Existing normalization-based SSDG methods typically 

rely on a single or fixed normalization layer, making it difficult to adequately adapt to complex and varied domain 

shifts and failing to achieve an optimal balance between feature style stripping and semantic content preservation. 

To address this, this paper proposes a novel multi-normalization framework. The core contributions of this 

framework are twofold: first, it designs a multi-normalization layer structure that integrates diverse normalization 

operations, which can be dynamically combined during training to learn more domain-invariant deep feature 

representations; second, it introduces a test-time adaptive mechanism that can select the most suitable 

normalization computation path in real time based on the features of the input samples, thereby achieving 

immediate adaptation to unknown target domains. Comprehensive experiments on multiple publicly available 

cross-domain medical image segmentation datasets demonstrate that our proposed method significantly 

outperforms existing mainstream SSDG methods, validating the effectiveness of the proposed framework in 

improving model generalization performance and deployment robustness. 
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I. INTRODUCTION 

In the field of medical image segmentation, while deep neural network models have achieved remarkable 

results, their performance often heavily relies on the assumption that training and testing data follow the same 

distribution. However, in actual clinical applications, medical image data from different hospitals, scanning 

devices, imaging protocols, or patient groups typically exhibit significant inter-domain differences, known as 

"domain shift." This mismatch in data distribution leads to a sharp decline in the model's generalization ability in 

unknown target domains, severely limiting the model's clinical deployment and application prospects. 

 
Figure1: Cross-domain medical image segmentation diagram 

 

To address this challenge, research aimed at improving the cross-domain performance of models has 

evolved along two main technical routes: domain adaptation[1,2] and domain generalization[3,4]. Domain 

adaptation (DA) primarily focuses on adapting the knowledge of the source domain model to a specific target 

domain using partially or fully unlabeled target domain data during the training phase. Unsupervised domain 
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adaptation (UDA) is a hot research topic in medical image analysis, assuming that unlabeled target domain 

samples are available during training. Mainstream methods align the distributions of the two domains by 

minimizing the feature distribution differences between the source and target domains or by using generative 

models to perform image or feature-level domain transformations. Although UDA has achieved significant results, 

its reliance on the assumption of target domain data availability means its generalization ability remains limited 

when dealing with unknown domains that are completely unseen during training. 

Another approach is Domain Generalization (DG), which aims for a more thorough solution—training a 

model using only one or more source domain data so that it can directly generalize to any unknown target domain. 

Multi-Source Domain Generalization (MSDG) methods utilize labeled source domain data from multiple 

disparate distributions, providing a natural diversity foundation for the model to learn domain-invariant features. 

However, collecting and labeling multiple high-quality, diverse medical image domains is extremely costly and 

impractical in many real-world clinical scenarios. 

In contrast, Single-Source Domain Generalization (SSDG) has become a more challenging yet practical 

research direction due to its more stringent and realistic setting of limited data (training using only a single source 

domain). Recently, feature normalization-based methods have shown great potential in SSDG. The core idea of 

these methods is to implicitly remove domain-related style information from features by normalizing the statistics 

of intermediate feature maps in the network, thereby encouraging the model to learn more domain-invariant 

semantic representations. However, current mainstream segmentation networks typically employ a single, fixed 

normalization layer (such as batch normalization). This "single normalization" paradigm has inherent limitations: 

first, fixed normalization statistics are difficult to adequately adapt to the complex and varied domain shift patterns 

in medical images; second, a single operation cannot achieve an optimal balance between feature style removal 

and discriminative semantic preservation, potentially leading to over-normalization or under-normalization, thus 

impairing the model's generalization performance. 

In this paper, we propose a multi-normalization framework, aiming to promote the development of SSDG 

in medical image segmentation from the following two aspects: 

1. A novel multi-normalization layer structure: We designed a modular normalization unit that 

integrates a set of normalization operations with distinct characteristics. This unit adaptively selects and combines 

the most suitable normalization strategies for feature maps at different levels and locations in the network. This 

structure allows the network to simulate diverse feature statistics in a single forward propagation, thereby more 

thoroughly stripping away domain-specific styles while preserving discriminative semantic structure. 

2. Test-Time Adaptive Normalization Path Selection: Unlike the traditional paradigm of fixing 

network behavior after training, we propose a lightweight test-time adaptive mechanism. This mechanism can 

select the optimal normalization computation path for each test sample in real time based on the shallow features 

of the input image. This not only achieves immediate adaptation to features of unknown target domains, but also 

enables the model to make the best trade-off between "style invariance" and "content discriminative" according 

to the characteristics of different inputs, greatly enhancing the model's deployment robustness in real-world 

complex scenarios. 

 

II. Method 

In this section, I will introduce our proposed multi-normalization framework from the perspectives of 

training and testing. 

 

2.1 Training Method. 

 
Figure 2: Training flowchart 
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Figure 2 illustrates the training process of the multi-normalization framework, which can be divided into 

two parts: image style enhancement and multi-normalization layer training. To explicitly simulate complex 

domain shifts during training, we need to transform the original source domain data into multiple enhancement 

domains with distinct styles, and then perform multi-path collaborative training based on these. Specifically, for 

a batch of original source domain images 𝐼𝑠𝑟𝑐 , we generate three enhancement domains using image enhancement 

methods: the source-similar style enhancement domain 𝐷𝑠𝑖𝑚, the source-dissimilar style enhancement domain 

𝐷𝑑𝑖𝑠, and the fused style enhancement domain 𝐷𝑓𝑠𝑑. The source-similar style enhancement domain primarily 

simulates weak domain shifts caused by slight changes in imaging parameters, enabling the network to learn stable 

feature extraction capabilities for small style changes during training. The source-dissimilar style enhancement 

domain aims to generate enhancement domains that are significantly different from the original image by applying 

strong brightness, contrast, and local style perturbations to local regions of the image. Large domain shifts are a 

major challenge in complex domain generalization tasks. The introduction of the source-dissimilar style 

enhancement domain allows the model to encounter extreme but realistically observable domain shifts during 

training, thereby improving its adaptability to strong distributional differences. The fusion style enhancement 

domain combines the two, forming a "hybrid domain" that lies between small and large offsets. In complex domain 

generalization scenarios, real-world data often exhibits hybrid and multi-scale offsets. By combining style features 

with different offset intensities, the fused image provides the model with a cross-domain "intermediate sample," 

helping to mitigate the angle differences between multi-domain distributions and improve the consistency of the 

shared feature space learned by the model.  

To explicitly enable the model to learn and adapt to various data distributions, we construct a multi-path 

training framework. The core of this framework is to equip each augmentation domain with a dedicated batch 

normalization (BN) layer. These dedicated BN layers collectively constitute the multi-normalization layer module 

in our method. Specifically, for an input feature f, its augmentation domain d determines which normalization 

path it is processed by. The operation of the multi-normalization layer can be formally represented as: 

 𝑀𝑁(𝑓; 𝑑) = 𝛾𝑑
𝑓−𝜇𝑑

√𝜎𝑑
2+𝜖

+ 𝛽𝑑 , (1) 

where 𝑑 ∈ {𝑠𝑖𝑚, 𝑑𝑖𝑠, 𝑓𝑠𝑑}, 𝛾𝑑 and 𝛽𝑑 are affine parameters specific to domain 𝑑, (𝜇𝑑 , 𝜎𝑑
2) are the mean 

and variance of the input features of domain 𝑑, and 𝜖 is a small constant for numerical stability. In each training 

iteration, a batch of original images 𝐼𝑠𝑟𝑐  is fed in parallel into three independent processing paths, corresponding 

to three augmentation domains. The dedicated BN layer for each path independently estimates and updates the 

statistics of its corresponding domain. All three paths share the weights of the backbone network, but each has its 

own independent dedicated BN layer. Through this collaborative training mechanism, the model is forced to learn 

a set of shared feature representations that can be applied to different style variations. At the same time, each 

dedicated multi-normalization layer accurately captures the distribution information of a specific augmentation 

domain. These distribution statistics which are solidified during training, provide key discriminative criteria for 

intelligent path selection during the testing phase. 

 

Figure 3: Testing flowchart 

 

2.2 Testing Method. 

During the testing phase, the model will face images from an unknown target domain 𝐷𝑡 , thus requiring 

an adaptive inference mechanism that can automatically select the most suitable normalization path based on the 

style of the input image. To this end, this study constructs an inference process dependent on statistical similarity 
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(as shown in Figure 3) based on the multi-normalization layer structure obtained during the training phase, in 

order to reduce the potential performance loss caused by domain shift. 

For a target domain image 𝐼𝑡 , the model first performs forward propagation on three parallel paths, 

corresponding to the three augmentation domains 𝐷𝑠𝑖𝑚, 𝐷𝑑𝑖𝑠, and 𝐷𝑓𝑠𝑑 , respectively, and normalizes the features 

using the normalized statistics obtained during training. Specifically, the path 𝑑 ∈ {𝑠𝑖𝑚, 𝑑𝑖𝑠, 𝑓𝑠𝑑} provides a 

fixed set of statistics for all normalization layers in the network after training, which can be represented as a 

statistical embedding: 

 ℰ𝑑 = { (𝜇𝑑
(𝑙)

, (𝜎𝑑
(𝑙)

)
2

) | 𝑙 = 1, … , 𝐿}, (2) 

where 𝑙 represents the l-th normalization layer in the network, and 𝐿 is the total number of normalization 

layers. Each path generates an independent segmentation prediction result 𝑀𝑑 based on this set of statistics. To 

select the path that best suits the target domain style from the three candidate paths, we construct a target domain 

statistics embedding from the feature representation of the input image during the inference process. Once the 

instance statistic embedding of the target domain is determined, the similarity of the target domain sample 𝐼𝑡 to 

the three augmentation domains can be measured by calculating the distance between ℰ𝑡  and ℰ𝑑 . We use a 

symmetric distance function that satisfies the triangle inequality and choose Euclidean distance as the method for 

calculating the distance. Therefore, the embedding distance of the l-th layer can be written as: 

 𝒲(ℰ𝑡
𝑙 , ℰ𝑑

𝑙 ) = ‖𝜇𝑡
(𝑙)

− 𝜇𝑑
(𝑙)

‖
2

2
+ ‖(𝜎𝑡

(𝑙)
)

2
− (𝜎𝑑

(𝑙)
)

2
‖

2

2

. (3) 

Once the distance to each augmentation domain is calculated, the nearest augmentation domain statistic 

embedding and affine parameters 𝛾𝑑 and 𝛽𝑑 can be selected to normalize the input features 𝑓𝑡 of the target domain: 

 𝑑∗ = arg min
𝑑

𝐷(𝑡, 𝑑). (4) 

Finally, the predicted mask 𝑀𝑑∗ obtained from the path 𝑑∗ is used as the final segmentation result of the 

target domain image. By embedding the mean and variance across layers in the entire network into a statistical 

measure, this method can comprehensively characterize the deep feature structure of the image style distribution, 

making path selection more stable and detailed, thereby significantly improving the model's adaptability in 

complex domain generalization scenarios. 

 

III. EXPERIMENTS 

To verify the generalization ability of the proposed multimodal normalization framework in complex 

cross-domain scenarios, we selected the multimodal brain tumor segmentation dataset Brats as the evaluation 

dataset. This dataset contains multimodal MRI data of the brain acquired from multiple centers and multiple 

scanners, and the inherent differences in equipment and protocols naturally constitute significant domain shifts. 

The dataset provides four modalities of MRI sequences for each subject: T1, T2, T1CE, and FLAIR. These 

sequences reflect the characteristics of brain tissue from different physiological and physical perspectives, 

providing complementary information for comprehensive segmentation of brain tumors and their subregions. In 

terms of image preprocessing, we first normalize the intensity values of each 2D slice for each modality, scaling 

its pixel value range to the [-1, 1] interval. Subsequently, all 2D slices are uniformly scaled to a resolution of 256 

× 256 pixels to meet the fixed size requirements of the model input. During the model training phase, we apply a 

series of random data augmentations to the source domain data, including random cropping, random rotation, and 

random scaling. 

In this study, we employ the classic U-Net architecture paired with a ResNet-50 encoder as the 

segmentation backbone. To embed our proposed method, we replace all the original batch normalization layers in 

the network with our designed multi-normalization layer module, which contains three dedicated BN layers 

corresponding to the 𝐷𝑠𝑖𝑚, 𝐷𝑑𝑖𝑠, and 𝐷𝑓𝑠𝑑  augmentation domains, respectively. The model is trained uniformly 

for 50 epochs on all datasets to ensure sufficient convergence. The batch size is set to 64, and in multi-GPU 

training, data is automatically distributed across GPUs for parallel processing. We use the Adam[5] optimizer to 

update model parameters, with an initial learning rate 𝑙𝑟0 set to 4 × 10−3. To stabilize the training process and 

improve model performance, we employ a multinomial learning rate decay strategy. This strategy keeps the 

learning rate high in the early stages of training to accelerate convergence, and gradually decreases it in the later 

stages of training to facilitate model fine-tuning and smoothly approach the optimal solution. 

To objectively evaluate the performance of our method, we compare it with state-of-the-art domain 

generalization methods. The methods included in the comparison are: DoFE[6], SAML[7], Dual-Norm[8], 

DCAC[9], RAM-DSIR[10], and CCSDG[11]. All comparison methods were reproduced using the authors' 

publicly available code under the above training hyperparameter settings and were compared fairly under the same 

training-test data split. We use two widely used evaluation metrics: the Dice similarity coefficient and the 

Hausdorff distance (HD). 
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Table 1: Comparison of our method with other single-source domain generalization methods on the Brats 

dataset. 

Method 

Source Domain: T2 

Dice（%）↑/HD（mm）↓ 

T1 T1CE FLAIR Average 

DoFE 42.15/20.12 45.02/19.34 48.33/21.01 45.17/20.16 

SAML 49.77/16.88 46.22/18.90 52.11/15.33 49.37/17.04 

Dual-Norm 47.90/18.50 48.80/15.60 51.45/17.80 49.38/17.30 

DCAC 62.80/10.12 68.00/9.02 67.50/9.88 66.10/9.67 

RAM-DSIR 63.10/10.50 67.10/9.20 66.50/8.20 65.57/9.30 

CCSDG 64.50/9.90 68.20/8.60 66.00/8.00 66.23/8.83 

Ours 64.99/10.53 68.49/8.75 67.01/8.04 66.83/9.11 

 

Table 1 shows the performance comparison between our proposed method and other single-source 

domain generalization methods on the Brats dataset when using T2 as the source domain. Overall, our proposed 

method achieves the best comprehensive performance, with an average Dice coefficient of 66.83%, slightly higher 

than the CCSDG method (66.23%), while also performing well in the average Hausdorff distance metric. Analysis 

of cross-domain generalization ability shows that our proposed method maintains stable performance across the 

three different target domains. Of particular note is that in the most challenging T1 target domain, our proposed 

method achieves a Dice coefficient of 64.99%, outperforming all compared methods; in the FLAIR target domain, 

our proposed method achieves the lowest HD distance, indicating a significant advantage in boundary 

segmentation accuracy. Compared to recently high-performing methods such as DCAC, RAM-DSIR, and 

CCSDG, our proposed method achieves the best Dice coefficient in the T1CE target domain while maintaining 

competitiveness in the HD distance metric. 

These results demonstrate that the proposed multi-normalization path framework effectively improves 

the model's generalization ability across different target domains. Compared to earlier methods which exhibit 

significant performance degradation in cross-domain tasks, our method demonstrates stronger robustness, 

comparable to recent state-of-the-art methods. Particularly when handling cross-domain scenarios with significant 

modal differences, our method achieves more stable feature representations and more accurate segmentation 

boundaries through a multi-path normalization structure and adaptive selection mechanism, validating the 

effectiveness of the proposed approach. 
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