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Abstract.

M. J. Gonz"alez [Go] study the Carleson measures based and associated to the Hardy andweighted Bergman
spaces defined on general simply connected domains. This program was initiated byZinsmeister in his paper
Les domaines de Carleson (1989), where he shows that the geometry of thedomain plays a fundamental
role. We will review the classical results presenting, in some cases, alternative proofs and will examine
analogously the situation for the weighted Bergman spaces.
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. Introduction
For I denote the unit disc {z € C; |z] < 1} and let T = dIb. If I < T is an interval, the Carleson

square S(I) < D is the set
i ) I
S = {(1 +e)ei el € I,—; <e< 0}
m

where |I] denotes the length of the interval .
We will consider the Hardy spaces and the weighted Bergman spaces. A sequence of an analytic
functions f} in IV is in the Hardy space HY¥E, 0 <e < oo, if

1 %= oo 11
sup —f Z 1£,((1 — e)e®)|"* “ag; =Z I £ 1ifEe< oo
n<e<1 21T Jy - ;
The functions f; € H'*€ has almost everywhere non-tangential boundary limit ﬁ(efai) € L'T¢(T), and
1 Zmw ig.y1+E

I fi gie= - J7 X5 |fi(e™)] de;.
The weighted Bergman spaces A1*§,0 < € < oo, consists of those analytic functions f; in I such that

1 :

- _ 1+
2D @i - b tame = 31 1< o
i j

where dm is the Lebesgue area measure. When € = 1 we obtain the classical Bergman spaces. See
[D], |G| and [HKZ] for Hardy and Bergman spaces.
A known theorem due to Carleson [C] shows that a positive measure g defined in D gives forall 0 < e <
co,

f Z If; (@)™ du(z) < CHEZ I f; 1A , for all f; € 21+
™7 i
if and only if for € = 0 and all intervals I = T, u(S(/)) < (1 + €)|{].
The known theorem has led to various generalizations, including analogous results for the weighted
Bergman spaces ALFS which can be summarized in the following theorem:
Theorem A (see [OP, H, S]). Let 0 < € < oo, and let g be a positive measure on . Then there exists
€ = 0 such that

1+2¢
(L Z |fi (@' 2 du(z) =1+ e)Z I f; Nl qave (1)
i 7

if and only if u(S(N) < (1 + e)|I|**2¢, for some € = 0 and for all intervals [ < T.

Luecking (Th. 2.2 in [Lu]) showed that a similar characterization can be expressed in terms of
pscudohyperbolic balls. Indeed, it is casy to show that when the exponent € = 0, the condition on the
measure u(S(1)) < (1 + €)|I|**¢ for all intervals ] © T is equivalent to the condition u(B(z,1 + €)) <
(1+e)t*2c forallze D, 1+ ¢ = %dist(z,é‘[ﬂ)).

Theorem A was obtained by Oleinik and Pavlov [OP], and independently by Hastings [H] for e = 1 and
Stegenga [S] when € = 0. Extensions of these results, where derivatives of the functions are considered
on left inside of (1) can be found n [Lu].
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Duren [D] extended Carleson's result to the range of exponents € = 0 obtaining a similar condition on the
measure as the one given by Carleson in the case € = 0.

Theorem B (see [C, D). Let 0 < € < o and let i be a positive measure on [D. Then there exists € = 0
such that

1+2€

L Z If; ()" *du(z) 5(1+e)z I f; lgeree
i Ii

142F

ifand only if for some € = 0, u(S(1)) < (1 + €)|{| 7+, forall intervals I c T,

We will give a different proof of the sufficiency condition in Duren's result, which explicitly will show
that it is enough to consider pseudohyperbolic balls instead of Carleson squares, although as we
mentioned above they are equivalent since the exponent € > 0.

We have avoided up to this point the term Carleson measures because, the term is either used to define
the measures for which the space L'*¢(u) embeds continuously on the space of analytic functions under
consideration or, it is used to define the geometric characterization of the measure in terms of Carleson
squares. The theorems above show that, for the Hardy and for the weighted Bergman spaces in the disc,
both definitions are actually equivalent, but it is not the case in a more general setting.

Given a Banach space X of analytic functions in a domain £} © € with norm |||, we say that a positive
measure ¢ in 1 is a (1 + 2¢)-Carleson measure for X if there exists a constant € = 0 such that

1+2¢

[ n@ram ) sara) g
i i

We are interested in characterizing the Carleson measures for spaces of analytic functions defined on
bounded simply connected domains {1 © €. This problem has been nitially studied by Zinsmeister in [7]
where he extended Carleson's result to more general domains, showing how the geometry of the domain
plays a fundamental role.

To define the Hardy spaces H '€ (£1) we need to assume initially that 88 is locally rectifiable. Denoting
by ds the arc length measure, we define for 0 < € < oo

HITE(Q) = fj analytic in ﬂ;j Z m(z)lueds <o
an 4

The theory of Hardy spaces 1s well understood when () 1s a chord-arc domain, that 1s a domain bounded
by a chord arc curve. In this case, the functions in H'*€(0Q) can be characterized in terms of the
nontangential maximal function and the area integral as in the classical case, (see [JK]). Recall that a
locally rectifiable curve T is a chord-arc curve if £-(z4,2z5) < (1 + €)|z; — z,| for some € = 0 and for all
2,2, € I', where £1(z;, z,) denotes the length of the shortest arc of T joining z; and z,.

For Q2 be a simply connected domain and ¢;: D — £ a conformal maps. Let u be a positive measure on (2.
When 81} 1s rectifiable, a simple change of vaniables shows that ¢ being a (1 + 2¢)-Carleson measure for
HI*TE(Q), that is,

1 1

i+Ze I+e
f Z |f}-|l+2Ed.u < (1 +E) J Z |)‘j‘|1+£d5
1] 7 an 7

1 1

1+2¢ 1+e

[ 1heatdoin] sa+ol[ Y 151lojlas
i 7 am 7

where @;(u) denotes the pullback of u. that is @;(u)(E) = u(g;(E)). for any set E cD.

Therefore, as in [Z], if we define the measure v; in I as v; = %jw}(_u), we obtain the following
|@;| 1+€

15 equivalent to

observation that we state as a remark for further references.
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Remark: The measure p is a (1 + 2¢€)-Carleson measure for H**¢(Q) if and only if the measure vj 18
(1 + 2¢e)-Carleson measure for H 1+ (D)
We do not need to assume rectifiability on the boundary of the domain in order to study Carleson
measures for H (1)
Theorem C (|Z]). Let © be a bounded simply connected domain and let ¢;: D — Q be a conformal maps.
Assume that log ¢; € BMOA(ID). Then a positive measure  in  is a (1 + €)-Carleson measure for
HYE(),0< e < oo, ifforsome e = 0, u(B(£, (1 +6))NQ) <(1+e)? forall & € a0
Morcover, it is also showed in [7] that the condition on the domain: log ¢} € BMOA(D), is a necessary
condition for Theorem C to hold.
The geometry of domains for which log ¢; € BMOA(D) has been characterized by Bishop and Jones in
|BJ]. The boundary of these domains might not be rectifiable, and though we will not give the precise
definition, we just mention that in some sense they are rectifiable most of the time on all scales. A typical
example is a variant of the snowflake where at each iteration step, one of sides of the triangle, for instance
the left one, is left unchanged.
To prove Theorem € in [Z], it is first shown that the result holds for chord arc domains. The general
result follows using the fact that when the BMO norm 1s small enough the domain 1s chord arc. We will
give a different proof based on a stopping time argument.
For the converse result of Theorem C one needs a stronger assumption on the boundary of the domain.
We say that a curve I' is Ahlfors regular if there exists € = 0 such that for all z; € " and all € = 0, the
arclength of B(z,, (1 4+ €)) N T < (1 + €)2. These curves were studied by G. David in the context of the
Cauchy integral [Da].
Chord arc curves are Ahlfors regular but not viceversa, for example cusps are Ahlfors regular but not
chord arc. On the other hand, if we add the condition that the curve is a quasicircle, then Ahlfors regular
and chord arc are equivalent.
Theorem D(|Z]). Let ) be a bounded simply connected domain, and p be a positive measure in .
Assume that @£ is an Ahlfors-regular Jordan curve. Then a positive measure g in £ is a (1 + €)-Carleson
measure for H'*((1),0 < € < o, if and only if for some € = 0,u(B(, (1 +€))NQ) < (1+¢€)?, for
all £ € a0,
The sufficiency condition follows immediately from Theorem C, since domains bounded by Ahlfors
regular curves satisfy that log q::;- € BMOA(ID). The necessity is proved using Heyman-Wu Theorem. We
will provide a simple proof in the case that (1 1s also a quasicircle, and therefore chord-are.
We will state the next results in terms of Whitney balls i the domain (1. They play the same role as
pseudohyperbolic balls in the unit dise. We will say that a ball B(z,1+ ¢€) <  is a Whitney ball if
(1+e)dp(z)=1+e< %Sﬂ(z) , for some fixed constant € = 0 where 8,(2) denotes the distance from

Z to the boundary of Q.

In Hardy spaces we obtain the analogous result of Duren's theorem in the classical case.

Theorem 1. Let ) be a bounded simply connected domain,and g a positive measure in . If 0 < € < oo,
then g is a (1 + €)-Carleson measure for H*(Q) if and only if there is a constant € > 0 such that

1+3e
u(B(z,1+€)) < (1 + €)1+, for all Whitney balls B(z,1 +€) c Q.
Notice that in contrast with the classical case € = 0, no condition on the geometry of the domain is
assumed. This 1s not surprising, it is a consequence that analogously as what happens in the disc, when
the exponents are bigger than 1, the characterizations of the Carleson measures can be expressed in terms
of Whitney balls instead of balls centered at the boundary.
We define the Bergman spaces A 2§ (Q) for 0 < € < o, as

A = fj analytic in Q;LZ If;(2)[**€80(2)¢tdm(z) < o

We consider both analytic functions and quasi-subharmonic functions as well. For u; = 0 be a locally
bounded, measurable functions on . We say that the functions u; is (1 + €)-quasi-nearly subharmonic if

the following condition is satisfied:
1
ui(a) < f z u; dm 2
! (1 +E) Bla1+e) 7 ! {: )
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whenever B(a,1 + ¢€) € (.

One can view (2) as a weak mean value property. Besides of nonnegative subharmonic functions, it also
holds for nonnegative powers of subharmonic functions, and for sub-solutions to a large family of second
order elliptic equations, see ([P], [PR]).

Theorem 2. Let 1 be a bounded simply connected domain and p be a positive measure on (). Let
0 < € < oo, The following conditions are equivalent:

(i) There is € =0 such that u(B(z,1+¢€)) < (1 +¢€)?*?¢, for all Whitney balls B(z,1+¢€) c (L.
(ii) There is € = 0 such that for any (1 + €)-quasi-subharmonic function g; = 0 in £

1 1
1+2¢ 1+e
LZ g;7 (2)du(2) =(1+e J’RZ g} (28 (2)F dm(2)

(iii) The measure u is a (1 + 2€)-Carleson measure for the space A*S ().
The proof of (i) implies (i1) is very similar to the one given by Luecking in [L| where he proves that the
analogous statement holds for subharmonic functions in the unit disc.
1 Basic facts and definitions
The notation A = B means that there is a constant (1 + €) such that 1/(1+€).A<B <(1+4+¢€).4 The
notation A = B(A = B) means that there is a constant 1 + € suchthat A < (1 +€).B (A= (1 +¢€).B).
We denote by T the boundary of the unit disc, and B(zg, (1 + €)) the ball of radius (1 + €) centered at
the point z, € C. If B is a ball, 2B is the ball with the same center as B and twice the radius of B, and
similarly for squares. Given a domain ) € C, for any z € ) we set §p(2) = dist(z, dQ). If the context 1s
clear we will drop the subindex Q and simply write 6(z).
Given an interval / € T, and the corresponding Carleson square S(I), we define the top of the square
T(S) as the set of points

0. i || 11
T(S :{ l+e)ePef el 1-—=<1+e< 1——}
Q) (A +e)et:e 2 € 4m
A locally integrable functions f; belongs to the space BMO(T) if
1
I ll= supmf Y 100 - alax < e
I 1=
!
1
o fi0Ndy
It is a well known result, see for instance Th.1.2, Ch. V1 in [G], that if f; € BMO(T), then

sup f Z IF:(©) — f@IP(O)|dE| = A < oo

where f;(z) = [ X; P,(£)f;(€)|d¢| is the Poisson integral of f;. Moreover A =| f; Il..
In particular, for any interval I € T, if z; denotes the point z; = (1 — |I|/2)&;, being £; the midpoint of
the interval I, we have

where the supremum 15 taken over all arcs I € T and a; =

1
mLZ ;) - fi)|ds < (1 +E)Z Il £ 1. A3)
i 7

forsome (14+€) = (1 + E)(II fj II,‘)_

The space BMOA(D) consists of those functions in the Hardy space H1(ID) whosc boundary values are
in BMO(T). See [G] and [Po] for the main properties of BMOA functions.

For a harmonic functions f; in I and for any § € dID, the nontangential maximal functions f;* s defined
as f;"(§) = sup{|fj(2)|:z € Tt}, where T¢ denotes the cone Ir = {z € D:|z—§| < (1+¢€)(1— |z|)},
for some fixed € = 0.

Given a functions f; € L}, (R), the Hardy-Littlewood maximal function of fj 1s

1
MA@ =swp [ 3 1@
xel I” I I
It is well known that the operator M f; is bounded in L'*%; 0 < € < co and it is of weak type 1 — 1, that is

2
|t € R:Mfi(£) > (1+6)| Emz 0 fj e > 1.
i
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The importance of the maximal function M f; is that it majorizes many other functions associated with f;,
such as the non-tangential maximal function of the Poisson integral of f;. Therefore, if u;(z) = P, = f;, its
non-tangential maximal function u; (x) = supr, [u;(2)| satisties

|x € Luj(x) > (1+6)| < j E |f;00)|dx 4
1 0
!

for some constant ¢ = 0 depending only on the aperture of the cone I, (see Chapter 1.4 n [G]).

We mentioning some well-known results on conformal mappings, see Ch.l in [Po] for more knowledge.
If ;: 0 — D is conformal and w = @;(z) then pp(wy, wz) = pp(zy, z2) defines the hyperbolic metric on
 and is independent of the particular choice of ;. It is often convenient to estimate py in terms of the
more geometric quasi-hyperbolic metric on Q which 1s defined as

Y2 ldw|
i JWa ) = inf J’ —_—
Palwy,wy) =i . (W)

where the infimum is taken over all arcs in (0 joining w, to w,. It follows from Koebe 1/4 theorem that
the two metrics are comparable with bounds independent of the domain. A Whitney decomposition of the
domain 0 is a covering of Q0 by squares @, with disjoint interiors and the property that diam(Q;) =
8, (Q,). From the remarks above, each square in a Whitney decomposition has uniformly bounded
hyperbolic diameter (and contains a ball with hyperbolic radius bounded uniformly from below). Thus
bounding the hyperbolic length of a path often reduces to simply estimating the number of Whitney
squares it hits.
Hence, we will say that a ball B(z, 1 + €) € 02 is a Whitney ball if §5(z) < 1+ € < 1/28,(2), for some
fixed constant € = 0.
We recall that the function log¢; € B, where B denotes the Bloch space in ID. Therefore, for any
Carleson square § € I, if z;, z, arc any two points in the top of the square T(5), then

l@j(z0)| = |@j(22)]; 21,2, € T(S) (5)
This is because the hyperbolic diameter of the top of the squares 1s uniformly bounded.
2 Proofs of some known results
We give a short proof of the characterizations of the (1 + 2¢)-Carleson measures for H1¢; e = 0 due to
Duren.
Proof. (Proof of Thecorem B, € = 0) (sec [Go])
It is enough to prove the result for that € = 0, so let € > 0. Assume first that for any Whitney ball
B(z,1+e)c

u(B(z,1+¢€)) < (1+¢)?* (6)
It is a well-known result that if f; € K, then f;(z) S 1/(1 — |z|) for z € D, and the non-tangential
maximal functions f;* € H', see for example [G]. Using these results and Fubini's theorem, we get

e ;@I
: 1+e — i - J
[ 1r@rae = LZ o du@)las) ELDZ 5© [ 3@

|z

< LDZ fi'(©) L Wdu(z)ld{l < LDZ fiT(®)1dE] EZ I fi gt

since the integral on the cone [; can be estimated in terms of Whitney balls B centered at points
zp=(1- 27k =0,1, ... as

1 B .
Lmdﬂ(ﬂ 52 w(B /(1 = |z D! gzk“ 2z <1

because u satisfies (6) and e > 0

The converse result is standard, we give the idea of the proof for the sake of completeness. Assume that u

is a (1 + €)-Carleson measure for H*. For each z, € I, choose z; € C\ I such that |z, — zj| ~ 1 —

lzyl ~ 1 —|z5]. Then it is easy to prove that f;(z) = ﬁ is in H with | £ la;i~ 1/(1 = |2p]). The
Z—Zo

result now easily follows by applying the hypothesis to the functions f;.
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Next we prove Zinsmeister's result in Theorem C. Thus assuming that log ¢; € BMOA we want to show
that, if u(B(¢,1+€) N Q) < (1 + €)% & € 00 then u is a Carleson measure for the Hardy spaces in Q or,
equivalently by the remark in the Introduction, that v;(B(§,1+e)nD) < (1 + €)% fedb,e=0.

To simplify the notation we will replace the ball B(£,1 + €);& € 301 by a Carleson square in the upper
half plane, that 1s, a squarc with basc on some mterval I € R. So, let @ = {(x,¥);x € 1,0 < y < |I|}. For
any such square, we define the top of the square T(Q) = {(x,¥); x € [,1/2 <y < |I|}, and the center of
T(Q) as the point z; = x; + i3/2|I|, where x; denotes the midpoint of the interval 1.

Proof. (Proof of Theorem C) (see [Go])

Let I be any interval in [0,1], define the functions (f;),(2) = log @;j(2) — log ¢j(z) and (u),(2) =
Re fi(z) = log|tp}(z)| — 10g|fp;-(zf)|_ Since (f}); € H*, the harmonic function (u;); is the Poisson
intcgral of its boundary valucs, i.c. (u;);(z) = F; * (Iﬂg|fp}(;~:)| — ngl(p}(Z;)l] (see Th.3.6, Ch.IT in [G]).
On the other hand, by (3) we get

1 1 r [} r
mJ; z () (x)dx = m_[ Z llog |@;(x)| — log |@j(z) Il dx < Z Ilog @; II.
J i j

Therefore by (4), for any interval [

1 . lNog @j ()
m|xef; ()00 > (14 6)| 52 ﬁ (7)
J

Fix now an interval / and let Q be the corresponding Carleson square. We want to show that v;(Q) <
1+ )l
The idea is to divide @ into a countable union of disjoint regions, in such a way that |qo;| behaves like a
constant inside each of those regions. For that, we will use a stopping time argument.
For each k = 1,2,... form the 2¥ intervals obtained by dividing I dyadically, and associate to each of
these intervals the corresponding Carleson square. We obtained in this way 2% squares of length 27%|1|.
Denote by {Qjo} these collection of squares. Note that each @ is associated to some k € N and it is
contained in some other square @; associated to k — 1, which we will call the father ( if k = 1, the father
1s Q ). Squares with the same father will be called brothers.
Let M; > 0 be a big enough constant that will be fixed later. Recall that z; is the center of T(Q). Define
the first generation G, (Q) as those @, < @ such that

sup ) loglgj(2)| - ) loglpj(z)| >log ) M; ®

2€T(Qj,) 5 7 7
and Q;, is maximal.
We also say that the interval I; € G,(I), if [j, is the base of some square Q;, € (;(Q) Note that the
mtervals {Ijﬂ}; I;, € Gy(I) have pairwise disjoint interiors, and that in the region R (Q) = Q@ \ Ug, 0y 0,»
Z %l@;(zf}l = Z |€9;(2)| = Z M; | (P}(Z:):Z ER, (9)
I J J

On the other hand, if x € [;, for some I; € G,(1), its conc Iy contains points which belong to T(an). So,
by the choice of the squares in the first generation and by (5), we get that (1;)7(x) > log(1 + €)M;, for
some universal constant € = 0. Therefore, by (7)

1
Z 1| < |x e i > +€)Z el (10)
i €Gy (1) f

if Mj > (M;)o where (M;), is a constant depending only on [|log go}(z)lL.

Next, to cach square in the first generation Q;, € G,(Q) we apply the same stopping time rule (8), that is
we start partitioning ;  and we choose those maximal squares @, © Q;, for which

sup Z |log|w}(z}| —log ‘qa; (z;fo)H > logz M;
Ji ji

ZET(Q]

where z; I 15 now the center of T(Q}-n). In this way we obtain a new generation of squares GZ(Q;‘O)-
Define the second generation as
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G2(Q) =u {6:(Q},): ], = G:} = {7, 04, .}
Repeating the process with G, and continuing inductively we obtain later generations of squares G, (Q) =
{Qr, QF, ...}, and generations of intervals G, (I) = {I', [T, ... },n € N". Moreover, by (10)

1
S ols > lls s (11)

1, €Gn (1) 1jElne1 (D
We are ready now to prove the theorem. Let @ be the initial Carleson square. By the definition of the

medsure 'b'j 1 1
vj(Q}=IoZ |€°}(Z3| du(z) = Z Z f Z mdy(z} (12)

n=1 L;REGy
By construction, the region R; € G,, is contained in some square of the prevmus generation, that we will

denote by Q;. As it was observed in (9), if z € R; then |@}(2)| = |@](z,)|, where z, is the center of
T(Q.
Therefore }; |@;(2) —@;w)| =X, |(p}(zj)||z —w]| for all z,w € R,. Since the diameter of R, 1s

comparable to Im z;, Kocbe's theorem implics that ¢;(R;) € B (fpj-(z;). ﬁn(z;)) N 2. By the hypothesis
on the measure u

u(0;®R)) < (B (020, 8a(z)) 0 Q) < 8alz) = |@j(z)|Im
We conclude bv (12) and (11) that

TOEDEDY Z OMCIENEDIDY lm(za<ZZ|" 1= =
n=1 =1

n=1 LREGy, | n=1 L;R1eGy
<(1+ E) 1]

with comparison constants (1 + €) = (1 + €) (II ull, |log go;HJ
We give an alternative proof of the theorem by Zinsmeister, on the characterization of Carleson measures
on domains bounded by Ahlfors regular curves, when we add the extra hypothesis that the curve 1s a
quasicircle, and therefore chord arc.
Proof. (Proof of Theorem I for chord-arc domains) (see [Go])
Let (2 be a domain bounded by a chord arc curve I'. Assume that p satisfies a 1-Carleson measure for

H1(R), that is, for all f; € H* (1),
J, 2 telaws [ 3 1stes a13)

Let B(£,, (1 + €)) be a ball centered at £, € 30 of radius € = 0, and w,, be a point in B(,, (1 +¢€)) N0
such that §(wy) = (1 + €). Since chord arc curves are quasicircles, by the circular distortion theorem
they admit a quasiconformal reflection (see [A]). Thus we can choose a point w; € €\ (1 such that for all
w € B(&,(1 4+ €)) n A, it holds that |w — wj| ~ §(wy) ~ &(wy).

Consider the function f;(z) = ﬁ It is easy to show that f; € H(Q) with |l fj ;25 1/8(wy).
w=wp

Indeed, consider the balls By, = B(wa, Zké‘(wﬁ)]; k =1,2,.., and the annuli A, = B, \ B_;k = 2,3,..
Then

1 1
ds < z —  length(TNB,) £ ——
J-|W Wn|)' Z J;‘rmk|w wg |? = (Zké'(wa))z ¢ &(wy)

because I' is Ahlfors regu]ar and therefore length (I' N Bk) = 1(B,) = Zké'(wn“}.
We can then use (13) to bound u(B(&,, (1 + €)) N Q) as follows

u(B(&,(1+e)nQ) - f 1 du(z) EJ’ 1 _dss 1

8 (wp)? B(&,,(1+€)100 lw — wg|? r lw — wg? d(wq)

Hence, u(B(&,, (1 +€)) N Q) = §(wy,) = (1 + €) as we wanted to show.
3 Proofs of Theorems 1 and 2
Proof. (Proof of Theorem 1) (see [Go])
Let ¢ represent a conformal mapping from I onto . Assume first that the measure y satisfies that

u(Bw,1+e)) < (1+ s)% (14)
7
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for all Whitney balls B(w,1 + €) c (.

. . 1
Define the measure v; in D as dv; = |1HE d@; (). By the remark in the Introduction, showing that y is
1+€
¥j

a Carleson measure in  is equivalent to showing that v; is a Carleson measure in [D. So, let B(z;, 1 +
€) © D be a Whitney ball in . As |@j(z)| = |@}(zo)| when z € B(zy, 1 + €), we get

1 1
vi(B(zo, 1+ €)) = f Z e 49 (u(2) =Z — T dp
B(zp,1+€) |§01(z)| T+e I |¢’}'(zo)| Tre Y 9j(B(zo.1+€))
Set wp = @;(2;). As explained in section 1.@;(3(20,14-6)) can be covered by a finite union of
Whitney balls B(w;,,7j,) € Q; jo = 1..., N, where N, is a universal constant and r;, = &§(w;,) = 8(w,).
Therefore, by (14) and by Koebe's theorem

1 1
(B 1+0) = ) ———zz b (9 (Bwo, A+ 0)) S Y ——z ) u(B(wm,))
T |@j(zo)| T+ i Iqoj-(zfn)lF o
1+2¢ 1 142
< Z 1“52 3}01+c = Z 71%6(“:0) 1+€ = (1—| zﬂ) 1+E = (1+¢e)ite
|¢’;(Zu)| +e o i |¢}(Zu)| 1+e

which imphes by Theorem B that v; is a Carleson measure in ID.

To prove the "only if" part we proceed in a similar way. Assume now that u is a (1 4+ 2¢)-Carleson
measure for H1*€(Q)). This is cquivalent, by the remark in the Introduction and Duren's result in
Theorem B, to the assumption that v;(B(z,1 + €)) < 1 + € for all Whitney balls B(z,1 +€) ¢ .

Next, consider a Whitney ball B{wy, (1 +¢€)) < £, 1.e. (1 + €) ~ §(wy), and let w;l[wﬂ) = z;.

The set ¢ l(B(wD, (1+ E))) is contained in a finite union of Whitney balls B( Zj, 1 ) cj,=1../

for some universal constant Jo. Thus, |@j(2)| = |@}(z,)| when z €u;, B(z;,,7;, ). and we obtain that
1+2¢ 1+2e
WBwo, (14 ) = | au= | > loff=eay <y [ ey
B(wg,(1+€£)) _’(B(wo (]+FJ)) To B{?m rm)

1+2¢

1+2e
s> Loz 7y (B(z,m,) Z Z 0}l 7 (1 - |5, ) 7% = (14 %
. Z

since 1 — |z;, | =1 — = 9j(ze)(1 — |z, ).

Proof. (Proof of Theorem 2) (see [Go])

(i) = (ii) To simplify notation set §(z) = 6,(2). Let us begin with a simple observation related to
Whitney balls: If w € B (z,ié’(z)), thenz € B (w,%é(w‘))_ Besides §(w) = 8(z).

To sce this, just note that §(z) < |z — w| 4+ §(w). Therefore, if |w — z| < ié‘(z), then |w — z| < %(|z —

w| + §(w)), thatis, |w — z| < lS(w) The rest of the statement follows by a similar argument.
Let g; be a C-quasi-subharmonic function, then for any € = 0, g”é is K -quasisubharmonic with constant
K = K(C,1+ €)[P]. Therefore, for all z € £ and any Whitney ball B(z, 1 + €)

1
g/ (2) s mL( " _JQ}ﬂ(w)dm(w)
Z1l+e
We can then write
1+€
1+e 1+2¢ 1+2¢
1+2¢ 1+€

L Z @) | s L S [ ) Z gt wamw) | du@ | @s)

By the observation above, the integral in (15) can be bounded by
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1+¢
1+2¢ 1+2¢
1+e

_1 1+&
fn LZ S(W)ﬂﬂ(w.%ﬁ{m)(z)gf (w)dm(w) du(z)

Since € = 0, by Minkowski's integral inequality and the condition (i) on the measure, we obtain
1+e 1+¢

1+2€ 1+2e 1+2e
1+2¢ 1 1+¢ 1+e
LZ o @ | = | LZ (G o o) @95 @) du@) | dmaw)

1 1 1+e
<] Z Sy 91 OB w5 6w Fedmw) < | Z g} (WIS (W) dm(w)

with comparison constants only depending on ((1 + €),1 + €, 1l ¢ II) as we wanted to prove.

(it) = (iii) This is an immediate consequence of the fact that if f; is analytic, then |f}| is subharmonic.
(iii) = (i) Let @; represent a conformal mapping from I onto . By Koebe's theorem and a change of
variables, condition (i111) can be written as

1 1
1+2Ze Tte
. ,|1+E _
[ Y theoi=agiw |  <a+ol[ D ear el a-lnetam ) ae)
(] 7 D 7
Defining the measure 7 in D as dr = H%d(p;f{,uj, (16) 1s equivalent to

@'
'II 1

1+2e 1+e

2 tewile
!

) dr <(1+6) LZ (If; = 9|0 ) (1 = 1z Ldm

1+e

which implies by Theorem A, that 7 is a (1 + 2€)-Carleson measure in I for 4.5,
Consider now a Whitney ball B(wy, (1 +¢€)) © Q. To show that u(B(w,, (1 +€)) < (1 + )12 we

follow exactly the same steps as in "only if part in Theorem 1, just replacing the exponent % by 1+ 2¢
and using the fact that since 7 is (1 + 2¢)-Carleson measure in D for AL*S, by theorem A, t(B(z, (1 +
€)) = (1 + €)*2€ for all Whitney balls B(z, (1 + €)) c D.
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