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Combined effect of quantum pressure and rotation on
stability of stratified viscoelastic Rivlin Ericksen fluid
saturating a porous medium

Abstract

The stabilizing effect appearing in the presence of both quantum mechanism and kinematic viscoelasticity
parameter may be physically interpreted such that a part of the kinetic energy of the waves has been absorbed,
which leads to damping in the frequency of the waves. The quantum pressure dissipates the energy of any
disturbance more than that carried out by the kinematic viscoelasticity parameter. In other words, the role of
the kinematic viscoelasticity parameter helps the quantum effect to find more stability on the Rayleigh-Taylor
instability problem, while the quantum pressure plays the fundamental role to generate the complete stability. It
is found that, the critical point for the stability k?  that occurs in the presence of quantum term remains
unchanged by the addition of the other parameters of the problem. Both k.., and k. point for the instability
are unchanged by the addition of kinematic viscoelasticity parameter. All growth rates are reduced in the
presence of porosity of the medium, the medium permeability, kinematic viscosity and kinematic viscoelasticity.
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I.  INTRODUCTION

The quantum hydrodynamic model was introduced by Gardner [1] for semiconductor physics to
describe the transport of charge, momentum and energy in plasmas. Several studies were analysed both
analytically and numerically in plasma with quantum corrections. For example, Haas et al. [2] studied a
quantum multi-stream model for one and two stream plasma instabilities. It is well known that quantum effects
become important in the behaviour of the charged plasma particles when the de-Broglie wavelength of the
charged carriers become equal to or greater than the dimension of the quantum plasma system .It should be
observed that there is a difference between a light-wave and the de-Broglie or Schrodinger wave associated with
the light-quanta. Firstly, the light-wave is always real, while the de-Brogliec wave associated with a light-
quantum moving in a definite direction must be taken to involve an imaginary exponential. Quantum plasma can
be composed of electrons, ions, positrons, holes and or grains and it plays an important role in ultra small
electronic devices which has been given by Dutta and McLennan [3], dense astrophysical plasmas system has
been given by Madappa et al. [4], intense laser-matter experiments has been investigated by Remington et al. [5]
and non-linear quantum optics has been given by Brambilla et al. [6]. While naturally occurring plasma is
relatively unusual on earth, it is playing a larger and increasingly important role in how we use and develop
modern technology, for instance, producing compact chips developing of alternative energy sources, nuclear
fusion and increasingly becoming part of the industrial area. The study of viscoelastic fluids has become
important in recent years because of their many applications in petroleum drilling, manufacturing of foods and
paper, etc. With the growing importance of the non-Newtonian fluids in modern technology, industries and
astrophysics, the investigations of such fluids are desirable. Hoshoudy [7] has studied the effects of
incompressible quantum plasma on Rayleigh-Taylor instability of Oldroyd model through a porous medium,
where he has shown that both maximum k,,,, and critical point k. for the instability are unchanged by the
addition of the strain retardation and the stress relaxation. Owing to the importance of quantum plasma and
viscoelasticity, the present paper deals with effect of the quantum pressure and rotation on Rayleigh-Taylor
instability for a finite thickness layer of incompressible viscoelastic fluid/plasma in a porous medium .

Mathematical formulation of the problem and perturbation equations
The initial stationary state whose stability we wish to examine is that of an
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Figure 1: Geometrical configuration of incompressible heterogeneous (heavy) and viscoelastic fluid saturating a
porous medium.

incompressible, heterogeneous infinitely extending viscoelastic Rivlin Ericksen fluid of thickness d bounded by
the planes z = 0 and z = d,; of variable density, kinematic viscosity, kinematic viscoelasticity and quantum
pressure, Q arranged in horizontal strata of electrons and immobile ions in a homogeneous, saturated, isotropic
porous medium with the Oberbeck-Boussinesq approximation for density variation, so that the free surfaces are
almost horizontal. The fluid is acted on by gravity force g (0,0, —g) as shown in figure 1.

The relevant equations of motion, continuity (conservation of mass) and incompressibility are

22 l.la=-7p+pa- (e n 2)a 020, (ax0). 2
V.q=0, @
%4 (@7 =0 ©

where q, p, p, i, 4, k; and & represent the filter velocity, density, pressure, viscosity, viscoelasticity,
medium permeability and medium porosity, respectively.
2

_h v (72
Q= 2mem; ( Je
It is a fact that, for many situations of interest in ICF (inertial-confinment fusion), unstable flow occurs at
velocities much smaller than the local sound speed. This has the effect that accelerations in the flow are not
strong enough to change the density of a fluid element significantly, so the fluid moves without compressing or
expanding as is seen from equation (3).

) is represented by Bohm vector potential term (also, is called a quantum pressure).

The initial steady state whose stability we want to examine is characterized by

q=1(0,0,0),p=p(2), p=p(2) and Q = Q(2). “4)

To investigate the stability of the hydrodynamic motion infinitesimal perturbations in the physical quantities
describing the system (4) are superimposed on the steady state and let q(u,v,w), ép, Op,
6Q (Qx1: Qy1, Qz1.) denote respectively, the infinitesimally small perturbations in fluid velocity q (0,0, 0),
density p, pressure p and quantum pressure Q.

Substituting these perturbations and using the linear theory, the equations (1) - (3) in the linearized form become

podq _ _t '8
~ 5. = ~Vép+gdp kl(u+uat)q+60, (5)
V.q=0, (6)

a op _
856p+wa—z—0, (7)
where

_ R qn 2 _ 1 2, _ 1 2 Sp 2, _ 1 bp 2

6Q =g [2 V(V28p) =5 -VEp Vopo =5 -Vpo VEbp + 5 5VpoV po = 5 -V (VpoV8p) + 1 5V (Vpo)” +

s
2% (Vpo)2V8p + = (VpoV8p)Vpo — -2 (Vpo)S].
Po Po Po
The equations (5)-(7) in the Cartesian form yield
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Podu _ 0 o 1 8
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e at azdp kl(”+“at)W+Q21’ (10)
e25p = —w, (11)
ou ov ow
T =0, (12)
where
1[92 92 1 1

Qi = g [1D28p — 7= DpoDdpy + { (2 +372) ~ 552 020 + 322 o)} Dpl.

nz 9 92 92 1 1
Q1 = ay[ D*8p — —DpoD6p +{ (axz + ﬁ) — 2o Do + %(Dpo)z} 6p],

_ M oflpsg, L 2 L2\ _ 152 3 3 _t

szll 2mem; 62[ 6 D’DOD 6'0 +{ (6x2 + 6y2) pOD Po+ 2p3 (D'DO) }D(S'D +{ 2po Dpo (6x2 +
a d
ﬁ) %DPOD Po —E(Dpo) }5/0] and D = —.

Since the boundaries are assumed to be rigid. Therefore, the boundary conditions appropriate to the problem are
w=0, Dw =0atz = 0and z = d, on arigid surface. (13)

Analyzing the perturbations into normal modes, it is assumed that all the physical quantities describing the
perturbations are ascribed a dependence on x,y,z and t of the form

f(2)exp i(kyx + kyy —nyt), (14)

. . 1/2 .
where k, and k, are wavenumbers along x and y - directions, k = (k,zc + kJZ,) / is the resultant wave
number and n, is the growth rate which is, in general a complex constant.
Now, using the expression (14), equations (8)-(12) become

. . 1 ' 3 —
Pim)u=—ikedp — - {u+ ' (=in)h + Qua, (15)
2 (~im) v = ~iky8p = -l + K (=in)}v + Gy, (16)
P2 (~in) w=—D8p — g8p — - (i + i (=in)lw + Q1. (17
ikyu+ ik,v+ Dw =0, (18)
ginép = WDpO, where (19)
~ 1 1 1 k? 1
Q1 = senma [ Dp,D*w +{ 2py — %(DZPO)Z}DW + {;D3po = —=DpoD?po == Dpo + 2 (Dpo)3}w],
le = k_Qxla

X i,‘lZ

~ 1 3 1 1 1 k?

e T [;DpoD3W + {;szo - E(DZPO)Z}DZW + {;D3po = —=DpoD?py = Dpo +

3 1 1 K? 1 5 k?
%(Dpof}Dwk2 +5D%p0 = 2-DpoD*po == D?po = = (D?po)* + 375 (Dpo)*D?py + 5= (Dpo)* =
1
E(Dpo)4]-

Multiplying equation (15) by —ik, and equation (16) by —ik,, adding and using equation (18) and (19), we
obtain

%DW = ik?8p + kyQyq + kyQyq — kil(u —u'ing)Dw. (20)
Multiplying equation (15) by —ik,, and equation (16) by ik,, adding and using equation (4.2.18), we obtain
FEE = =ik Qy + thy Qe — - (= p'in), 1)

where & = ik,v — ik, u is the z-component of vorticity. Since kx(_?y1 = ky@xl, therefore, equation (21) yields
that £ = 0.

Eliminating variables &p, Q,q, le and Q,; from the system of equations (17) and (20), a characteristic
equation in w obtained is

pok2 {—in1 i(v +v' inl)w} - {—in1 += (v +v inl)} (Dpo)Dw — {—in1 + ﬂ(v + v'inl)} D?w +
2 (Dpo)w + L—( ) [ (0P0)2D?w — = (Dpo)((Dpo)? ~ 200D po}Dw — - (Dpo>2w] =o.
(22)
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Now the case of incompressible continuously stratified viscoelastic plasma layer is considered in a porous
medium and the density, viscosity, viscoelasticity and quantum pressure are assumed to vary exponentially with
the vertical axis as follows:
z z ' ’ z z
po() = po(Oexp ()., (@) = o (0exp (), (@) = uo(0exp (i) ng,(2) = ng, (0exp ().
(23)
where pO(O),uo(O),u(')(O),nqo(O) and L, are constants and so the coefficient of kinematic viscosity,
Ho_ Ko

v (= % = Z—O) and coefficient of kinematic viscoelasticity v’ (= o= ) are constant everywhere.
0 0

Using the stratifications of the form given by (23), the characteristic equation (22) transforms to

[in1 {—in1 + ki(v + v’inl)} - né] D*w + Li [in1 {—in1 + ki v+ v’inl)} - né] Dw — k? [({in1 {—in1 +
1 D 1

£ i a2l 2 9 —

" +v ml)} nq} ng) + LD] w =0, (24)

"n22

where né = represents the parameter accounting for quantum pressure.

4memiL%)
Using the boundary conditions (13), the equation (24) implies that
D*w=0at z=0andz =d. (25)
The exact solution of the eigen-value problem (24) satisfying the boundary conditions (13) and (25), is chosen
to be
w = sin (nd—n z) exp(Az), where n' is a positive integer. (26)
Substituting the solution given by (26) in equation (24), we obtain
[ml {—ml + kil v+v ml)} - nfl] [— (?2) + 22 (nd—n) cos (nd—nz) + A%sin (nd—nz)] + [m1 {—Ln1 +
kil v+ v'inl)} - nczl] [(nd—n) cos (? Z) + Asin (? Z) — k2 [in1 {—in1 + kil v+ v'inl)} - nf,] +
g . nm _
Esm (Tz)] =0. 27)
Equating the coefficients of sin (? Z) and cos (? Z) in equation (4.2.27) yield that

[in1 {—in1 + kil(v + v'inl)} - né] [/12 - (ndl)z + A k2 [(in1 {—in1 + kil(v + v'inl)} -ng)+ %] =0

and , LD' (28)
[in1 {—in1 o v'inl)} - ng] [2,1 (%) + i (”d—”)] =0. 29)

As {—in1 +iWw+ v'inl)} # ng , therefore, equation (4.2.29) implies that A = — =
kq 2Lp

Substituting this value of A in equation (4.2.28), the dispersion relation so obtained is

. . £ .. 2 4gk?d®Lp
in {—ln +—@W+vin }=n - - . 30
! P ( v 9 a244k2d212+4n" 1213 (30)
Now introducing the non-dimensional quantities
2 4 ! 2
2 ny 2 h £ v r* v k1 2 d 2 2712
nl* =T’ ;; =—42’g*=—’ *:—’ = —, k{:—,d* =—2’k* =kLD’g*=
Npe 4memiLane Npe Npe Npe Npe
pe? \1/2
——, where n,, = ( > ) is the plasma frequency,
NpelD Mmeéo
the equation (4.2.30) after dropping the astricts for our convenience yields
a,(iny)? + ay(ing) +az =0, (31
where
v v 4gk?d?Lp
g =1+—, ay=——, a3 =nf ———— 25— (32)
k1 k1 d2+4gk2d?+4n" n?

Since n; = ny, + iny; and in the case of ny, = 0 and n,; # 0 (stable oscillations), then the equation (4.2.31)
becomes
ang2 —ayng; +as = 0. (33)
In the absence of ng, equation (31) reduces to
{(1 + %) n? — (%) nl} (d2 + 4gk?d? + 4n’2n2) — 4gk?d?L, = 0, (34)
which is in good agreement with the earlier results by Sunil et al. (2004).
Now some special cases are considered from equation (31) to clarify the different role of the parameters on the
physical problem
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Case a): When ¢ =0,v = 0,v =0, ng=20 , the expressions (32) imply that

a; =1,a, =0 and

_ 2 4gk?d?Lp

% = g d2+4gk?d2+an”n?’

So the classical normalized growth rate of equation (33) in the absence of quantum physics denoted by n;  is
given as

4gk2d?L,
Mie = |5— 25— (33)
d?+4gk?d?+4n" n?

In the absence of viscoelastic parameter v' = 0, the equation (.33) reduces to that of the result by Hoshoudy
(2009).

Case b): When ¢ = 0,v=0,v =0, ng # 0, we find that a; = 1, a, = 0 while a; remains the same as in
equation (32). So the quantum normalized growth rate from equation (33) is

4gk2d?L
Mg = \/d2+4gk2d2+fn'2ﬂ:2 B n(zl k2, (36)
which is in good agreement with the earlier result of Hoshoudy (8).
It is clear from the comparison of expressions (35) and (36) that the quantum pressure has stabilizing effect on
Rayleigh-Taylor instability problem.

II. Numerical Results and Discussion

To investigate the effects of various parameters on the stability of the system under consideration,
equation (33) has been solved numerically using the software Fortran 95. In these figures the fixed permissible
values of parameters are ¢ =10.3, v=0.2, ng =06, k, =04, n=1d=1 and g=98 m/sec?,
respectively.

Figure 2 shows the variation of the square of normalized growth rate n? versus the square of normalized
wavenumber k? satisfying the equation (33). The graph shows that the presence of kinematic viscoelasticity
does not affect both the maximum point k2,,, for the instability and corresponding critical point k2 for the
stability, where k2,,, = 2.5 and k2 - 4.2 at v/ = 0.4, 0.6, 0.8. However, the kinematic viscoelasticity has a
stabilizing role on the considered system, as the growth rates decrease with the increase in kinematic
viscoelasticity.

1.5 - v'=0.0

K -

Figure 2: Variations of the square of normalized growth rate n?; versus the square normalized wavenumber k?
for four different values of kinematic viscoelasticity v'=0.0, 0.4, 0.6, 0.8.
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Figure 3: Variations of the square of normalized growth rate n%; versus the square normalized wavenumber k2
for four different values of quantum plasma ng = 0.0, 0.4, 0.6, 0.9.

In figure 3, the graph shows that k2 takes different values k2 — 4.2,1.5 at ng = 0.6,0.9, while the
values of k2, at ng =0.6,0.9 are 1.2, 2.5 , respectively, approaching to complete stability. Also, it is
observed that, no mode of maximum instability exists when n, = 0 as the square normalized growth rate nZ;
usually increases by increase with the square normalized wavenumber values, while in the presence of quantum
term n, = 0.6, there is a mode of maximum instability, where the square normalized growth rate nZ; increases
with k? increases through the range 0 < k?  ( k2, the square normalized growth rate arrives to maximum
instability) and when k% > k2,,, , the square normalized growth rate n?; starts to decrease as k? increases.
This means that the quantum pressure parameter has a crucial capability to suppress the instability.

I Conclusions

The effect of quantum pressure on the Rayleigh-Taylor instability of stratified viscoelastic Rivlin
Ericksen fluid / plasma saturating a porous medium has been studied. The effect of elasticity is revealed through
the quantum pressure. It is found that, the critical point for the stability k2 that occurs in the presence of
quantum term remains unchanged by the addition of the other parameters of the problem. Both k,,,, and k.
point for the instability are unchanged by the addition of kinematic viscoelasticity parameter. All growth rates
are reduced in the presence of porosity of the medium, the medium permeability, kinematic viscosity and
kinematic viscoelasticity. These results indicate that quantum pressure plays a major role in approaching a
complete stability.

References

[1]. C.L. Gardner // SIAM Journal on Applied Mathematics 54 (1994) 409.

[2]. F. Haas // Physics of Plasmas 12 (2005) 2117.

[3] S. Dutta, M.J. McLennan // Reports on Progress in Physics 53 (1990) 1003.

[4]. P. Madappa, James M. Lattimer, Raymond F. Sawyer, Raymond R. Volkas // Annual Review of Nuclear and Particle Science 51
(2001) 295.

[5] B.A. Remington, In: 41st Annual Meeting of the Division of Plasma Physics. Session AR1.01 (Seattle, Washington, November 15-
19, 1999)

[6]. M. Brambilla, F. Castelli, A. Gatti, L. A. Lugiato, G. L. Oppo, G. Grynberg // Il Nuovo Cimento 110 (1995) 635.

[7]. G.A. Hoshoudy // Plasma Physics Reports 37 (2011) 775. 10

[8]. G.A. Hoshoudy // Physics of Plasmas 16 (2009) 046501

WWW.ijres.org 14 | Page



