
International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 13 Issue 11 ǁ 2025.

www.ijres.org 1 | Page

Intelligent Bug Prioritization & Assignment Tool
*1Ms. Priyadarshini Badgujar (Project Guide),

2Krishna Bhattu, 3Harshwardhan Jadhav,
4Harsh Josolkar, 5Yash Kapure.

Department of Computer Science & Design Engineering, University of Mumbai, NHITM, Thane (W) – 400615

Abstract
Efficient bug management is essential for maintaining software quality and timely project delivery. This
research presents an Intelligent Bug Prioritization and Assignment Tool that leverages artificial intelligence to
automate the analysis and assignment of reported bugs. The system predicts bug severity, estimates resolution
time, and recommends suitable developers based on domain relevance. Supa base, integrated as a secure cloud
database, supports real-time data synchronization and role-based access. The proposed model aims to minimize
manual intervention, improve accuracy in prioritization, and enhance coordination among testers, developers,
and managers, thereby optimizing the overall software maintenance process.

Keywords: Artificial Intelligence, Bug Prioritization, Automated Assignment, Software Maintenance

Date of Submission: xx-xx-xxxx Date of acceptance: xx-xx-xxxx

I. INTRODUCTION
In the modern software development landscape, the continuous growth in application complexity and the

rising expectations of users have made efficient bug management an essential aspect of ensuring software
quality and reliability. Regardless of the development approach or methodology, every software product
experiences bugs at different stages of its lifecycle. Traditionally, these bug reports are reviewed and prioritized
manually by developers or project managers—a process that is often slow, inconsistent.

As software projects scale and development teams become more distributed, the number of daily bug reports
has increased exponentially. Manual triaging under such conditions can result in redundant efforts, uneven
workload distribution, and occasional misclassification of bug severity. Furthermore, determining the criticality
of a bug requires a comprehensive understanding of the system and its impact on users, which may not always
be available to all team members.

To address these limitations, the Intelligent Bug Prioritization and Assignment Tool leverages Artificial
Intelligence and Natural Language Processing to automate and optimize the bug triage process. The system
analyses bug descriptions, extracts key contextual features, predicts severity levels such as Critical, High,
Medium, or Low, and assigns the most suitable developer based on their expertise and past experience.
Additionally, it estimates the resolution time for each issue, supporting more accurate project planning and
resource allocation.

By automating bug triage, the proposed model minimizes manual intervention, eliminates bias, and enhances
the precision and consistency of bug prioritization. Through the integration of predictive analytics and a user-
friendly interface, the system enables faster, data-driven decision-making—leading to improved team
productivity, reduced turnaround time, and enhanced overall software reliability.

1.1.1 Limitation / Existing System / Research Gap

Traditional bug triage in software development is a manual and time-consuming process dependent on human
judgment, often leading to inconsistencies and delays in issue resolution. With the growing complexity of
projects and increasing bug reports, manual prioritization struggles to remain efficient. Existing automated
methods usually focus on isolated tasks like severity prediction or developer assignment and fail to provide an
integrated solution.
The proposed Intelligent Bug Prioritization and Assignment Tool uses Artificial Intelligence (AI) and Natural
Language Processing (NLP) to automate bug analysis, predict severity, estimate resolution time, and assign

Intelligent Bug Prioritization and Assignment Tool

ijres.org 2 | P a g e

developers effectively. This approach ensures higher accuracy, faster triage, and improved software
maintenance efficiency.
1.1.2 Objectives
The main goal of this project is to develop an Intelligent Bug Prioritization and Assignment Tool that
automates bug triage using AI and NLP techniques.
Specific objectives include:

1. To automatically analyze bug reports using NLP.
2. To predict bug severity levels (Critical, High, Medium, Low).
3. To recommend suitable developers based on expertise and history.
4. To estimate bug resolution time for better planning.
5. To minimize manual effort and improve accuracy in bug management.
6. To design a user-friendly, scalable, and integrated platform.

I.2 Proposed System

1.2.1 Analysis/ Framework/ Algorithm
1. Tester logs a bug report (title, description, file).
2. AI module analyses content → returns Severity, ETA, Fix Suggestion, and Suggested Domain.
3. Manager reviews AI suggestions and assigns the bug to a developer.
4. Developer receives assignment, updates status, and resolves the issue.
5. Supa base manages roles, authentication, and storage.

1.2.2 Tools and Technologies

Layer Technology
Frontend React 18 + Vite + Tailwind CSS
Backend Flask (Python)

AI OpenAI GPT API, Google Gemini
Database Supabase (PostgreSQL)

Authentication Supabase Auth
Hosting Render / Vercel / Supabase Cloud

Table 1.1 - Tools and Technologies

1.2.3 Methodology

Intelligent Bug Prioritization and Assignment Tool

ijres.org 3 | P a g e

Figure 1.1 – Methodology/ Project Lifecycle

 Project Initiation & Planning:
Define the problem statement, gather requirements, and decide the project’s scope and dataset.

 System Design:
Create the system architecture, identify modules, and design workflow diagrams and DFDs.

 Implementation:
The main development stage — where modules like Bug Report Collection, Preprocessing,

Prioritization, Assignment, and Dashboard Tracking are built and integrated.
 Testing & Evaluation:

Perform ML model testing, UI testing, and gather feedback for improvement.
 Deployment / Demonstration:

Deploy the prototype, and present or demonstrate the project to stakeholders.
 Maintenance & Documentation:

Update datasets, retrain AI models if needed, and prepare the final documentation and report.

1.2.4 Design Details

Figure 1.2 – System Design Workflow

1. Bug Report Collection
 Collect bug reports from issue trackers. (Pre - defined bug set)
 Extract details: bug ID, severity, description, reporter info, etc.

2. Data Preprocessing
 Clean raw bug reports (remove duplicates, irrelevant data).
 Apply NLP techniques to process text (tokenization, stop-word removal).
 Feature extraction for ML model input.

3. Bug Prioritization
 ML/AI model predicts bug severity and priority level.
 Helps in reducing resolution time and focusing on critical issues.

4. Bug Assignment
 Assign bugs automatically to the most suitable developer.
 Based on expertise, workload, and past bug-fix history.

5. Dashboard & Tracking
 Provide a visual dashboard for bug status.
 Track: Open, In-progress, Resolved, Closed bugs.

1.2.5 Hardware and Software Setup

Software Requirements:
 Operating System: Windows 10, macOS, or Linux.
 Programming Languages: Python 3.11 and JavaScript (ES6+).
 Frameworks: Flask (backend) and React + Vite (frontend).
 Database: Supa base (PostgreSQL).
 AI API: OpenAI GPT-3.5-Turbo, Google Gemini.
 Tools and Libraries: Pandas, NumPy, Tailwind CSS, Axios.
 IDEs and Testing Tools: Visual Studio Code, Postman.
 Browser: Google Chrome (latest version).

Hardware Requirements:
 Minimum: Intel Core i3 processor, 4 GB RAM, 128 GB SSD, 5 Mbps internet connection.

Intelligent Bug Prioritization and Assignment Tool

ijres.org 4 | P a g e

 Recommended: Intel Core i5 or higher, 8 GB RAM, 256 GB SSD, 10 Mbps broadband
connection.

II. RESULT AND DISCUSSION

2.1.1 Implementation Plan

Phase 1: System Design and Backend Development

 Requirement Analysis:
– Collected system requirements from testers, developers, and project managers.
– Defined the complete workflow for bug reporting, prioritization, and automated assignment.

 Database Design:
– Structured the database schema in Supa base (PostgreSQL), establishing relationships
between users, bugs, and task assignments.
– Implemented secure, role-based access control and real-time data synchronization.

 Backend Development:
– Built Flask-based APIs for managing bug submission, retrieval, and assignment processes.
– Integrated an AI-driven module utilizing the GPT model for severity prediction and domain
specific task allocation.
– Added user authentication and role-based permissions for secure system access.

Phase 2: Frontend Development and AI Integration

 Frontend Interface Design:
– Developed a responsive web dashboard using React with Vite and Tailwind CSS.
– Designed dedicated panels for Testers (reporting bugs), Developers (tracking assigned tasks), and

Managers (monitoring overall progress).
 AI Module Integration:

– Connected the OpenAI API to generate severity levels and recommend appropriate developers.
– Automated prioritization based on predicted severity scores and estimated resolution times.

 Testing and Validation:
– Conducted unit and integration testing through Postman and manual verification.
– Evaluated AI model accuracy and measured system performance metrics.

Phase 3: Deployment and Evaluation

 Cloud Deployment:
– Deployed the backend on a cloud environment with Supa base as the database service.
– Hosted the frontend for browser-based access, ensuring smooth user interaction.

 Performance Evaluation:
– Monitored throughput, latency, and user feedback to assess overall performance.
– Gathered insights from testers and managers to refine AI-based recommendations.

 Final Optimization:
– Enhanced API response time and minimized database delays.
– Improved UI components and implemented audit logs to ensure system transparency.

II.2 Result

The developed system successfully automated the bug triage process by accurately predicting severity levels and
assigning issues to suitable developers using AI and NLP techniques. The integration of Flask, Supa base, and
React provided a seamless and responsive platform for testers, developers, and managers. Performance
evaluation showed improved accuracy, faster response times, and reduced manual effort in bug management.
User feedback confirmed enhanced efficiency and transparency in tracking and resolving software issues.
Overall, the tool proved effective in streamlining bug prioritization and assignment in real-world scenarios.

Intelligent Bug Prioritization and Assignment Tool

ijres.org 5 | P a g e

II.2.1 Results/ Outputs

Figure. 2.1 – Landing Page

Intelligent Bug Prioritization and Assignment Tool

ijres.org 6 | P a g e

Figure. 2.2 – Sign in Page

Figure. 2.3 – Sign Up Page

Intelligent Bug Prioritization and Assignment Tool

ijres.org 7 | P a g e

Figure. 2.4 – Manager Dashboard

Figure. 2.5 – Manager Action

Intelligent Bug Prioritization and Assignment Tool

ijres.org 8 | P a g e

Figure. 2.6 – Developer Dashboard

Figure 2.7 – Developer Action

Intelligent Bug Prioritization and Assignment Tool

ijres.org 9 | P a g e

Figure 2.8 – Tester Dashboard

Figure 2.9 – Tester Bug Submission

Intelligent Bug Prioritization and Assignment Tool

ijres.org 10 | P a g e

Figure 2.10 – Supa base User Profile Database

Figure 2.11 - Supa base Bugs Database

III. CONCLUSION

The Intelligent Bug Prioritization and Assignment Tool effectively automate the bug management workflow
through AI-driven analysis. It reduces manual intervention by predicting bug severity, estimating resolution
duration, and suggesting the most appropriate developer for each task. The system improves coordination
among testers, developers, and managers, enabling faster and more efficient issue resolution. This approach
highlights the potential of AI to enhance software maintenance, optimize team productivity, and elevate overall
software quality in practical development environments.

IV. REFERENCES

[1]. M. Borg, L. Jonsson, E. Engström, B. Bartalos, and A. Szabó, “Adopting automated bug assignment in
practice - A longitudinal case study at Ericsson,” Empirical Software Engineering, vol. 29, no. 5, 2024.

[2]. S. Kumar, R. Kaur, and V. Gupta, “AI-driven bug prioritization using NLP and deep learning models,”
IEEE Access, vol. 12, pp. 14567–14579, 2023.

[3]. H. Lin, T. Li, and J. Chen, “Automated issue classification and developer assignment with transformer -
based models,” Journal of Systems and Software, vol. 195, pp. 111584, 2023.

[4]. A. Sharma and P. Patel, “Machine learning-based intelligent bug triaging system for large-scale software
projects,” Procedia Computer Science, vol. 218, pp. 1030–1040, 2023.

[5]. M. J. Lee, D. H. Kim, and S. Park, “Enhanced bug severity prediction using hybrid ensemble
techniques,” IEEE Transactions on Software Engineering, vol. 49, no. 2, pp. 482–495, 2022.

[6]. Y. Zhang, X. Wu, and L. Wang, “Improving bug report classification with attention-based neural
networks,” Information and Software Technology, vol. 139, pp. 106690, 2021.

Intelligent Bug Prioritization and Assignment Tool

ijres.org 11 | P a g e

[7]. P. Thung, D. Lo, and L. Jiang, “Automatic bug triaging using text mining and topic modeling,” Empirical
Software Engineering, vol. 26, no. 4, pp. 2459–2483, 2020.

[8]. A. Sureka, “Mining bug repositories for developer recommendation and assignment,” Journal of
Software: Evolution and Process, vol. 29, no. 6, 2017.

[9]. C. Tian, M. Reformat, and Y. Zou, “An intelligent approach for developer recommendation in bug
fixing,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 10, pp. 1423 –
1436, 2016.

[10]. G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing graphs,” Proceedings of
the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 111–120, 2011.

