
International Journal of Research in Engineering and Science (IJRES) 

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 

www.ijres.org Volume 12 Issue 2 ǁ February 2024 ǁ PP. 16-20 

 

www.ijres.org                                                                                                                                              16 | Page 

Neural Network for damage detection of R/C Buildings 
 

Konstantinos Mixios*1, Sotiria Stefanidou2, Olga Markogiannaki2 
*1

Department of Civil Engineering, National Technical University of Athens, Athens, Greece 
2
SURE Competence Center, Greece 

Corresponding Author: Konstantinos Mixios 

 

Abstract 
Engineering structures play a crucial role in advancing modern societies, and it is imperative to monitor their 

condition to ensure safety and longevity. There are various methods available for assessing the integrity of these 

structures, with a prominent one being damage detection. This approach focuses on identifying deviations in 

specific structural behavior characteristics and utilizes numerical models to simulate different damage 

scenarios. However, the effectiveness of this approach is limited due to discrepancies between analytical models 

and actual structures. This study introduces an enhanced approach for detecting structural damage, with the 

primary goal of identifying damaged components within a structure. It harnesses neural networks to predict 

which elements have sustained damage, followed by a model refinement process that utilizes an optimization 

algorithm. This process is crucial for accurately determining the stiffness parameters of the damaged elements, 

thereby bridging the gap between theoretical models and real-world structural behaviors. The integration of 

neural network predictions with targeted optimization algorithms represents a significant advancement in the 

practical application of damage detection techniques in the field of engineering structures. 
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I. INTRODUCTION 

Engineering structures such as bridges, buildings, roads, railways, and tunnels are essential and 

prevalent in contemporary societies, cutting across cultural, geographical, and economic boundaries. The 

assurance of their safety, cost-efficiency, and durability hinges on proper management and upkeep. A crucial 

aspect of this management is health monitoring, which enables early identification and observation of structural 

wear and tear [1]. The comprehensive data collected from monitoring must be transformed into practical 

knowledge. This assists in formulating and implementing maintenance plans, improving safety, validating 

theories, reducing uncertainties, and broadening the knowledge and consciousness about the monitored 

structure. 

The assessment of structures' current conditions can be carried out using various techniques, with on-

site manual inspections and vibration-based Structural Health Monitoring (SHM) being the most common in 

real-world applications [2–4]. On-site manual inspections typically consist of visually and physically examining 

structural elements to detect visible damage or anomalies. While this method provides significant insights into 

the structure's state, its dependability and accuracy are limited by human interpretation and the potential for 

error. Furthermore, these inspections are scheduled at fixed intervals, which may miss the ongoing and 

instantaneous progression of structural deterioration. On the other hand, vibration based SHM systems offer 

constant monitoring of the structure's behavior and response by using sensors and data collection technologies 

[5, 6]. These systems gather and scrutinize data, employing advanced processing techniques to derive crucial 

information reflecting the structure’s condition. Consequently, vibration based SHM systems offer a more 

thorough and unbiased assessment, promoting proactive maintenance approaches and enabling timely actions to 

maintain structural integrity and safety. 

A multitude of research efforts have aimed to link alterations in structural conditions with changes in 

natural frequencies, utilizing extensive measurement data. While many of these studies have shown that natural 

frequency can reflect structural stiffness, it alone does not suffice for a direct assessment of structural health. 

Typically, natural frequency is used more as a contributing factor or characteristic within a system designed for 

an indirect evaluation of structural integrity. This method facilitates the assessment of structural conditions 

through an indirect yet revealing analysis based on dynamic response parameters. In vibration-based Structural 

Health Monitoring (SHM), there is growing interest in damage detection techniques for their capability to 

localize and quantify damage severity. These techniques primarily depend on differences in structural responses 

between damaged and intact states to detect damage. Various response parameters, like acceleration and 
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displacement, are utilized to identify the structure's behavioral traits. While dynamic characteristics such as 

natural frequency and mode shape are often used in these analysis processes, many studies focus on natural 

frequencies as a key indicator for structural integrity assessment. Conventional methods in this field typically 

involve the creation of specific damage indices, intended to highlight frequency changes due to damage. 

Nevertheless, these traditional approaches frequently encounter challenges in creating an index that accurately 

reflects both the extent and location of damage through numerical methods. Moreover, as these methods are 

largely simulation-based, their practical applicability may be limited due to potential discrepancies in accurately 

mirroring the real-life conditions and responses of structures. 

This research combines practical aspects of previously mentioned damage detection methods for real-

life structures. A Finite Element (FE) model was constructed to extract the dynamic characteristics of a structure 

with damage. Subsequent structural analysis simulations were conducted across various damage scenarios 

within the structural elements. Artificial intelligence algorithms were then trained with this simulated data, 

particularly focusing on the dynamic behavior of the damaged model, to identify different potential damage 

states in the targeted structure. The developed Neural Network model is capable of pinpointing damaged 

elements in the structure by observing reductions in the stiffness properties of these elements. To determine 

which stiffness parameters (E, Iy) were altered in a specific element, a model updating process using a particle 

swarm optimization algorithm was adopted. This particle swarm optimization facilitated a more nuanced and 

detailed method for model refinement. As a result, the methodology crafted in this study is applicable to actual 

scenarios, especially when a finite element model (FEM) of a structure is accessible. The primary objective of 

this methodology is to closely estimate the real values of structural parameters, thereby narrowing the 

discrepancy between theoretical models and their practical counterparts. This approach enhances the accuracy 

and relevance of the FEM in mirroring actual structural conditions. 

To overcome the challenges of conventional structural damage detection methods, there has been an 

increasing emphasis on incorporating Artificial Intelligence (AI) technologies. AI provides data-driven 

techniques to identify complex patterns, especially in situations where deterministic solutions are not viable. 

The effectiveness of AI-driven approaches largely depends on the quality of training data. Progress in data 

creation and processing technologies has significantly enhanced AI's utility in various fields. In structural 

damage detection, several neural network architectures have been utilized. Deep Neural Networks (DNNs) [7–

9], forming the core architecture for neural networks, enable the examination of relationships between inputs 

and outputs through a feed-forward process, particularly useful when these relationships are relatively clear-cut. 

Recurrent Neural Networks (RNNs) [10, 11], known for their ability to incorporate previous information into 

current processing, are effective in managing sequential data like time series, making them ideal for analyzing 

structural dynamic responses. Convolutional Neural Networks (CNNs) [12–14], designed mainly for processing 

spatial data such as images, are adept at extracting spatial characteristics from data sets and have applications 

extending beyond image analysis, including improved data feature extraction for various analyses. As for 

training methods, there are supervised learning techniques, where networks are trained using labeled data sets to 

establish input-output relationships, and unsupervised learning approaches [15–17], which discover patterns in 

unlabeled data. While supervised learning can achieve high predictive accuracy due to clear labels, unsupervised 

methods are beneficial in situations where labeling is impractical or for discovering new features, such as in 

real-world structural conditions. 

 

II. TRAINING PROCEDURE AND CASE STUDY 

An advanced methodology for detecting structural damage was devised, starting with the creation of a 

foundational model. This model was crucial for dataset generation, where two critical parameters, the Elastic 

Modulus (E) and the Moment of Inertia (Iy), were systematically altered, reducing them to a minimum of 30% 

of their original values. The neural network was trained with this dataset, using the model's natural frequencies 

as inputs and targeting the stiffness of each element for outputs. This setup established a predictive model 

correlating frequency changes with potential structural damage. The model underwent a testing phase to assess 

its capability in estimating stiffness values from new data. The optimization process is intricately aligned with 

the structure's dynamic properties, ensuring a focused and effective enhancement of the model. 

For the machine learning model, a dataset was generated using a structural model simulating a two-

story building. This model, characterized by the elastic properties of its elements, was simulated with the 

OpenSeespy framework [19]. The dataset creation involved multiple modal analyses, each with randomized 

changes in stiffness properties (E, Iy) of different elements. The dataset was formed by varying stiffness 

parameters of one, two, or three elements, decreasing their values. This led to 10,860 unique models, all 

variations of the base model. The dataset, depicted in Figure 1, was split into training, validation, and test sets, 

allocated as 70% for training, 20% for validation, and 10% for testing. This split ensured a balanced 

representation of different damage scenarios across all subsets. 
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Figure 1: Components of dataset 

 

 

 

Figure 2: Reference Finite Element Model 

 

In this study, the balance between the network's learning capacity and computational efficiency is a key 

focus. The number of nodes in the network is critical; more nodes enhance the network's ability to discern 

complex patterns, but too many can cause overfitting or increase computational burden. Setting the right 

maximum epoch count is crucial to avoid underfitting or overfitting, with this study opting for 15,000 epochs. 

Early stopping is implemented if validation accuracy doesn't improve, ensuring efficiency. The batch size, 

which impacts the amount of data processed in each epoch, and the learning rate, crucial for weight adjustment, 

were carefully considered. Due to RAM constraints, a smaller batch size was used, while a constant learning 

rate was maintained for steady progress. The study leveraged the TensorFlow library for developing the neural 

network, striking a balance between learning depth and computational practicality. 

A parametric analysis was carried out to determine the most effective neural network model for 

predicting structural damage using stiffness values. The analysis revealed a trend where network performance 

generally improved with an increased number of nodes. Most configurations yielded satisfactory performance, 

except when the number of nodes was very low. The optimal network configuration identified for damage 

detection, as trained with the generated dataset, achieving an RMSE of 0.9742%. 

Figure 3 presents the outcome of the network's performance on test data, indicating effective training as 

evidenced by the Root Mean Square Error (RMSE). This low RMSE suggests a high degree of accuracy in the 

network's predictions of stiffness compared to actual values, demonstrating its ability to generalize across a 

spectrum of stiffness degradation scenarios. Figures 5 offers a sample of a case study from the test dataset, 

where exemplifies the network's precision in identifying damaged elements. 
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Figure 3: RMSE in test set 

 

 

Figure 4: (Left) Ground truth damaged elements, (Right) predicted damaged elements. 

 

III. CONCLUSION 

This research applied a novel damage detection technique using a deep-learning model focused on 

estimating damage conditions from the modal characteristics of structures. The methodology was tested using an 

extensive dataset specifically created for this study. Beyond natural frequencies, dynamic characteristics like 

mode shape and modal energy were considered as potential input features. Future research might explore neural 

networks based on nonlinear structural models. This advancement aims to increase the method's precision and 

versatility, catering to more complex structural conditions and a wider array of damage types. 
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