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Combined effect of quantum pressure and rotation on 

stability of stratified viscoelastic Rivlin Ericksen fluid 

saturating a porous medium 
 

 

Abstract 

The stabilizing effect appearing in the presence of both quantum mechanism and kinematic viscoelasticity 

parameter may be physically interpreted such that a part of the kinetic energy of the waves has been absorbed, 

which leads to damping in the frequency of the waves. The quantum pressure dissipates the energy of any 

disturbance more than that carried out by the kinematic viscoelasticity parameter. In other words, the role of 

the kinematic viscoelasticity parameter helps the quantum effect to find more stability on the Rayleigh-Taylor 

instability problem, while the quantum pressure plays the fundamental role to generate the complete stability. It 

is found that, the critical point for the stability 𝑘𝑐
2   that occurs in the presence of quantum term remains 

unchanged by the addition of the other parameters of the problem. Both 𝑘𝑚𝑎𝑥 and 𝑘𝑐  point for the instability 

are unchanged by the addition of kinematic viscoelasticity parameter. All growth rates are reduced in the 

presence of porosity of the medium, the medium permeability, kinematic viscosity and kinematic viscoelasticity. 
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I. INTRODUCTION 

The quantum hydrodynamic model was introduced by Gardner [1] for semiconductor physics to 

describe the transport of charge, momentum and energy in plasmas. Several studies were analysed both 

analytically and numerically in plasma with quantum corrections. For example, Haas et al. [2] studied a 

quantum multi-stream model for one and two stream plasma instabilities. It is well known that quantum effects 

become important in the behaviour of the charged plasma particles when the de-Broglie wavelength of the 

charged carriers become equal to or greater than the dimension of the quantum plasma system .It should be 

observed that there is a difference between a light-wave and the de-Broglie or Schrodinger wave associated with 

the light-quanta. Firstly, the light-wave is always real, while the de-Broglie wave associated with a light-

quantum moving in a definite direction must be taken to involve an imaginary exponential. Quantum plasma can 

be composed of electrons, ions, positrons, holes and or grains and it plays an important role in ultra small 

electronic devices which has been given by Dutta and McLennan [3], dense astrophysical plasmas system has 

been given by Madappa et al. [4], intense laser-matter experiments has been investigated by Remington et al. [5] 

and non-linear quantum optics has been given by Brambilla et al. [6]. While naturally occurring plasma is 

relatively unusual on earth, it is playing a larger and increasingly important role in how we use and develop 

modern technology, for instance, producing compact chips developing of alternative energy sources, nuclear 

fusion and increasingly becoming part of the industrial area. The study of viscoelastic fluids has become 

important in recent years because of their many applications in petroleum drilling, manufacturing of foods and 

paper, etc. With the growing importance of the non-Newtonian fluids in modern technology, industries and 

astrophysics, the investigations of such fluids are desirable. Hoshoudy [7] has studied the effects of 

incompressible quantum plasma on Rayleigh-Taylor instability of Oldroyd model through a porous medium, 

where he has shown that both maximum  𝑘𝑚𝑎𝑥  and critical point 𝑘𝑐 for the instability are unchanged by the 

addition of the strain retardation and the stress relaxation. Owing to the importance of quantum plasma and 

viscoelasticity, the present paper deals with effect of the quantum pressure and rotation  on Rayleigh-Taylor 

instability for a finite thickness layer of incompressible viscoelastic fluid/plasma in a porous medium . 

 

Mathematical formulation of the problem and perturbation equations 

The initial stationary state whose stability we wish to examine is that of an  
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Figure 1: Geometrical configuration of incompressible heterogeneous (heavy) and viscoelastic fluid saturating a 

porous medium. 

 

incompressible, heterogeneous infinitely extending viscoelastic Rivlin Ericksen fluid of thickness 𝑑 bounded by 

the planes 𝑧 = 0 and 𝑧 = 𝑑; of variable density, kinematic viscosity, kinematic viscoelasticity and quantum 

pressure, 𝑸 arranged in horizontal strata of electrons and immobile ions in a homogeneous, saturated, isotropic 

porous medium with the Oberbeck-Boussinesq approximation for density variation, so that the free surfaces are 

almost horizontal. The fluid is acted on by gravity force 𝒈(0,0, −𝑔) as shown in figure 1. 

 

The relevant equations of motion, continuity (conservation of mass) and incompressibility are 
𝜌

𝜀
[

𝜕

𝜕𝑡
+

1

𝜀
(𝛻. 𝒒)] 𝒒 = −𝛻𝑝 + 𝜌𝒈 −

1

𝑘1
(𝜇 + 𝜇′ 𝜕

𝜕𝑡
) 𝒒 + 𝑸 ( )+ q2 0  ,          (1) 

𝛻. 𝒒 = 0 ,                  (2) 

𝜀
𝜕𝜌

𝜕𝑡
+ (𝒒. 𝛻)𝜌 = 0,               (3) 

 

where  𝒒, 𝜌, 𝑝, 𝜇, 𝜇′, 𝑘1 and 𝜀 represent the filter velocity, density, pressure, viscosity, viscoelasticity, 

medium permeability and medium porosity,  respectively. 

𝑸 =
h
 2

2𝑚𝑒𝑚𝑖
𝜌∇ (

∇2√𝜌

√ρ
)   is represented by Bohm vector potential term (also, is called a quantum pressure). 

It is a fact that, for many situations of interest in ICF (inertial-confinment fusion), unstable flow occurs at 

velocities much smaller than the local sound speed. This has the effect that accelerations in the flow are not 

strong enough to change the density of a fluid element significantly, so the fluid moves without compressing or 

expanding as is seen from equation (3).  

 

The initial steady state whose stability we want to examine is characterized by 

𝒒 = (0, 0, 0), 𝜌 = 𝜌(𝑧), 𝑝 = 𝑝(𝑧)  and  𝑸 = 𝑸(𝑧).                   (4) 

To investigate the stability of the hydrodynamic motion infinitesimal perturbations in the physical quantities 

describing the system (4) are superimposed on the steady state and let 𝒒(𝑢, 𝑣, 𝑤), 𝛿𝜌, 𝛿𝑝,

𝛿𝑸 (𝑄𝑥1,  𝑄𝑦1,  𝑄𝑧1, )  denote respectively, the infinitesimally small perturbations in fluid velocity 𝒒 (0, 0, 0), 

density 𝜌, pressure  𝑝 and quantum pressure 𝑸. 

Substituting these perturbations and using the linear theory, the equations (1) - (3) in the linearized form become 
𝜌0

𝜀

𝜕𝒒

𝜕𝑡
= −𝛻𝛿𝑝 + 𝒈𝛿𝜌 −

1

𝑘1
(𝜇 + 𝜇′ 𝜕

𝜕𝑡
) 𝒒 + 𝛿𝑸 ,                (5) 

𝛻. 𝒒 = 0 ,                        (6) 

𝜀
𝜕

𝜕𝑡
𝛿𝜌 + 𝑤

𝜕𝜌

𝜕𝑧
= 0,                       (7) 

where 

𝛿𝑸 =
ℎ̂2

2𝑚𝑒𝑚𝑖
[

1

2
𝛻 (𝛻2𝛿𝜌) −

1

2𝜌0
𝛻𝛿𝜌 𝛻2𝜌0 −

1

2𝜌0
𝛻𝜌0 𝛻2𝛿𝜌 +

𝛿𝜌

2𝜌0
2 𝛻𝜌0𝛻2𝜌0 −

1

2𝜌0
𝛻(𝛻𝜌0𝛻𝛿𝜌) +

𝛿𝜌

4𝜌0
2 𝛻 (𝛻𝜌0)2 +

1

2𝜌0
2 (𝛻𝜌0)2𝛻𝛿𝜌 +

1

𝜌0
2 (𝛻𝜌0𝛻𝛿𝜌)𝛻𝜌0 −

𝛿𝜌

𝜌0
3 (𝛻𝜌0)3]. 

The equations (5)-(7) in the Cartesian form yield 

𝑧 

𝑧 = 0 

y

 

x
 

 

 

o
 

𝑧 = 0 

 

 𝑧 = 𝑑 

𝒈 = (0, 0, −𝑔) 
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𝜌0

𝜀

𝜕𝑢

𝜕𝑡
= −

𝜕

𝜕𝑥
𝛿𝑝 −

1

𝑘1
(𝜇 +

𝜕

𝜕𝑡
) 𝑢 + 𝑄𝑥1,        (8) 

𝜌0

𝜀

𝜕𝑣

𝜕𝑡
= −

𝜕

𝜕𝑦
𝛿𝑝 −

1

𝑘1
(𝜇 + 𝜇′ 𝜕

𝜕𝑡
) 𝑣 + 𝑄𝑦1,      (9) 

𝜌0

𝜀

𝜕𝑤

𝜕𝑡
= −

𝜕

𝜕𝑧
𝛿𝑝 −

1

𝑘1
(𝜇 + 𝜇′ 𝜕

𝜕𝑡
) 𝑤 + 𝑄𝑧1,      (10) 

𝜀
𝜕

𝜕𝑡
𝛿𝜌 = −𝑤

𝑑𝜌0

𝑑𝑧
,         (11) 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0,         (12) 

where   

𝑄𝑥1 =
ℎ̂2

2𝑚𝑒𝑚𝑖

𝜕

𝜕𝑥
[

1

2
𝐷2𝛿𝜌 −

1

2𝜌0
𝐷𝜌0𝐷𝛿𝜌0 + {

1

2
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) −
1

2𝜌0
𝐷2𝜌0 +

1

2𝜌0
2 (𝐷𝜌0)2} 𝐷𝜌],  

𝑄𝑦1 =
ℎ̂2

2𝑚𝑒𝑚𝑖

𝜕

𝜕𝑦
[

1

2
𝐷2𝛿𝜌 −

1

2𝜌0
𝐷𝜌0𝐷𝛿𝜌 + {

1

2
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) −
1

2𝜌0
𝐷2𝜌0 +

1

2𝜌0
2 (𝐷𝜌0)2} 𝛿𝜌],    

𝑄𝑦1 =
ℎ̂2

2𝑚𝑒𝑚𝑖

𝜕

𝜕𝑧
[

1

2
𝐷3𝛿𝜌 −

1

𝜌0
𝐷𝜌0𝐷2𝛿𝜌 + {

1

2
(

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) −
1

𝜌0
𝐷2𝜌0 +

3

2𝜌0
2 (𝐷𝜌0)3} 𝐷𝛿𝜌 + {−

1

2𝜌0
𝐷𝜌0 (

𝜕2

𝜕𝑥2 +

𝜕2

𝜕𝑦2) +
1

2𝜌0
2 𝐷𝜌0𝐷2𝜌0 −

1

𝜌0
3 (𝐷𝜌0)3} 𝛿𝜌] and  𝐷 =

𝑑

𝑑𝑧
. 

 

Since the boundaries are assumed to be rigid. Therefore, the boundary conditions appropriate to the problem are 

𝑤 = 0, 𝐷𝑤 = 0 at 𝑧 = 0 and 𝑧 = 𝑑, on a rigid surface.                (13) 

 

Analyzing the perturbations into normal modes, it is assumed that all the physical quantities describing the 

perturbations are ascribed  a dependence on 𝑥, 𝑦, 𝑧  and  𝑡   of the form 

 

𝑓(𝑧)𝑒𝑥𝑝 𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝑛1𝑡),                   (14) 

 

where 𝑘𝑥 and  𝑘𝑦  are wavenumbers along  𝑥 and 𝑦 - directions, 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)
1 2⁄

   is the resultant wave 

number and  𝑛1 is the growth rate which is, in general a complex constant. 

Now, using the expression (14), equations (8)-(12) become 
𝜌0

𝜀
(−𝑖 𝑛1) 𝑢 = −𝑖𝑘𝑥𝛿𝑝 −

1

𝑘1
{𝜇 + 𝜇′(−𝑖𝑛1)}𝑢 + 𝑄̅𝑥1,                (15) 

𝜌0

𝜀
(−𝑖 𝑛1) 𝑣 = −𝑖𝑘𝑦𝛿𝑝 −

1

𝑘1
{𝜇 + 𝜇′(−𝑖𝑛1)}𝑣 + 𝑄̅𝑦1,                (16) 

𝜌0

𝜀
(−𝑖 𝑛1) 𝑤 = −𝐷𝛿𝑝 − 𝑔𝛿𝜌 −

1

𝑘1
{𝜇 + 𝜇′(−𝑖𝑛1)}𝑤 + 𝑄̅𝑧1,                (17) 

𝑖𝑘𝑥𝑢 + 𝑖𝑘𝑦𝑣 + 𝐷𝑤 = 0,                     (18) 

𝜀 𝑖𝑛 𝛿𝜌 = 𝑤𝐷𝜌0,  where                    (19) 

𝑄̅𝑥1 =
ℎ̂2

2𝜀𝑛𝑚𝑒𝑚𝑖
[

1

2
𝐷𝜌0𝐷2𝑤 + {𝐷2𝜌0 −

1

2𝜌0
(𝐷2𝜌0)2} 𝐷𝑤 + {

1

2
𝐷3𝜌0 −

1

𝜌0
𝐷𝜌0𝐷2𝜌0 −

𝑘2

2
𝐷𝜌0 +

1

2𝜌0
2 (𝐷𝜌0)3} 𝑤],  

𝑄̅𝑦1 =
𝑘𝑦

𝑘𝑥
𝑄̅𝑥1,        

𝑄̅𝑧1 =
ℎ̂2

2𝜀𝑛𝑚𝑒𝑚𝑖
[

1

2
𝐷𝜌0𝐷3𝑤 + {

3

2
𝐷2𝜌0 −

1

𝜌0
(𝐷2𝜌0)2} 𝐷2𝑤 + {

1

2
𝐷3𝜌0 −

1

𝜌0
𝐷𝜌0𝐷2𝜌0 −

𝑘2

2
𝐷𝜌0 +

3

2𝜌0
2 (𝐷𝜌0)3} 𝐷𝑤𝑘2 +

1

2
𝐷4𝜌0 −

1

𝜌0
𝐷𝜌0𝐷3𝜌0 −

𝑘2

2
𝐷2𝜌0 −

1

𝜌0
(𝐷2𝜌0)2 +

5

2𝜌0
2 (𝐷𝜌0)2𝐷2𝜌0 +

𝑘2

2𝜌0
(𝐷𝜌0)2 −

1

𝜌0
2 (𝐷𝜌0)4].      

Multiplying equation (15) by −𝑖𝑘𝑥 and equation (16) by −𝑖𝑘𝑦, adding and using equation (18) and (19), we 

obtain 
𝜌𝑛1

𝜀
𝐷𝑤 = 𝑖𝑘2𝛿𝑝 + 𝑘𝑥𝑄̅𝑥1 + 𝑘𝑦𝑄̅𝑦1 −

𝑖

𝑘1
(𝜇 − 𝜇′𝑖 𝑛1)𝐷𝑤.                   (20) 

Multiplying equation (15) by −𝑖𝑘𝑦 and equation (16) by  𝑖𝑘𝑥, adding and using equation (4.2.18), we obtain 
𝜌𝑛1

𝜀
𝜉 = −𝑖𝑘𝑥𝑄̅𝑦1 + 𝑖𝑘𝑦𝑄̅𝑥1 −

𝑖

𝑘1
(𝜇 − 𝜇′𝑖𝑛1)𝜉,                    (21) 

where 𝜉 = 𝑖𝑘𝑥𝑣 − 𝑖𝑘𝑦𝑢 is the 𝑧-component  of vorticity. Since  𝑘𝑥𝑄̅𝑦1 = 𝑘𝑦𝑄̅𝑥1, therefore, equation (21) yields 

that 𝜉 = 0. 

Eliminating variables  𝛿𝑝, 𝑄̅𝑥1, 𝑄̅𝑦1 and 𝑄̅𝑧1 from the system of equations (17) and (20), a characteristic 

equation in  𝑤 obtained is 

𝜌0𝑘2 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′ 𝑖𝑛1)𝑤} − {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′ 𝑖𝑛1)} (𝐷𝜌0)𝐷𝑤 − {−𝑖𝑛1 +

𝜀𝜌0

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} 𝐷2𝑤 +

𝑔𝑘2

𝑖𝑛1
(𝐷𝜌0)𝑤 +

𝑘2

𝑖𝑛1
(

ℎ̂2

4𝑚𝑒𝑚𝑖
) [

1

𝜌0
(𝐷𝜌0)2𝐷2𝑤 −

1

𝜌0
2 (𝐷𝜌0){(𝐷𝜌0)2 − 2𝜌0𝐷2𝜌0}𝐷𝑤 −

𝑘2

𝜌0
(𝐷𝜌0)2𝑤] = 0.      

(22)                                
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Now the case of incompressible continuously stratified viscoelastic plasma layer is considered in a porous 

medium and the density, viscosity, viscoelasticity and quantum pressure are assumed to vary exponentially with 

the vertical axis as follows:  

𝜌0(𝑧) = 𝜌0(0)𝑒𝑥𝑝 (
𝑧

𝐿𝐷
) , 𝜇0(𝑧) = 𝜇0(0)𝑒𝑥𝑝 (

𝑧

𝐿𝐷
) , 𝜇0

′ (𝑧) = 𝜇0
′ (0)𝑒𝑥𝑝 (

𝑧

𝐿𝐷
) ,  𝑛𝑞0

(𝑧) = 𝑛𝑞0
(0)𝑒𝑥𝑝 (

𝑧

𝐿𝐷
),  

                                  (23) 

where  𝜌0(0), 𝜇0(0), 𝜇0
′ (0), 𝑛𝑞0

(0)   and  𝐿𝐷   are constants and so the coefficient of kinematic viscosity,   

𝜈 (=
𝜇

𝜌
=

𝜇0

𝜌0
) and coefficient of kinematic viscoelasticity  𝜈′ (=

𝜇′

𝜌
=

𝜇0
′

𝜌0
) are constant everywhere. 

Using the stratifications of the form given by (23), the characteristic equation (22) transforms to 

[𝑖𝑛1 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] 𝐷2𝑤 +
1

𝐿𝐷
[𝑖𝑛1 {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] 𝐷𝑤 − 𝑘2 [〈{𝑖𝑛1 {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2} − 𝑛𝑞
2〉 +

𝑔

𝐿𝐷
] 𝑤 = 0,                               (24) 

where  𝑛𝑞
2 =

ℎ̂2𝑘2

4𝑚𝑒𝑚𝑖𝐿𝐷
2     represents the parameter accounting for quantum pressure. 

Using the boundary conditions (13), the equation (24) implies that 

𝐷2𝑤 = 0  at  𝑧 = 0 and 𝑧 = 𝑑.                                  (25) 

The exact solution of the eigen-value problem (24) satisfying the boundary conditions (13) and (25), is chosen 

to be 

  𝑤 = 𝑠𝑖𝑛 (
𝑛′𝜋

𝑑
𝑧) 𝑒𝑥𝑝(𝜆𝑧), where 𝑛′ is a positive integer.                              (26) 

Substituting the solution given by (26) in equation (24), we obtain 

[𝑖𝑛1 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] [− (
𝑛′𝜋

𝑑
𝑧) + 2𝜆 (

𝑛′𝜋

𝑑
) 𝑐𝑜𝑠 (

𝑛′𝜋

𝑑
𝑧) + 𝜆2𝑠𝑖𝑛 (

𝑛′𝜋

𝑑
𝑧)] +

1

𝐿𝐷
[𝑖𝑛1 {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] [(
𝑛′𝜋

𝑑
) 𝑐𝑜𝑠 (

𝑛′𝜋

𝑑
𝑧) + 𝜆𝑠𝑖𝑛 (

𝑛′𝜋

𝑑
𝑧) − 𝑘2 [𝑖𝑛1 {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] +

𝑔

𝐿𝐷
𝑠𝑖𝑛 (

𝑛′𝜋

𝑑
𝑧)] = 0 .                                                                  (27) 

Equating the coefficients of  𝑠𝑖𝑛 (
𝑛′𝜋

𝑑
𝑧)  and  𝑐𝑜𝑠 (

𝑛′𝜋

𝑑
𝑧) in equation (4.2.27) yield that 

[𝑖𝑛1 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] [𝜆2 − (
𝑛′𝜋

𝑑
)

2

+
𝜆

𝐿𝐷
] − 𝑘2 [〈𝑖𝑛1 {−𝑖𝑛1 +

𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2〉 +
𝑔

𝐿𝐷
] = 0  

and                                                (28) 

[𝑖𝑛1 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} − 𝑛𝑞

2] [2𝜆 (
𝑛′𝜋

𝑑
) +

1

𝐿𝐷
(

𝑛′𝜋

𝑑
)] = 0.                              (29) 

As {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} ≠ 𝑛𝑞

2 ,  therefore, equation (4.2.29) implies that 𝜆 = −
1

2𝐿𝐷
.   

Substituting this value of  𝜆 in  equation (4.2.28), the dispersion relation so obtained is 

𝑖𝑛1 {−𝑖𝑛1 +
𝜀

𝑘1
(𝜈 + 𝜈′𝑖𝑛1)} = 𝑛𝑞

2 −
4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑘2𝑑2𝐿𝐷
2 +4𝑛′2𝜋2𝐿𝐷

2
.                               (30) 

Now introducing the non-dimensional quantities 

𝑛1
∗2 =

𝑛1
2

𝑛𝑝𝑒
2 , 𝑛𝑞

∗ 2 =
ℎ̂2

4𝑚𝑒𝑚𝑖𝐿𝐷
4 𝑛𝑝𝑒

2 , 𝜀∗ =
𝜀

𝑛𝑝𝑒
, 𝜈∗ =

𝜈

𝑛𝑝𝑒
, 𝜈 ′∗ =

𝜈′

𝑛𝑝𝑒
, 𝑘1

∗ =
𝑘1

𝑛𝑝𝑒
,  𝑑∗2 =

𝑑2

𝐿𝐷
2 ,  𝑘∗2 = 𝑘2𝐿𝐷

2 ,  𝑔∗ =

𝑔

𝑛𝑝𝑒
2 𝐿𝐷

 , where  𝑛𝑝𝑒 = (
𝜌𝑒2

𝑚𝑒
2𝜀0

)
1 2⁄

  is the plasma frequency, 

 the equation (4.2.30) after dropping the astricts for our convenience yields 

𝑎1(𝑖 𝑛1)2 + 𝑎2(𝑖 𝑛1) + 𝑎3 = 0,                               (31) 

where 

𝑎1 = 1 +
𝜀 𝜈′

𝑘1
, 𝑎2 = −

𝜀 𝜈

𝑘1
,  𝑎3 = 𝑛𝑞

2 −
4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑔𝑘2𝑑2+4𝑛′2𝜋2
 .                           (32) 

Since 𝑛1 = 𝑛1𝑟 + 𝑖𝑛1𝑖 and in the case of 𝑛1𝑟 = 0 and 𝑛1𝑖 ≠ 0 (stable oscillations), then the equation (4.2.31) 

becomes 

𝑎1𝑛1𝑖
2 − 𝑎2𝑛1𝑖 + 𝑎3 = 0.                              (33) 

In the absence of  𝑛𝑞, equation (31) reduces to   

  {(1 +
𝜀 𝜈′

𝑘1
) 𝑛1

2 − (
𝜀 𝜈

𝑘1
) 𝑛1} (𝑑2 + 4𝑔𝑘2𝑑2 + 4𝑛′2𝜋2) − 4𝑔𝑘2𝑑2𝐿𝐷 = 0,  (34) 

which is in good agreement with the earlier results by Sunil et al. (2004). 

Now some special cases are considered from equation (31) to clarify the different role of the parameters on the 

physical problem 
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Case a):  When  𝜀 = 0, 𝜈 = 0, 𝜈′ = 0, 𝑛𝑞 = 0 , the expressions (32) imply that 

𝑎1 = 1, 𝑎2 = 0  and 

𝑎3 = 𝑛𝑞
2 −

4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑔𝑘2𝑑2+4𝑛′2𝜋2
. 

So the classical normalized growth rate of equation (33) in the absence of quantum physics denoted by 𝑛𝑖𝑐
 is 

given as 

𝑛𝑖𝑐 = √
4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑔𝑘2𝑑2+4𝑛′2𝜋2
 .                               (35) 

In the absence of viscoelastic parameter ν′ = 0,  the equation (.33) reduces to that of the result by Hoshoudy 

(2009). 

 

Case b): When  𝜀 = 0, 𝜈 = 0, 𝜈′ = 0, 𝑛𝑞 ≠ 0 , we find that 𝑎1 = 1, 𝑎2 = 0 while 𝑎3 
remains the same as in 

equation (32). So the quantum normalized growth rate from equation (33) is 

𝑛𝑖𝑔 = √
4𝑔𝑘2𝑑2𝐿𝐷

𝑑2+4𝑔𝑘2𝑑2+4𝑛′2𝜋2
− 𝑛𝑞 

2 𝑘2,                              (36) 

which is in good agreement with the earlier result of Hoshoudy (8). 

It is clear from the comparison of expressions (35) and (36) that the quantum pressure has stabilizing effect on 

Rayleigh-Taylor instability problem.  

 

II. Numerical Results and Discussion 

To investigate the effects of various parameters on the stability of the system under consideration, 

equation (33) has been solved numerically using the software Fortran 95. In these figures the fixed permissible 

values of parameters are  𝜀 = 0.3, 𝜈 = 0.2, 𝑛𝑞 = 0.6 , 𝑘1 = 0.4,  𝑛′ = 1, 𝑑 = 1 and  𝑔 = 9.8 m sec2⁄ , 

respectively. 

Figure 2 shows the variation of the square of normalized growth rate 𝑛𝑖
2 versus the square of normalized 

wavenumber 𝑘2 satisfying the equation (33). The graph shows that  the presence of kinematic viscoelasticity 

does not affect both the maximum point 𝑘𝑚𝑎𝑥
2    for the instability and corresponding critical point 𝑘𝑐

2 for the 

stability, where 𝑘𝑚𝑎𝑥
2 = 2.5 and 𝑘𝑐

2 → 4.2 at 𝜈′ =  0.4, 0.6, 0.8. However, the kinematic viscoelasticity has a 

stabilizing role on the considered system, as the growth rates decrease with the increase in kinematic 

viscoelasticity. 

0 2 4

0.0

0.5

1.0

1.5



=



=



=

 n
2

1i

 k




=

k


max
=2.5

k
c
=4.2

 
Figure 2: Variations of the square of normalized growth rate  𝑛1𝑖

2   versus the square normalized wavenumber 𝑘2 

for four different values of kinematic viscoelasticity  𝜈′ = 0.0, 0.4, 0.6, 0.8 . 
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Figure 3: Variations of the square of normalized growth rate 𝑛1𝑖

2   versus the square normalized wavenumber  𝑘2 

for four different values of quantum plasma  𝑛𝑞 = 0.0, 0.4, 0.6, 0.9. 

 

In figure 3, the graph shows that 𝑘𝑐
2 takes different values 𝑘𝑐

2 → 4.2, 1.5 at  𝑛𝑞 = 0.6, 0.9, while the 

values of  𝑘𝑚𝑎𝑥
2   at 𝑛𝑞 = 0.6, 0.9 are 1.2, 2.5 , respectively, approaching to complete stability. Also, it is 

observed that, no mode of maximum instability exists when 𝑛𝑞 = 0 as the square normalized growth rate 𝑛1𝑖
2  

usually increases by increase with the square normalized wavenumber values, while in the presence of quantum 

term 𝑛𝑞 = 0.6, there is a mode of maximum instability, where the square normalized growth rate  𝑛1𝑖
2   increases 

with 𝑘2 increases through the range 0 < 𝑘2    (  𝑘𝑚𝑎𝑥
2   the square normalized growth rate arrives to maximum 

instability) and when 𝑘2 > 𝑘𝑚𝑎𝑥
2  ,  the square normalized growth rate  𝑛1𝑖

2   starts to decrease as  𝑘2  increases. 

This means that the quantum pressure parameter has a crucial capability to suppress the instability. 

 

III. Conclusions 

The effect of quantum pressure on the Rayleigh-Taylor instability of stratified viscoelastic  Rivlin 

Ericksen fluid / plasma saturating a porous medium has been studied. The effect of elasticity is revealed through 

the quantum pressure. It is found that, the critical point for the stability 𝑘𝑐
2   that occurs in the presence of 

quantum term remains unchanged by the addition of the other parameters of the problem. Both 𝑘𝑚𝑎𝑥 and 𝑘𝑐  

point for the instability are unchanged by the addition of kinematic viscoelasticity parameter. All growth rates 

are reduced in the presence of porosity of the medium, the medium permeability, kinematic viscosity and 

kinematic viscoelasticity. These results indicate that quantum pressure plays a major role in approaching a 

complete stability.  
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