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Abstract 

The dynamic elastic-deformational displacements of a loaded helical cylindrical spring are examined. A 

mathematical model of motions in two directions has been derived: bending and twisting its cross-sections. An 

initial-boundary problem is formulated based on the consequent conditions. The system of partial differential 

equations has been fully integrated. Exact solutions of the displacement laws of the spring's median line and the 

twisting angles of its cross-sections have been obtained in the form of mathematical formulas. This will allow 

the research engineer to quickly determine the forms of both bending and twisting oscillations, the frequencies 

of forms and dynamic oscillations, the maximum movement stroke, and visually observe the deformability of the 

structure taking into account the fixation of the ends in any symbolic algebra package. 
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NOMENCLATURE  

Symbol Description Unit 

r spring wire cross-section radius m 

R spring radius m  

E Young modulus N/m
2
 

G shear modulus N/m
2
 

Jk moment of inertia of the cross-sectional area of the wire m
4 

J1 moment of inertia of the cylinder area m
4
 

m0 mass per unit length of spring kg/m 

w transverse displacement of the spring wire centerline m 

p dynamic frequency of the external load mode rad/s 

 

Greek letter 

Symbol Description Unit 

 spring material density kg/m
3
 

 angle of rotation the spring wire cross section rad 

η number of coils of the cylindrical spring dimensionless value 

1 external dimensionless loads dimensionless value 

2 external dimensionless loads dimensionless value 

 

I. INTRODUCTION 

Thin rod elements are successfully used in many technical devices under conditions of periodic 

dynamic modes. The rising useful and harmful oscillations have a significant impact on the strength, reliability, 

and durability of the structure. The ability to qualitatively describe dynamic stress-deformed states and derive 

analytical solutions are relevant problems of modern mechanics. The elastic spring is used in many industries: 

oil and gas, mining, energy, aerospace, etc. Calculations of rod elements, plates, and ring elastic devices are 

known from courses of material resistance, elasticity theory, and other sections of mechanics. Among the 

authors, one can note Alfutov N.A., Balabukha L.I., Biderman V.L., Birger I.A., Svetlitsky V.A. and others. 

These scientists hold the lead in modeling, schematizing, and problem sets for the dynamics of stress-deformed 
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states of rings and cylindrical springs, in the study of preliminary solutions, decomposed into series according to 

orthogonal function systems, in the use of approximate methods of a small parameter, harmonic balance, etc., in 

the analysis of frequency equations [1-5]. 

Stress-deformed states of a helical cylindrical spring made of homogeneous elastic material are 

considered. It is one of the main structural elements in many technical devices since it participates in the 

damping of vertical oscillations and softens impacts from extreme external forces. The spring has several 

functional properties - it provides stable support for power units and must be endowed with optimal rigidity. 

Such a feature is obliged to create conditions for the best damping of harmful vibrations, stable manageability, 

and smooth movements during overloads. 

To form a system of motion equations, we consider the equilibrium of element ds of a helical 

cylindrical spring with a helix radius R and a wire radius r, which is in a complex loading mode, Fig.1. In the 

general case of loading, the spring experiences bending of the wire's median line w(,t), twisting in the wire's 

cross-sections (,t) Fig.2, longitudinal and radial extension - compression in the planes of its turns. With 

sufficiently large magnitudes of applied loads, the spring form may become unstable. In setting the dynamic 

problem of elasticity theory, the hypothesis of a flat section is accepted during twisting and bending, and the 

hypothesis of non-compression of layers. Longitudinal and radial extension-compression are independent tasks 

and are not given here. 

The dynamic equations of motion of the spring element ds are as follows: 
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here  - any non-integer real positive number, p - the frequency of external influences on the spring, 1 and 2 - 

external dimensionless loads, the spring has 7.125 turns, the angle   varies from 0 to 14.25 radians Fig. 1, 2. 

A mathematical model (1), (2) of bending displacements of points of the contacting plane to the turns 

and twists, twisting in the spring's cross-sections, has been obtained [1-5]. 

 

   

a)   b) 

Figure 1: Loading mode. Bending on a, twisting cross-sections on b 

 

Figure 2: Scheme of parameters used in a mathematical mode 
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II. DERIVATION OF THE LAWS OF MOTION FOR A CYLINDRICAL SPRING  

The canonical representation of the general system of dynamics equations of the stress-deformed state 

of the spring with a special loading mode [5 - 10]:  
 

1

2

( ( , )) ( , ),

( ( , )) ( , ),

L w t Q t

L t Q t

 

  




     (3) 

here the differential operator 
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and the right sides of formulas (3) are such 
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By the method of variable separation from the general system (3), a homogeneous system of 

differential equations with a zero right-hand side is selected 
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( ( , )) 0,

o
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                  (7) 

 

from which two independent equations are obtained. At the same time, 
1 1 ( , ) ( ) ( ),ow t X T t   

2 1( , ) ( ) ( )o t X T t     are solutions of the homogeneous system (7) 
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0
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here   an arbitrary positive constant,  > 0 [5-16],   2

0/ /kGJ m R  . 

We will choose the initial conditions for the homogeneous system (7) as follows: 

 
 

 1 ( ,0) ,ow       2 ( ,0)=  ,o       (10) 

 ( ( ,0) )  0 o

t w   ,  ( ( ,0))  0 .o

t       (11) 

 

Functions 1()  and 2() are based on known experimental data or as a solution to a problem with 

unknown initial conditions. 

As boundary conditions, we use the requirement of the upper fixed end turn: 

 

 (0, ) 0ow t  ,  
φ ( (0, ))  0 ow t  ,   (12) 

 

 2

φφ (0, )  = 0ow t ,  3

φφφ (0, )  0ow t  ,   (13) 

 

 (0, ) =0o t ,   φ (0, )  0o t  .   (14) 
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These conditions allow determining the general parameter  uniting the general homogeneous boundary 

problem (7), (12)-(14), the graphical solution is presented in Fig. 3 and enclosed in a dashed rectangle. 

 

 
Figure 3: The intersection of the algebraic determinants of the system (12)-(14) at the point 

 = 0.139577493899 

 

The found value of  allows determining the roots of the characteristic polynomial, composed for the 

equation (8), and finding dimensionless natural frequencies of oscillations 1=1.165786450, 2=0.5661533434, 

3=0.5660497713. The graphical representation of the spring's own vibration forms X1() and X2() is shown in 

Fig. 4 with the modeled internal loading mode and with the described end fixations. 

 

 
Figure 4: Graph of natural vibration forms X1() and X2() 

 

To the boundary conditions (12)-(14), additional conditions should be attached that do not contradict 

the physical nature of the problem for the final turn of the spring. 

 

0 1(14,25 , ) = cos( )o ow t w p t .   (15) 

 

Initial conditions corresponding to the external dynamic load mode F1(,t) and F2(,t) Fig. 1 and the 

particular solution of the system (3), are such 

 
*

3 ( ,0) = sin( ),w     *

5 ( ( ,0) )  sin( ) t w     ,  (16) 

 
*

4( ,0)  sin( ) ,     *

6( ( ,0))  sin( ),t        (17) 

 

here i, i = 1, 6   are some constants subject to additional definition as a solution to a problem with unknown 

parameters. 

Boundary conditions for the particular solution of the inhomogeneous problem (1), (2), not 

contradicting its physical nature, for the upper fixed section S and the oscillating opposite section at the other 

end of the spring with speed v0 according to the law 
0 sin( )z pt  , where 

0 0z v p , will be the following: 
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* (0, ) =0t ,   *(14.25 , )  0t    .   (20) 

 

Combining particular solutions and solutions of the homogeneous system of differential equations (1), 

(2), we obtain the final general solutions of the problem in the following form: 
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The presented analytical calculation (21)-(22) of the helical cylindrical spring has methodological 

significance for the educational process, as the derived laws of motion of displacement and angle of twisting of 

the cross section are very useful for facilitating understanding of its operation in complex operating 

circumstances. The formulas and data obtained in general form can be used for the design of vibration isolators 

and car suspensions. 

The calculation methodology was developed and verified on the experimental base of the tractor 

plant, as evidenced by the utility model patent [15] and comparison of experimental data with the analytical 

formulae [16]. 

 

III. PRACTICAL CALCULATIONS 

For the numerical realization of solutions of the stress-strain state of the spring, which is in the 

conditions of the external load regime, let's choose the following coefficients:  E = 2.1·10
+11

 N/m
2
, G = 8.0·10

+10
 

N/m
2
,
  = 7.86·10

3
 kg/m

3
, J1 = 1.0 10

-4
 m

4
, 

 
Jk = 7.95 10

-8
 m

4
, 

 
m0 = 5.56 kg/m,

 
R = 0.08 m, r = 0.015 m, 0

ow

= 0.004 m, 1 = 210
-6

, 2 = 210
-4

,  = 0.04167, p = 1.8 rad/s, p1 = 1975.321114  rad/s,  = 219.8838 rad/s. 

The laws of motion w(,t) and (,t) based on formulas (21), (22) are presented below: 

 

w(,t) = sin(0.04166666667)  [0.05296773801sin(1.8t) + 0.3050018428cos(1.8t)] + 

+ [– 0.00004909524584sin(1.16578645) + 0.8951342009sin(0.5661533434) –   (23) 

 – 0.8951968745sin(0.5660497713)]  cos(1975.321114t), 

 

(,t) = sin(0.04166666667)  [0.00134982133sin(1.8t) + 0.006620967223cos(1.8t)] + 

+ [– 0.000833950339sin(1.16578645) + 3.58720156sin(0.5661533434) –     (24) 

  – 3.586140392sin(0.5660497713)]  cos(1975.321114t). 

 

Their visual image is shown in Fig. 5. 

The correctness of the obtained solutions can be verified by substituting formulas (23) and (24) into the 

equations of the original problem (1), (2), and all its boundary conditions. 

The spatial stress-strain state of the cylindrical spring (23), (24), due to forced dynamic loading, is 

shown in Fig. 5 and 6 using the Maple symbolic algebra package. For all calculations, the loads are greatly 

exaggerated by excessive forces without considering their critical values for the best visual observation in 

animation files for the displacement of spring points and twisting of wire cross-sections. The forces and 

moments exceed the magnitudes of 1312.5 N and 10500.0 N·m for a steel spring with a length of 0.85 m, a 

diameter of 16 cm, and a wire cross-section diameter of 3 cm. 

In all figures, the uppermost fixation of the spring at  = 0 rad does not change its position at the origin 

of the chosen coordinate system x = 0.08 m, y = 0.0 m, z = 0.0 m, as according to the problem conditions and its 

boundary conditions, it is fixed and immobile. The first figure (Fig. 5) shows the loaded state at the initial 

moment t = 0 s, while the others demonstrate the evolving general oscillations at subsequent moments. 
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Figure 5: Spatial general oscillations of a cylindrical spring with displacements and twists of its coils at 

different times 

 

Let's find out how the cross-section of the spring wire is twisted at an angle  (, t)  in the selected 

high-load mode for the convenience of visual observation. For this, let's consider a strongly twisted cross-

section in the zone  = 3.25   and compare it with a similar untwisted section in Fig. 6. The longitudinal lines 

characterize the degree of rotation of the cross-section and its deformation, which can be determined using the 

Cauchy-Green deformation tensor for the cylindrical coordinate system ( ; ; )z  . 
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Figure 6: The strongly twisted lower cross-section at  =3.25   is compared with a similar untwisted 

section 

 

The components of displacements, taking into account the hypothesis of plane sections, are as follows: 

 

0,u 
  0,u 

  ( , ) (1 cos( ( , )),zu w t r t            (26) 

 

here, r is the radius of the cross-section of the wire of the cylindrical spring, which is equal to 0.015 m,  is the 

distance from the stationary center of the cylindrical coordinate system to the surface of the wire, therefore 

 0.065;0.095 m. 



Dynamically elastic-deformed displacements of the loaded coiled cylindrical spring 

www.ijres.org                                                                                                                                            258 | Page 

The relative deformation of the cross-section in the zone  = 3.25   can be represented only by the 

tangential component z on Fig. 7 in dimensionless quantities. For the other components of the tensor ε, partial 

derivatives with respect to the corresponding variables must be determined, which are not considered here. 

 

 
a)       b) 

Figure 7: The deformations εφz of the cylindrical spring at (a) the initial moment in time, and at (b) 0.4 

seconds into the time period 

 

IV. CONCLUSION 

Final analytical formulas for the laws of displacements and rotations of transverse sections of spring 

coils made of homogeneous elastic material have been obtained and derived based on the presented 

mathematical model of the three-dimensional stress-strain state of a cylindrical spring under complex dynamic 

loading conditions. 

The values of the deformation tensor component are presented, along with a graphical clear visible 

rotation of points of the spring's transverse section and the displacement of the spring itself with the change in 

the external shape of its homogeneous elastic material. 
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