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Abstract

Medical image segmentation models often suffer significant performance degradation during deployment due to
distributional differences between the training source domain and the clinical target domain. Single-Source
Domain Generalization (SSDG) aims to train a model robust to any unknown domain using only data from a
single source domain, possessing significant clinical value. Existing normalization-based SSDG methods typically
rely on a single or fixed normalization layer, making it difficult to adequately adapt to complex and varied domain
shifts and failing to achieve an optimal balance between feature style stripping and semantic content preservation.
To address this, this paper proposes a novel multi-normalization framework. The core contributions of this
framework are twofold.: first, it designs a multi-normalization layer structure that integrates diverse normalization
operations, which can be dynamically combined during training to learn more domain-invariant deep feature
representations, second, it introduces a test-time adaptive mechanism that can select the most suitable
normalization computation path in real time based on the features of the input samples, thereby achieving
immediate adaptation to unknown target domains. Comprehensive experiments on multiple publicly available
cross-domain medical image segmentation datasets demonstrate that our proposed method significantly
outperforms existing mainstream SSDG methods, validating the effectiveness of the proposed framework in
improving model generalization performance and deployment robustness.
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I. INTRODUCTION
In the field of medical image segmentation, while deep neural network models have achieved remarkable
results, their performance often heavily relies on the assumption that training and testing data follow the same
distribution. However, in actual clinical applications, medical image data from different hospitals, scanning
devices, imaging protocols, or patient groups typically exhibit significant inter-domain differences, known as
"domain shift." This mismatch in data distribution leads to a sharp decline in the model's generalization ability in
unknown target domains, severely limiting the model's clinical deployment and application prospects.

Domain
Adaptation

Source Domain Target Domain
Figurel: Cross-domain medical image segmentation diagram

To address this challenge, research aimed at improving the cross-domain performance of models has
evolved along two main technical routes: domain adaptation[1,2] and domain generalization[3,4]. Domain
adaptation (DA) primarily focuses on adapting the knowledge of the source domain model to a specific target
domain using partially or fully unlabeled target domain data during the training phase. Unsupervised domain
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adaptation (UDA) is a hot research topic in medical image analysis, assuming that unlabeled target domain
samples are available during training. Mainstream methods align the distributions of the two domains by
minimizing the feature distribution differences between the source and target domains or by using generative
models to perform image or feature-level domain transformations. Although UDA has achieved significant results,
its reliance on the assumption of target domain data availability means its generalization ability remains limited
when dealing with unknown domains that are completely unseen during training.

Another approach is Domain Generalization (DG), which aims for a more thorough solution—training a
model using only one or more source domain data so that it can directly generalize to any unknown target domain.
Multi-Source Domain Generalization (MSDG) methods utilize labeled source domain data from multiple
disparate distributions, providing a natural diversity foundation for the model to learn domain-invariant features.
However, collecting and labeling multiple high-quality, diverse medical image domains is extremely costly and
impractical in many real-world clinical scenarios.

In contrast, Single-Source Domain Generalization (SSDG) has become a more challenging yet practical
research direction due to its more stringent and realistic setting of limited data (training using only a single source
domain). Recently, feature normalization-based methods have shown great potential in SSDG. The core idea of
these methods is to implicitly remove domain-related style information from features by normalizing the statistics
of intermediate feature maps in the network, thereby encouraging the model to learn more domain-invariant
semantic representations. However, current mainstream segmentation networks typically employ a single, fixed
normalization layer (such as batch normalization). This "single normalization" paradigm has inherent limitations:
first, fixed normalization statistics are difficult to adequately adapt to the complex and varied domain shift patterns
in medical images; second, a single operation cannot achieve an optimal balance between feature style removal
and discriminative semantic preservation, potentially leading to over-normalization or under-normalization, thus
impairing the model's generalization performance.

In this paper, we propose a multi-normalization framework, aiming to promote the development of SSDG
in medical image segmentation from the following two aspects:

1. A novel multi-normalization layer structure: We designed a modular normalization unit that
integrates a set of normalization operations with distinct characteristics. This unit adaptively selects and combines
the most suitable normalization strategies for feature maps at different levels and locations in the network. This
structure allows the network to simulate diverse feature statistics in a single forward propagation, thereby more
thoroughly stripping away domain-specific styles while preserving discriminative semantic structure.

2. Test-Time Adaptive Normalization Path Selection: Unlike the traditional paradigm of fixing
network behavior after training, we propose a lightweight test-time adaptive mechanism. This mechanism can
select the optimal normalization computation path for each test sample in real time based on the shallow features
of the input image. This not only achieves immediate adaptation to features of unknown target domains, but also
enables the model to make the best trade-off between "style invariance" and "content discriminative" according
to the characteristics of different inputs, greatly enhancing the model's deployment robustness in real-world
complex scenarios.

II. Method
In this section, I will introduce our proposed multi-normalization framework from the perspectives of
training and testing.

2.1 Training Method.

Figure 2: Training flowchart
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Figure 2 illustrates the training process of the multi-normalization framework, which can be divided into
two parts: image style enhancement and multi-normalization layer training. To explicitly simulate complex
domain shifts during training, we need to transform the original source domain data into multiple enhancement
domains with distinct styles, and then perform multi-path collaborative training based on these. Specifically, for
a batch of original source domain images I;,.., we generate three enhancement domains using image enhancement
methods: the source-similar style enhancement domain D™, the source-dissimilar style enhancement domain
D%s_ and the fused style enhancement domain D/*¢. The source-similar style enhancement domain primarily
simulates weak domain shifts caused by slight changes in imaging parameters, enabling the network to learn stable
feature extraction capabilities for small style changes during training. The source-dissimilar style enhancement
domain aims to generate enhancement domains that are significantly different from the original image by applying
strong brightness, contrast, and local style perturbations to local regions of the image. Large domain shifts are a
major challenge in complex domain generalization tasks. The introduction of the source-dissimilar style
enhancement domain allows the model to encounter extreme but realistically observable domain shifts during
training, thereby improving its adaptability to strong distributional differences. The fusion style enhancement
domain combines the two, forming a "hybrid domain" that lies between small and large offsets. In complex domain
generalization scenarios, real-world data often exhibits hybrid and multi-scale offsets. By combining style features
with different offset intensities, the fused image provides the model with a cross-domain "intermediate sample,"
helping to mitigate the angle differences between multi-domain distributions and improve the consistency of the
shared feature space learned by the model.

To explicitly enable the model to learn and adapt to various data distributions, we construct a multi-path
training framework. The core of this framework is to equip each augmentation domain with a dedicated batch
normalization (BN) layer. These dedicated BN layers collectively constitute the multi-normalization layer module
in our method. Specifically, for an input feature f, its augmentation domain d determines which normalization
path it is processed by. The operation of the multi-normalization layer can be formally represented as:

MN(f; d) = Va5 + Ba, (M)

where d € {sim, dis, fsd}, y, and B, are affine parameters specific to domain d, (14, 07) are the mean
and variance of the input features of domain d, and € is a small constant for numerical stability. In each training
iteration, a batch of original images I, is fed in parallel into three independent processing paths, corresponding
to three augmentation domains. The dedicated BN layer for each path independently estimates and updates the
statistics of its corresponding domain. All three paths share the weights of the backbone network, but each has its
own independent dedicated BN layer. Through this collaborative training mechanism, the model is forced to learn
a set of shared feature representations that can be applied to different style variations. At the same time, each
dedicated multi-normalization layer accurately captures the distribution information of a specific augmentation
domain. These distribution statistics which are solidified during training, provide key discriminative criteria for
intelligent path selection during the testing phase.
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Figure 3: Testing flowchart

2.2 Testing Method.

During the testing phase, the model will face images from an unknown target domain D,, thus requiring
an adaptive inference mechanism that can automatically select the most suitable normalization path based on the
style of the input image. To this end, this study constructs an inference process dependent on statistical similarity
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(as shown in Figure 3) based on the multi-normalization layer structure obtained during the training phase, in
order to reduce the potential performance loss caused by domain shift.

For a target domain image I;, the model first performs forward propagation on three parallel paths,
corresponding to the three augmentation domains D™, D% and D%, respectively, and normalizes the features
using the normalized statistics obtained during training. Specifically, the path d € {sim, dis, fsd} provides a
fixed set of statistics for all normalization layers in the network after training, which can be represented as a

statistical embedding:
2
£, = { (#fj),(a;”) ) |l =1,..,L}, )

where [ represents the 1-th normalization layer in the network, and L is the total number of normalization
layers. Each path generates an independent segmentation prediction result M; based on this set of statistics. To
select the path that best suits the target domain style from the three candidate paths, we construct a target domain
statistics embedding from the feature representation of the input image during the inference process. Once the
instance statistic embedding of the target domain is determined, the similarity of the target domain sample I; to
the three augmentation domains can be measured by calculating the distance between £, and £;. We use a
symmetric distance function that satisfies the triangle inequality and choose Euclidean distance as the method for
calculating the distance. Therefore, the embedding distance of the 1-th layer can be written as:

2
0y = I1,© — O ®y? ®y?
w(el €)= ||u” — nq ”2 + ”(Ut ) = (a5°) ”2 )
Once the distance to each augmentation domain is calculated, the nearest augmentation domain statistic

embedding and affine parameters y; and 5, can be selected to normalize the input features f; of the target domain:
d* = argmin D(¢t, d). 4
d

Finally, the predicted mask M+ obtained from the path d* is used as the final segmentation result of the
target domain image. By embedding the mean and variance across layers in the entire network into a statistical
measure, this method can comprehensively characterize the deep feature structure of the image style distribution,
making path selection more stable and detailed, thereby significantly improving the model's adaptability in
complex domain generalization scenarios.

III. EXPERIMENTS

To verify the generalization ability of the proposed multimodal normalization framework in complex
cross-domain scenarios, we selected the multimodal brain tumor segmentation dataset Brats as the evaluation
dataset. This dataset contains multimodal MRI data of the brain acquired from multiple centers and multiple
scanners, and the inherent differences in equipment and protocols naturally constitute significant domain shifts.
The dataset provides four modalities of MRI sequences for each subject: T1, T2, TICE, and FLAIR. These
sequences reflect the characteristics of brain tissue from different physiological and physical perspectives,
providing complementary information for comprehensive segmentation of brain tumors and their subregions. In
terms of image preprocessing, we first normalize the intensity values of each 2D slice for each modality, scaling
its pixel value range to the [-1, 1] interval. Subsequently, all 2D slices are uniformly scaled to a resolution of 256
x 256 pixels to meet the fixed size requirements of the model input. During the model training phase, we apply a
series of random data augmentations to the source domain data, including random cropping, random rotation, and
random scaling.

In this study, we employ the classic U-Net architecture paired with a ResNet-50 encoder as the
segmentation backbone. To embed our proposed method, we replace all the original batch normalization layers in
the network with our designed multi-normalization layer module, which contains three dedicated BN layers
corresponding to the DS™, DS and D/$% augmentation domains, respectively. The model is trained uniformly
for 50 epochs on all datasets to ensure sufficient convergence. The batch size is set to 64, and in multi-GPU
training, data is automatically distributed across GPUs for parallel processing. We use the Adam[5] optimizer to
update model parameters, with an initial learning rate lr set to 4 X 1073, To stabilize the training process and
improve model performance, we employ a multinomial learning rate decay strategy. This strategy keeps the
learning rate high in the early stages of training to accelerate convergence, and gradually decreases it in the later
stages of training to facilitate model fine-tuning and smoothly approach the optimal solution.

To objectively evaluate the performance of our method, we compare it with state-of-the-art domain
generalization methods. The methods included in the comparison are: DoFE[6], SAML[7], Dual-Norm[§],
DCAC[9], RAM-DSIR[10], and CCSDG[11]. All comparison methods were reproduced using the authors'
publicly available code under the above training hyperparameter settings and were compared fairly under the same
training-test data split. We use two widely used evaluation metrics: the Dice similarity coefficient and the
Hausdorff distance (HD).
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Table 1: Comparison of our method with other single-source domain generalization methods on the Brats

dataset.
Source Domain: T2
Dice (%) 1/HD (mm) |
Method
Tl TI1CE FLAIR Average
DoFE 42.15/20.12 45.02/19.34 48.33/21.01 45.17/20.16
SAML 49.77/16.88 46.22/18.90 52.11/15.33 49.37/17.04
Dual-Norm 47.90/18.50 48.80/15.60 51.45/17.80 49.38/17.30
DCAC 62.80/10.12 68.00/9.02 67.50/9.88 66.10/9.67
RAM-DSIR 63.10/10.50 67.10/9.20 66.50/8.20 65.57/9.30
CCSDG 64.50/9.90 68.20/8.60 66.00/8.00 66.23/8.83
Ours 64.99/10.53 68.49/8.75 67.01/8.04 66.83/9.11

Table 1 shows the performance comparison between our proposed method and other single-source
domain generalization methods on the Brats dataset when using T2 as the source domain. Overall, our proposed
method achieves the best comprehensive performance, with an average Dice coefficient of 66.83%, slightly higher
than the CCSDG method (66.23%), while also performing well in the average Hausdorff distance metric. Analysis
of cross-domain generalization ability shows that our proposed method maintains stable performance across the
three different target domains. Of particular note is that in the most challenging T1 target domain, our proposed
method achieves a Dice coefficient of 64.99%, outperforming all compared methods; in the FLAIR target domain,
our proposed method achieves the lowest HD distance, indicating a significant advantage in boundary
segmentation accuracy. Compared to recently high-performing methods such as DCAC, RAM-DSIR, and
CCSDG, our proposed method achieves the best Dice coefficient in the T1CE target domain while maintaining
competitiveness in the HD distance metric.

These results demonstrate that the proposed multi-normalization path framework effectively improves
the model's generalization ability across different target domains. Compared to earlier methods which exhibit
significant performance degradation in cross-domain tasks, our method demonstrates stronger robustness,
comparable to recent state-of-the-art methods. Particularly when handling cross-domain scenarios with significant
modal differences, our method achieves more stable feature representations and more accurate segmentation
boundaries through a multi-path normalization structure and adaptive selection mechanism, validating the
effectiveness of the proposed approach.
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