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Abstract  

One of the fascinating concept in graph theory is graph coloring. It is assigning colors to the vertices of graphs 

such that adjacent vertices have distinct colors and minimum number of colors needed to color the graph is 

called chromatic number. In this article, the gamma chromatic number and rainbow neighbourhood number of 

line Mycielskian graph are computed, Also the equitable chromatic number of line Mycielskian of some graphs 

are calculated. 
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I. INTRODUCTION  

Let 𝐺 be the graph with n vertices and m edges, degree of the vertex 𝑑(𝑢) is defined as the number of 

edges that are incident to it and the minimum degree among the vertices is denoted by 𝛿(𝐺) while ∆(𝐺) is 

maximum degree. Neighbourhood of the vertex 𝑣 ∈ 𝑉(𝐺) is the collection of all vertices that are adjacent to 

vertex v including the vertex v in that vertex set is referred as closed neighbourhood and is denoted by 𝑁[𝑣]. 

The line graph 𝐿(𝐺) of graph 𝐺 is the graph with vertex set same as the edge set of 𝐺 and two vertices in 𝐿(𝐺) 

are adjacent if the corresponding edges in 𝐺 have a vertex in common [2]. Graph coloring is an exciting branch 

of graph theory with its applications in many different fields. It is a way to assign colors to the vertices of a 

graph such that no two adjacent vertices have the same color. Graph coloring remains a rich area of study in 

mathematics and computer science with applications in areas such as scheduling, map coloring, register 

allocation in compilers and more. The concept of graph coloring dates back to the 1850's when Francis Guthrie 

proposed the "Four Color Problem"[10], which asked whether it is possible to color a map using only four 

colors in such a way that no two adjacent regions share the same color. This problem sparked interest in graph 

coloring. Alfred Kempe, an English mathematician, published a flawed proof of the Four Color Theorem in 

1879 [10]. Although his proof was ultimately found to be incorrect, his work contributed to the development of 

graph coloring techniques. Percy Heawood, a British mathematician, exposed a flaw in Alfred Kempe's proof 

1890 [9], that had been considered as valid for 11 years. The four color theorem being an open question again, 

he established the weaker five color theorem. The four-color theorem itself was finally established by a 

computer-based proof in 1976. 

 A proper vertex coloring of a graph is no adjacent vertices share the same color. The minimum number of 

colors are needed for the proper vertex coloring of a graph is called chromatic number [2]. 

 

Definition 1.1. [4]. The rainbow neighbourhood number of the graph 𝐺, indicated as 𝑟𝜒(𝐺) and is denoted as 𝑣 ∈

𝑉(𝐺) then closed neighbourhood 𝑁[𝑣] in a graph 𝐺 called a "rainbow neighbourhood" which includes at least 

one colored vertex of each color class in the chromatic coloring 𝐶 of 𝐺. Let C represents the chromatic coloring 

of graph 𝐺, is the total number of vertices that produce rainbow neighbourhoods. 

 

Definition 1.2. [8]. If vertices of graph 𝐺 can be divided into 𝑟- independent sets  {𝑣1, 𝑣2, … 𝑣𝑟} and every pair of 

vertices {𝑣𝑖 , 𝑣𝑗} hold the condition ||𝑣𝑖| − |𝑣𝑗|| ≤ 1, then the graph 𝐺 is said to be equitably 𝑟-colorable. The 
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equitable chromatic number of 𝐺 is the least integer 𝑟, for which 𝐺 is equally 𝑟-colorable and it is represented as 

𝜒=(𝐺). 

 

Definition 1.3. [3]. A set 𝑆 ⊆ 𝑉 (𝐺) of vertices in graph 𝐺 is called a dominating set if every 𝑣 ∈ 𝑉(𝐺) is either 

an element of 𝑆 or is adjacent to an element of 𝑆. 

 

A subset 𝑈 of 𝑉(𝐺) is said to be 𝐶-colorful if every vertex of 𝑈 receives different colors. 

 

Definition 1.4.[1]. A proper coloring 𝐶 of a graph 𝐺 is said to be a gamma coloring of 𝐺 if there exists a 

dominating set which is 𝐶 −colorful. The gamma chromatic number χγ(G) is the minimum number of colors 

needed for a gamma coloring.  

 

Definition 1.5. [6]. Let  𝑒𝑖 be the set of edges of 𝐺, for each edge 𝑒𝑖  of 𝐺, a new vertex 𝑒𝑖
′ is taken and the 

resulting set of vertices is denoted by 𝐸1(𝐺). The line Mycielskian graph 𝐿𝜇(𝐺) of a graph 𝐺 is defined as the 

graph having vertex set 𝐸(𝐺) ∪ 𝐸1(𝐺) ∪ {𝑒} and edge set 𝐸(𝐿(𝐺)) ∪ {𝑒𝑖𝑒𝑖
′: 𝑒𝑖𝑒𝑗  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺} ∪

{𝑒𝑖
′𝑒: 𝑒𝑖

′ ∈ 𝐸1(𝐺)}. 

 

 
 

Figure 1. (a) Path 𝑃7    (b) Line Mycielskian graph of  𝐿𝜇(𝑃7) 

 

The following are of immediate use 

  

Proposition 1.1.[6]. For 𝑛 ≥ 2,  𝑟𝜒(𝑃𝑛) + 𝑟𝜒(𝐿(𝑃𝑛)) = 2𝑛 − 1. 

Proposition 1.2. [6]. For 𝑛 ≥ 3,  

𝑟𝜒(𝐶𝑛) +  𝑟𝜒(𝐿(𝐶𝑛))  = {
2𝑛,  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

6,  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
 

  

Theorem 1.1[4]. For any graph 𝐺, the edge-chromatic number satisfies the inequalities ∆≤ 𝜒′ ≤ ∆ + 1.  

 

In the literature, there are various research articles that deal with equitable coloring, rainbow neighbourhood and 

gamma coloring of graph valued functions see [5, 7, 8, 11, 12, 13]. 

 

II. RESULT AND DISCUSSION 

2.1 Gamma coloring 

Theorem 2.1 For any graph 𝐺,  𝜒𝛾 (𝐿𝜇(𝐺)) = 𝜒𝛾(𝐿(𝐺)) + 1 or  𝜒𝛾(𝐿𝜇(𝐺))  =  𝜒𝛾(𝐿(𝐺)). 

Proof: Let 𝑐1 be the gamma coloring of 𝐿(𝐺) with a colorful dominating set 𝑆1. Let 𝑏1 be gamma coloring  to 

𝐿𝜇(𝐺) using 𝜒𝛾(𝐿(𝐺)) + 1 colors which is as follows. 
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 𝐿𝑒𝑡,                            𝑏1(𝑒𝑖) = 𝑏1(𝑒𝑖
′) = 𝑐1(𝑒𝑖)                                                      (1)                                                                    

 Assign a new color to the root vertex 𝑒. We first prove that 𝑏1 is a proper coloring of 𝐿𝜇(𝐺).  If  𝑞 ∈ 𝐸(𝐿𝜇(𝐺)), 

then 𝑞 =  𝑒𝑖𝑒𝑗 or  𝑞 =  𝑒𝑖
′𝑒𝑗  or   𝑞 =  𝑒𝑒𝑖

′. 

If 𝑞 =  𝑒𝑖𝑒𝑗 or 𝑞 =  𝑒𝑖
′𝑒𝑗   then,  𝑒𝑖𝑒𝑗 ∈ 𝐸(𝐿(𝐺)) which implies that 𝑐1(𝑒𝑖) ≠ 𝑐1(𝑒𝑗) and hence from 

equation 1,   𝑏1(𝑒𝑖) ≠ 𝑏1(𝑒𝑗). 

If 𝑞 =  𝑒𝑖
′𝑒 then 𝑏1(𝑒𝑖) ≠ 𝑏1(𝑒), because 𝑏1(𝑒𝑖) ≠ 𝑏1(𝑒𝑖

′). Hence, 𝑏1(𝑒) needs new color. This shows 

𝑏1 is a proper coloring. 

If 𝑆1 is a dominating set of 𝐿(𝐺) then, 𝑆1 ∪ {𝑒} is a dominating set 𝐿𝜇(𝐺).  𝑆1 is a 𝑐1 − colorful set in 

𝐿(𝐺), Since from equation 1, 𝑐1(𝑒𝑖) = 𝑏1(𝑒𝑖) for all 𝑒𝑖 ∈ 𝑉(𝐿(𝐺)). It follows that 𝑆1 ∪ {𝑒} is a 𝑏1-colorful set 

in   𝐿𝜇(𝐺). 

Thus 𝑆1 ∪ {𝑒} is a colorful dominating set of    𝐿𝜇(𝐺) and also line Mycielskian graph has a gamma 

coloring using  𝜒𝛾(𝐿(𝐺) + 1) colors. Hence, 𝜒𝛾(𝐿𝜇(𝐺)) =  𝜒𝛾(𝐿(𝐺)) + 1. 

Let us now prove that, 𝜒𝛾(𝐿𝜇(𝐺)) =  𝜒𝛾(𝐿(𝐺)).  Let 𝑏2 be the minimum gamma coloring of 𝐿𝜇(𝐺) 

with colorful dominating set 𝑍. Let 𝑐2  be the gamma coloring of 𝐿(𝐺) using 𝜒𝛾 (𝐿𝜇(𝐺)) colors which is as 

follows. 

  Let,                                                

                                     {
  𝑏2(𝑒𝑖) = 𝑐2(𝑒𝑖

′),  𝑖𝑓 𝑒𝑖
′ ∈ 𝑍,

𝑏2(𝑒𝑖) = 𝑐2(𝑒𝑖), otherwise.                                              (2)                  
 

  Now we have to show that 𝑐2 is a proper coloring of 𝐿(𝐺). If 𝑒𝑖𝑒𝑗 ∈ 𝐸(𝐿(𝐺))  then, 𝑒𝑖𝑒𝑗, 𝑒𝑖
′𝑒𝑗 , 𝑒𝑖𝑒𝑗

′ ∈

𝐸 (𝐿𝜇(𝐺)).  

If 𝑒𝑖
′, 𝑒𝑗

′ ∉ 𝑍 and 𝑒𝑖𝑒𝑗 ∈ 𝐸 (𝐿𝜇(𝐺)) then, 𝑏2(𝑒𝑖) ≠ 𝑏2(𝑒𝑗) from equation 2, 𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

If 𝑒𝑖
′ ∈ 𝑍 , 𝑒𝑗

′ ∉ 𝑍  and 𝑒𝑖
′𝑒𝑗 ∈ 𝐸 (𝐿𝜇(𝐺)) then, 𝑏2(𝑒𝑖

′) ≠ 𝑏2(𝑒𝑗) from equation  2, 𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

If 𝑒𝑗
′ ∈ 𝑍 , 𝑒𝑖

′ ∉ 𝑍  and 𝑒𝑗
′𝑒𝑖 ∈ 𝐸 (𝐿𝜇(𝐺)) then, 𝑏2(𝑒𝑗

′) ≠ 𝑏2(𝑒𝑖) from equation 2, 𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

If 𝑒𝑖
′, 𝑒𝑗

′ ∈ 𝑍  then,  𝑏2(𝑒𝑖
′) ≠ 𝑏2(𝑒𝑗

′), since 𝑍 is colorful and from equation 2,  𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

Thus, whenever we have 𝑒𝑖 , 𝑒𝑗 ∈ 𝐸(𝐿(𝐺))  we have 𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). Hence 𝑐2 is a proper coloring of  

𝐿(𝐺). 

Let 𝑆2  =  {𝑒𝑖 ∈ 𝐸(𝐿(𝐺))|  𝑒𝑖  ∈ 𝑍  𝑜𝑟   𝑒𝑗
′ ∈ 𝑍 } . We now to show that 𝑆2 be a colorful dominating set 

in 𝐿(𝐺). We first verify that 𝑆2  is a dominating set of 𝐿(𝐺),  either there exists a vertex 𝑒𝑖  ∈ 𝑍  such that  𝑒𝑖𝑒𝑗 ∈

𝐸 (𝐿𝜇(𝐺))  or there exists a vertex 𝑒𝑖
′ ∈ 𝑍  such that    𝑒𝑖

′𝑒𝑗 ∈ 𝐸 (𝐿𝜇(𝐺)). In either case, we have      𝑒𝑖 ∈ 𝑆1 and 

such that 𝑒𝑖𝑒𝑗 ∈ 𝐸(𝐿(𝐺)) Therefore, 𝑆2 is dominating set in 𝐺. 

If 𝑒𝑖 , 𝑒𝑗 ∈ 𝑆2 then 𝑒𝑖
′, 𝑒𝑗

′ ∈ 𝑍 𝑜𝑟 𝑒𝑖
′ ∈ 𝑍, 𝑒𝑗

′ ∉ 𝑍  𝑜𝑟 𝑒𝑖
′ ∉ 𝑍, 𝑒𝑗

′ ∈ 𝑍  𝑜𝑟  𝑒𝑖
′, 𝑒𝑗

′ ∉ 𝑍. 

If 𝑒𝑖
′, 𝑒𝑗

′ ∈ 𝑍  then, we know 𝑍 is colorful in 𝐿𝜇(𝐺), which implies 𝑏2(𝑒𝑖
′) ≠ 𝑏2(𝑒𝑗

′), from the equation 2,  

𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 



Line Mycielskian Graphs and Colorings  

www.ijres.org                                                                                                                                             147 | Page 

If 𝑒𝑖
′ ∈ 𝑍 , 𝑒𝑗

′ ∉ 𝑍  then 𝑒𝑖
′, 𝑒𝑗 ∈ 𝑍  and Z is colorful in 𝐿𝜇(𝐺), which implies 𝑏2(𝑒𝑖

′) ≠ 𝑏2(𝑒𝑗), from the equation 

2, 𝑐2 (𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

If 𝑒𝑗
′ ∈ 𝑍 , 𝑒𝑖

′ ∉ 𝑍  then 𝑒𝑗
′, 𝑒𝑖 ∈ 𝑍  and 𝑍 is colorful in 𝐿𝜇(𝐺), which implies 𝑏2(𝑒𝑖) ≠ 𝑏2(𝑒𝑗

′), from the equation 

2,  𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

If 𝑒𝑖
′, 𝑒𝑗

′ ∉ 𝑍 and 𝑒𝑖 , 𝑒𝑗 ∈ 𝑍  and 𝑍 is colorful in 𝐿𝜇(𝐺), which implies 𝑏2(𝑒𝑖) ≠ 𝑏2(𝑒𝑗), from the equation 2, 

𝑐2(𝑒𝑖) ≠ 𝑐2(𝑒𝑗). 

Thus 𝑆2  is a colorful dominating set, hence 𝜒𝛾(𝐿𝜇(𝐺))  =  𝜒𝛾(𝐿(𝐺)). 

2.2 Rainbow Neighbourhood  

Theorem 2.2. For any graph 𝐺, 𝑟𝜒 (𝐿𝜇(𝐺)) =  𝑟𝜒(𝐿(𝐺)) + 1. 

Proof: Let 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛} be the vertex set of 𝐿(𝐺). Let 𝐸′  =  {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } be the set of newly introduced 

vertices such that 𝑒𝑖
′ corresponds to the vertex 𝑒𝑖. If 𝑒𝑘 and 𝑒𝑙 are adjacent to 𝑒𝑖 then, 𝑒𝑖

′ is adjacent to  𝑒𝑘 and 𝑒𝑙. 

  Take another vertex 𝑒, which is adjacent to all vertices of 𝐸′. Let 𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑙} be the chromatic 

coloring of the graph 𝐿(𝐺).  𝑒𝑖  and 𝑒𝑖
′ can have the same color when 𝑒𝑖  is not adjacent to 𝑒𝑖

′.  Since 𝑒 is adjacent 

to all 𝑒𝑖
′ no color in 𝐶 can be assigned to the vertex 𝑒. Therefore, we need another color to color 𝑒, say 𝑐𝑙+1. 

Hence chromatic coloring of 𝐿𝜇(𝐺) is 𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑙 , 𝑐𝑙+1}.   In 𝐿𝜇(𝐺) the vertex 𝑒 is not adjacent to vertices 

in E. This clearly shows that the vertices in 𝐸 will not be in the rainbow neighbourhood of 𝐿𝜇(𝐺). It can be 

observed that the corresponding vertex 𝑒𝑖
′ will be in a rainbow neighbourhood of 𝐿𝜇(𝐺). Since 𝑒𝑖

′ is adjacent to 

the vertices in all color classes in 𝐶 and is adjacent to the vertex 𝑒 having color 𝑐𝑙+1 Therefore, every vertex in 

𝐸′ belongs to some rainbow neighbourhoods of 𝐿𝜇(𝐺). Moreover, the vertex 𝑒 is adjacent to all vertices of 𝐸′, 

which belong to different color classes in 𝐶 and hence belongs to some rainbow neighbourhoods of 𝐿𝜇(𝐺) 

Therefore, 𝑟𝜒 (𝐿𝜇(𝐺)) = 𝑟𝜒(𝐿(𝐺)) + 1. 

Corollary 2.3. The rainbow neighbourhood number of path is 𝑟𝜒 (𝐿𝜇(𝑃𝑛)) = 𝑛. 

      Proof: Let 𝑃𝑛 be the path with 𝑛 vertices and 𝑛 − 1 edges. From the Proposition 1.1, we have 𝑟𝜒(𝐿(𝑃𝑛))  =

 𝑛 − 1  and from the Theorem 2.2, the result is obvious.  

Corollary 2.4. The rainbow neighbourhood number of cycle is  

 𝑟𝜒 (𝐿𝜇(𝐶𝑛)) = {
𝑛 + 1,  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,

4, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
 

       Proof: Let 𝐶𝑛 be the cycle with n vertices. Since 𝐿(𝐶𝑛)  =  𝐶𝑛, From the Proposition 1.2, we have 

 𝑟𝜒(𝐿(𝐶𝑛))  =  𝑛, if n is even and  𝑟𝜒(𝐿(𝐶𝑛)) = 3, if n is odd and from the Theorem 2.2, the result is obvious. 

Equitable coloring  

Theorem 2.5 The equitable chromatic number of Line Mycielskian of cycle is 

 𝜒= (𝐿𝜇(𝐶𝑛)) = {
3,  𝑖𝑓 𝑛 = 4,6,8,
4, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof: Let  {𝑒1, 𝑒2, … , 𝑒𝑛} be the set of vertices of   𝐿(𝐶𝑛)  and 𝑉 (𝐿𝜇(𝐶𝑛)) =  𝑉 (𝐿(𝐶𝑛)) ∪ {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } ∪

{𝑒}.  Now we partition the vertex set of  𝐿𝜇(𝐶𝑛)  as follows: 
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Case 1. For 𝑛 = 4,6,8. 

 For 𝑛 = 4,  𝑉1 = {𝑒1, 𝑒3, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒4
′ }, 𝑉3 = {𝑒1

′ , 𝑒2
′ , 𝑒3

′ }. 

 For 𝑛 = 6, 𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒4
′  , 𝑒6

′ }  𝑉3 =  {𝑒1
′ , 𝑒2

′ , 𝑒3
′ , 𝑒5

′ }. 

 For 𝑛 = 8, 𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒8, 𝑒4 
′ , 𝑒6

′ },  𝑉3 = {𝑒1
′ , 𝑒2

′ , 𝑒3
′ , 𝑒5

′ , 𝑒7
′ , 𝑒8

′ }. 

The above partition holds the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, where 𝑖 = 1,2,3 and 𝑗 = 1,2,3. Hence, it is 

equitable coloring. 

Case 2. If 𝒏 ≥ 𝟏𝟎 and n is even. 

We know  𝜒′ (𝐺) = 𝐿(𝐺), From the Theorem 1.1, the chromatic number of 𝐿(𝐶𝑛) is 2, 

when n is even, (𝑆𝑎𝑦 𝑅1 𝑎𝑛𝑑 𝑅2). So, in 𝐿𝜇(𝐶𝑛), the vertices of line graph of 𝐶𝑛 are colored with 

𝑅1 𝑎𝑛𝑑 𝑅2. The newly introduced vertex 𝑒  will be colored with 𝑅1 𝑜𝑟 𝑅2. If  𝜒= (𝐿𝜇(𝐶𝑛)) = 3. The newly 

introduced vertices {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } are colored with 𝑅3. We conclude that the partition of   𝑉 (𝐿𝜇(𝐶𝑛)) into three   

sets    satisfying ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, 𝑖 ≠ 𝑗. is not possible because the partition does not satisfy the condition 

||𝑉𝑖| − |𝑉𝑗|| ≤ 1, 𝑖 ≠ 𝑗 a contradiction. Hence,  𝜒= (𝐿𝜇(𝐶𝑛)) ≥ 4. 

For equality,  

𝑉1 = {𝑒1, 𝑒3, 𝑒5, … , 𝑒𝑛−1} ∪ {𝑒} , 𝑉2 = {𝑒2, 𝑒4, 𝑒6, … , 𝑒𝑛}, 𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ … , 𝑒𝑛−1

′ }   𝑎𝑛𝑑    𝑉4 = {𝑒2
′ , 𝑒4

′ , 𝑒6
′ … , 𝑒𝑛

′ }. 

The above partition holds the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, where 𝑖 = 1,2,3,4 and 𝑗 = 1,2,3,4. Hence, it is 

equitable coloring. 

When n is odd, 

From the Theorem 1.1, the chromatic number of 𝐿(𝐶𝑛) is 3, when n is odd, (Say 𝑅1, 𝑅2 𝑎𝑛𝑑 𝑅3) So, in 

𝐿𝜇(𝐶𝑛), the vertices of line graph of 𝐶𝑛 are colored with (𝑅1, 𝑅2 𝑎𝑛𝑑 𝑅3). The newly introduced vertex 𝑒 can be 

colored with (𝑅1 𝑜𝑟 𝑅2 𝑜𝑟 𝑅3) and set of newly introduced vertices {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } is colored with 𝑅4. Hence, 

 𝜒= (𝐿𝜇(𝐶𝑛)) ≥ 4. 

The following partition gives the equitable partition of Line myscielskian of cycle.   

 𝑉1 = {𝑒1, 𝑒3, 𝑒5, … , 𝑒𝑛−2} ∪ {𝑒},   𝑉2 = {𝑒2, 𝑒4, 𝑒6, … , 𝑒𝑛−1}, 

𝑉3 = {𝑒3
′ , 𝑒5

′ … , 𝑒𝑛
′ }  ∪ {𝑒𝑛}  and  𝑉4 = {𝑒2

′ , 𝑒4
′ , 𝑒6

′ … , 𝑒𝑛−3
′ }  ∪ {𝑒1

′}. 

The above partition holds the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, where 𝑖 = 1,2,3,4 and 𝑗 = 1,2,3,4. Hence, it is 

equitable coloring. 

This implies 𝜒= (𝐿𝜇(𝐶𝑛)) = 4. 

Theorem 2.6. The equitable chromatic number of Line Mycielskian mycielskian of path is 

 𝜒= (𝐿𝜇(𝑃𝑛)) = {

2,                          𝑖𝑓 𝑛 = 2,
3,         𝑖𝑓 𝑛 ≤ 12, 𝑛 ≠ 11

4,        𝑖𝑓 𝑛 ≥ 11, 𝑛 ≠ 12.
, 
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Proof.  Let 𝑉(𝐿(𝑃𝑛)) = {𝑒1, 𝑒2, … , 𝑒𝑛} and  𝑉 (𝐿𝜇(𝑃𝑛)) = 𝑉(𝐿(𝑃𝑛)) ∪ {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } ∪ {𝑒} . 

Now we partition the vertex set of 𝐿𝜇(𝑃𝑛) as follows. 

Case 1. For 𝑛 =  2,    𝑉1 = {𝑒1, 𝑒}   𝑉2 = {𝑒1
′ }.  It is obvious. 

Case 2. Consider the following partitions for  𝜒= (𝐿𝜇(𝑃𝑛)) = 3. 

For 𝑛 =  3,  𝑉1 = {𝑒1, 𝑒} ,  𝑉2 = {𝑒2, 𝑒2
′ },   𝑉3 = {𝑒1

′ }.   

 For 𝑛 =  4, 𝑉1 = {𝑒1, 𝑒3, 𝑒},   𝑉2 = {𝑒2, 𝑒2
′ },   𝑉3 = {𝑒1

′ , 𝑒3
′ }.   

 For 𝑛 =  5,  𝑉1 = {𝑒1, 𝑒3, 𝑒},   𝑉2 = {𝑒2, 𝑒4, 𝑒2
′ },   𝑉3 = {𝑒1

′ , 𝑒3
′ , 𝑒4

′ }.   

 For 𝑛 =  6,  𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒},   𝑉2 = {𝑒2, 𝑒4, 𝑒2
′ , 𝑒4

′ },   𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ }.   

 For 𝑛 =  7,  𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒2
′ , 𝑒4

′ },   𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ , 𝑒6

′ }.   

 For 𝑛 =  8, 𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒2
′ , 𝑒4

′ },  𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ , 𝑒6

′ , 𝑒7
′ }.   

 For 𝑛 =  9,   𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒}, 𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒8, 𝑒2
′ , 𝑒4

′ },    𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ , 𝑒6

′ , 𝑒7
′ , 𝑒8

′ }.   

 For 𝑛 =  10,  𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒9, 𝑒},𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒8, 𝑒2
′ , 𝑒4

′ },  𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ , 𝑒6

′ , 𝑒7
′ , 𝑒8

′ , 𝑒9
′ }.   

 For𝑛 =  12, 𝑉1 = {𝑒1, 𝑒3, 𝑒5, 𝑒7, 𝑒9, 𝑒11, 𝑒},𝑉2 = {𝑒2, 𝑒4, 𝑒6, 𝑒8, 𝑒10, 𝑒2
′ , 𝑒4

′ , 𝑒6
′ } , 

  𝑉3 = {𝑒1
′ , 𝑒3

′ , 𝑒5
′ , 𝑒7

′ , 𝑒8
′ , 𝑒9

′ , 𝑒10
′ , 𝑒11

′ }.   

From the above partition the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 hold, where 𝑖 = 1,2,3 and 𝑗 = 1,2,3.  Hence, it is 

equitable coloring. 

Case 3. Consider the partitions for  𝜒= (𝐿𝜇(𝑃𝑛)) = 4. 

From the Theorem 1.1, The chromatic number of 𝐿(𝑃𝑛) is 2,  (𝑆𝑎𝑦 𝑅1 𝑎𝑛𝑑 𝑅2). In 𝐿𝜇(𝑃𝑛), the vertices of line 

graph of 𝑃𝑛 are colored with 𝑅1 𝑎𝑛𝑑 𝑅2, then newly introduced vertex 𝑒 will be colored with 𝑅1 𝑜𝑟 𝑅2. If 

 𝜒= (𝐿𝜇(𝑃𝑛)) = 3, then another set of newly introduced vertices {𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } colored with 𝑅3. Hence we 

conclude that the partition of 𝑉 (𝐿𝜇(𝑃𝑛)) into three sets satisfying 

||𝑉𝑖| − |𝑉𝑗|| ≤ 1, 𝑖 ≠ 𝑗 is not possible because the partition does not satisfy the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, 𝑖 ≠ 𝑗 

a contradiction. Hence  𝜒= (𝐿𝜇(𝑃𝑛)) ≥ 4. 

For equality, the following partition gives the equitable partition of line Mycielskian of path, 𝑃𝑛 ≥ 11 but 𝑛 ≠

12. 

 𝑉1 = {𝑒1, 𝑒3, 𝑒5, … , 𝑒𝑛} ∪ {𝑒},  𝑉2 = {𝑒2, 𝑒4, 𝑒6, … , 𝑒𝑛−1}, 

𝑉3 = {𝑒3
′ , 𝑒5

′ … , 𝑒𝑛−1
′ } ∪ {𝑒𝑛

′ }  and   𝑉4 = {𝑒2
′ , 𝑒4

′ , 𝑒6
′ … , 𝑒𝑛

′ } ∪ {𝑒1
′}. 

The above partition holds the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1, where 𝑖 = 1,2,3,4 and 𝑗 = 1,2,3,4. Hence, it 

is equitable coloring. This implies 𝜒= (𝐿𝜇(𝑃𝑛)) = 4. 
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III. CONCLUSION  

Graph coloring has practical applications in numerous fields such as scheduling, register allocation in 

compiler design, map coloring and solving various optimization problems. It is also a subject of theoretical 

interest in mathematics and computer science with many open problems and research areas related to coloring 

and its variants. In this paper gamma coloring and rainbow neighbourhood coloring of line Mycielskian graph is 

computed and also, we have obtained results on equitable coloring of line Mycielskian graph of cycle and path.  
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