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Abstract

Traditional power grid infrastructures are experiencing unprecedented stress with lacking real-time monitoring
mechanisms, reactive maintenance practices, and uncontrollable massive wastage of energy due to phantom
loads. Phantom Grid is an end-to-end Internet of Things and Artificial Intelligence-driven system that converges
digital twin technology with machine learning to drive predictive maintenance in smart grids, as discussed in this
paper. The system uses the Isolation Forest algorithm _for anomaly detection in an unsupervised manner, processes
eight engineered features from sensor data gathered through Node-RED simulation and real device monitoring,
and ensures digital twin synchronization for virtual-physical representation. Deployed on fifteen devices for thirty
days, the system demonstrated eighty-seven percent accuracy in anomaly detection with health scoring facilitating
proactive maintenance prioritization. The deployment showed monthly savings of more than five hundred rupees
on each device in the form of phantom load detection and a thirty percent savings in maintenance costs through
predictive failure avoidance. Results show significant potential to change smart grid operations through the
combination of digital twin technology with predictive analytics driven by artificial intelligence.

Keywords: Smart Grid, Digital Twin, Internet of Things, Predictive Maintenance, Machine Learning, Anomaly
Detection, Energy Optimization, Phantom Load Detection.

Date of Submission: 01-11-2025 Date of acceptance: 10-11-2025

I. INTRODUCTION

Smart grid is a big promise toward the advancement of electrical power distribution systems, which
includes state-of-the-art sensing, communication, and control technology to benefit the efficient use and delivery
of energy. But the conservative grid monitoring systems are more reactive based maintenance approaches, no real
time performance analysis and less in control to anticipate equipment failure prior to its timing. These
inefficiencies lead to unexpected service outages, waste of operating expenses and unsustainable use of energy.
Research has established that unplanned downtime in power grids costs utility companies approximately fifteen
million dollars annually per large outage, while reactive maintenance costs forty percent more than predictive
maintenance.

Digital twin technology has been found to be a revolutionizing methodology for physical-virtual bridging
of infrastructure systems. A digital twin generates a synchronised virtual model from real-world equipment with
continuous data streams; simulation, analysis and optimisation can be performed without physical access. When
integrated with artificial intelligence (AI) and machine learning algorithms, digital twins can analyze large amount
of sensor data to recognize patterns, report anomalies and predict when maintenance may be required. Digital twin
technology has achieved a decrease in operational costs between 25% and 40%, thirty to fifty per cent reduction
of maintenance costs, and reduce downtime by thirty five to sixty five percent across different industrial settings.

Phantom loads, also referred to as vampire power or standby power consumption, represent energy
wastage from electrical appliances drawing power in stand-by conditions. Research shows phantom loads present
five to ten percent of the household electricity consumption, which is a substantial economic and environmental
burden. Phantom loads in India account for about eighty billion kilowatt-hours of wasted electricity per year,
which is equivalent to six million cars' worth of carbon emissions. Early detection and reduction of phantom loads
using smart monitoring systems can make an important impact on the efficiency in energy and carbon footprint
and deliver practical cost benefits to consumers and utilities.

This study responds to these challenges by creating Phantom Grid, an Internet of Things and artificial
intelligence-integrated system that incorporates digital twin technology and predictive maintenance. The system
uses the Isolation Forest algorithm for unsupervised anomaly detection, processes multiple engineered features
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from real-time sensor data, and keeps synchronized virtual copies of physical grid infrastructure. The main goals
are: deploying scalable Internet of Things architecture for multi-device monitoring with both simulated and
physical device support, building machine learning models for precise anomaly detection and failure forecasting
without labeled training data, developing digital twin framework with three-dimensional visualization
functionality allowing easy operational monitoring, exhibiting real-world cost benefits through phantom load
detection and energy optimization suggestions, and testing system efficacy using extensive thirty-day deployment
on fifteen heterogeneous devices.

1.1Digital Twin Technology and Applications

Digital twin technology constructs virtual models of physical assets, processes, or systems by employing
data synchronizing processes continuously and bidirectional communication protocols.In smart grid use, digital
twins enable real-time monitoring, operational scenario simulation, and predictive analysis without disrupting
actual infrastructure. It provides services to compute how physical states are computed (state consistency between
real entities and digital images), as well as offering methods for operators to visual state behavior, test strategies
optimization methods and forecast events based on patterns from historical data together with actual data.

1.2Machine Learning for Predictive Maintenance

Predictive maintenance uses machine learning-based algorithms to interpret equipment health and
predict any potential failure before they arise. Isolation Forest is an unsupervised anomaly detection where
observations are isolated through random feature selection. Figure thirteen shows a performance comparison of
Isolation Forest with other anomaly detection methods, with better accuracy.
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Figure 1:Anomaly Detection Model Performance comparison

1.3Internet of Things Architecture for Smart Grids
Industrial Internet of Things systems consist of several architectural layers for data acquisition from sensors,
transmission, processing, and visualization.
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Figure 2: The entire five-layer architecture as seen in the Phantom Grid system.

II. METHODOLOGY
2.1System Architecture and Component Integration
The Phantom Grid system has a five-layer architecture that includes frontend presentation, backend processing,
artificial intelligence analytics, data storage, and Internet of Things device layers. Figure 2 illustrates the entire
end-to-end data flow pipeline from sensor acquisition to model inference to visualization output.
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Figure 3: End to End Data Flow Pipeline

The Internet of Things device layer includes a Node-RED flow-based development platform mimicking
fourteen virtual devices and one actual device monitor. Device categories include heating, ventilation, air
conditioning systems, kitchen appliances, entertainment devices, computing devices, lighting systems, and
network devices. Figure twelve depicts anomaly frequency distribution among these categories of devices,
illustrating greater rates of anomalies among heating, ventilation air conditioning systems owing to intricate
operating cycles.
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2.2Data Collection and Energy Consumption Analysis

Data collection of sensor readings is on thirty-second intervals, including reading voltage, current, power factor,
instantaneous power usage, and the grid frequency. Figure eleven shows monthly energy usage distribution by
device type, which shows extreme differences ranging from five point eight kilowatt-hours for the network router
to three hundred twenty kilowatt-hours for the air conditioner.
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Figure 4:Monthly Energy Consumption by Device Type

Table 1 is the data collection specification and quality metrics.

Table 1: Data Collection Specifications and Quality Metrics

Parameter Specification / Value
Sampling Interval 30 seconds

Number of Devices 15 (14 simulated + 1 real)
Data Completeness 98.7%

Total Measurements 1,296,000 points

2.3Machine Learning Feature Engineering
There are eight features that the machine learning pipeline derives from raw sensor readings. Figure six is the
relative importance scores for all engineered features.

2.4 Isolation Forest Algorithm Implementation
Isolation Forest deployment uses the scikit-learn package with an ensemble of one hundred decision trees. Figure
nine illustrates the model training process with accuracy increase and loss decrease over ten training cycles.
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II1. RESULTS AND DISCUSSION
3.1Anomaly Detection Performance

The Isolation Forest model attained a percent overall accuracy in anomaly detection.

Figure 3: 24-Hour Anomaly Detection Timeline
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Figure 3: representative twenty-four-hour timeline showing detected anomalies.

Performance Metric Value
Overall Accuracy 87.0%
Precision 49.6%
Recall 57.0%
F1-Score 53.0%

Table 2: Anomaly Detection Performance Metrics
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Figure4: Confusion Matrix — Anomaly Detection

3.2Device Health Scoring Analysis

Health score distribution on devices under monitoring varied between sixty-eight and ninety-six percent. Figure
four shows health score distribution with color coding representing operational status categories.
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Figure5: Device Health Score Distribution(9 Devices)

3.3Energy Optimization and Efficiency Analysis
Detection by phantom load revealed major energy wastage opportunities. Figure five depicts active power versus

phantom load, whereas Figure fifteen illustrates energy efficiency ratings showing device-specific performance
characteristics.
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Figure6: Power Consumption Distribution Analysis

3.4Cost Savings and Economic Analysis

Economic analysis shows significant cost savings. Figure sixteen shows a total cost breakdown comparing costs
prior to and subsequent to Phantom Grid deployment in five categories.
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Figure 7:Active Power vs Phantom Load Comparison(8 Devices)
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3.5Maintenance Response Time Improvement

Predictive maintenance saw significant response time reduction. Figure fourteen contrasts maintenance response
times, showing a seventy-five percent improvement from the reactive method, taking an average of forty-eight
hours, to the predictive method, taking an average of twelve hours.

IV. CONCLUSION

This study effectively exhibited convergence of digital twin technology with artificial intelligence-based
predictive maintenance for smart grid monitoring use cases. The Phantom Grid platform obtained eighty-seven
percent accuracy in anomaly detection employing the Isolation Forest algorithm for analysis of eight engineered
features derived from real-time sensor readings taken at thirty-second intervals.

Major contributions are scalable Internet of Things architecture, implementation of unsupervised
machine learning, device health scoring algorithm, digital twin framework with three-dimensional visualization,
and overall cost-benefit analysis showing monthly savings of more than five hundred rupees per device through
phantom load detection.

Demonstrated results include phantom load detection, a thirty percent decrease in maintenance expenses,
a thirty percent reduction in unplanned downtime, a four percent increase in equipment availability, and a seventy-
five percent decrease in maintenance response time from forty-eight to twelve hours.

Future directions for research involve examination of deep learning architectures, deployment of edge
computing, integration of blockchain for secure data exchange, extension to commercial infrastructures, and
reinforcement learning for optimizing automated controls.
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