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Abstract

In this paper, we introduce the solution of systems of linear PDEs and nonlinear PDEs subject to the general
initial conditions by using THE variational iteration method. Six illustrated examples has been introduced. The
steps of the method are easy implemented and high accuracy.
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I. INTRODUCTION
Systems of partial differential equations, linear or nonlinear, have attracted much concern in studying

evolution equations that describe wave propagation, in investigating shallow water waves, and in examining the
chemical reaction-diffusion model of Brusselator.

The Variational Iteration Method (VIM) was first developed by Chinese mathematician Ji-Huan He,
professor at Donghua University. The VIM was initially proposed toward the end of the most recent century and
completely grew in 2006 and 2007.

The method VIM is used to solve effectively, easily, and accurately a large class of non-linear problems
with approximations, which converge rapidly to the accurate solutions. For linear problems, its exact solution
can be obtained by only one iteration step due to the fact that the Lagrange multiplier can be exactly identified.

The variational iteration method (VIM) is relatively new approaches to provide approximate solutions to
linear and nonlinear problems. The variational iteration method, (VIM) was successfully applied to find the
solutions of several classes of variational problems.

Here we used VIM for solving systems of linear or nonlinear PDEs with initial conditions. This paper is
arranged as follows. In section 2, Variational Iteration Method (VIM) 'S form. In section 3 Variational Iteration
Algorithm for PDEs. In section 4, numerical examples. The conclusions in section 5.

1. VIM'SFORM :

a0 = )+ [ AL + o+ f Gty 1

Firstly we find A(¢): 1 is a general Lagrange multiplier:
IfL=="228) = (D) = -1

da

If£=45220) = (CD2E -0 = —x
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I =1 4 = 28

Etc

secondly we use initial condition to chose u,(x)

_d
( u(0) forL = P
uo(x) = qu(0) + xu’'(0) for L=

e
0)+ 0 +1 L= @
ku( ) + xu'(0) xu" for =0

and soon.
11l. VARIATIONAL ITERATION ALGORITHM for PARTIAL DIFFERENTIAL EQUATIONS:
Consider the following partial differential equation

2%u(x,y) 62u(x )
dx? dy?

u3(x,y) = 0.

Now we begin with
up(x,¥) = u(0,0) + xu,(0,y) + yu,(0,y) + yu, (x, 0).
Then the variational iteration algorithm can obtained as follows

azun(f,y) azun(f')’)

Unt1(x,Y) = up(x,y) +j (3 x){ 9&2 + dy? - ui(ﬁ)’)} s,
0%,
<un+1(x y)_uO(x J’)+f (6_ ){M u%(fd’)}da
tnea) =) + [ €= (T2ED ey - TErED e
0

IV.  NUMERICAL EXAMPLES :

In this section , we apply the variational iteration method (VIM) to solve systems of partial differential
equations . Numerical results are very encouraging.

Example (1). Consider the following linear system:
U +v,—w+v) =0,

vi+u,—(u+v)=0,

u(x,0) = sinhx,v(x,0) = coshx,

Solution :

Let’s consider the linear equations:

ur+v,— (w+v)=0, u(x,0) =sinhx
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vp+u,—(uw+v)=0, v(x,0)=coshx

Then the correction functional is given by

Oun(x, dvp(x,
Ui (0,8) = Uy (0, 0) — [ (% + 25Dy (x,6) = v, f)) ds,

tfovn(x8) |, dun(x$)
vn+1(x, t) = vn(x' t) - fO ( Va;f +ua—;$_ un(x' f) - vn(x, 5)) df,

Now we can start with initial approximation u,(x, 0) = sinh x, vy(x,0) = cosh x and using the iteration
formula (), we obtained following successive approximation

uy = u(x,0) = sinh x, vy = v(x,0) = coshx,
u; = sinhx + t cosh x,

v; = coshx + tsinhx,

. t2
u, = sinhx + t coshx + 7smh X,

. t?
v, = coshx + tsinhx + Y coshx,

Uy =sinhx(1+t2—2!+-~~)+coshx(t+f+~~),

3!
2 3
vy = coshx(l +%+ ) + sinhx(t +t3—!+ ),
When n - oo then
(u: 17) = lim (un' Un)
n—-oo
(u,v) = (sinh x cosht + cosh x sinh t, cosh x cosh t + sinh x sinh t)

(u,v) = (sinh(x + t), cosh(x + t))

Example (2). Consider the following linear system:
u +u,—2v=20

vVe+v,+2u=0

u(x,0) = sinx, v(x,0) = cosx

Solution : Let’s consider the linear equations :

U +u, —2v =0, u(x,0) =sinx

v +v,+2u=0, v(x,0) =cosx
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Then the correction functional is given by

t[oun(x$) | dun(x$)
un+1(x' t) = un(x' t) - fO (% + % - Zvn(x, f)) d{;

tfovn(x§) | dvp(x$)
n(6) = 100) = [ (2524 2569 1) ) a,

We can select uy(x, 0) = sin x,v,(x,0) = cos x by using the given initial values. Accordingly, we obtain the
following successive approximations

uy = u(x,0) = sinx, vy = v(x,0) = cosx,

u; = sinx + tcosx,

v, =cosx — tsinx,

. t2
u, =sinx + tcosx—;smx,

. t2
Vy, = COSX — tsinx —?COSX,

. t? .
u, =sinx + tcosx —;smx+

. t?
v, = CcoSx —tsinx —;cosx+

When n - oo then
(u,v) = (sinx cost + cosxsint,cosx cost — sinx sint)

(u,v) = (sin(x + t), cos(x + t))

Example (3). Consider the linear system:
U +u,—2v, =0

ve+v,—2u, =0

u(x,0) = cosx, v(x,0) = cosx

Solution : the correction functional is given by

wﬂmo=%mw—f

0

ClOun(x,§) | 0un(x,§)  0v,(x,8)
< 0& T i ox )df'

mﬂmﬂ=wmo—f

0

t avn(x,f) avn(x’f) aun(x,f)
< o0& T ox —2 ox )df'
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We can select u,(x, 0) = cosx, vy(x,0) = cos x by using the given initial values. Accordingly, we obtain the
following successive approximations

uy = u(x,0) = cosx, vy = v(x,0) = cosx,
u; = cosx —tsinx,

v, = cosx — tsinx,

. t2
cosx — tsmx—;cosx,

U;
UZ =u2,

. t2 t3 .
U3 = COSX — tsmx—;cosx+zsmx,

V3 = Uj,

2 . t3
Uy = Uy =cosx(1—z+---)—smx(t—§+-~),
When n — oo then

(u,v) = (cosxcost —sinxsint,cosx cost — sinx sint)

(u,v) = (cos(x +t),cos(x + t))

Example (4). Consider the following system
U —v+w+v)=0
vi—u, +(u+v)=0
u(x,0) = sinhx, v(x,0) = coshux,
Solution :

the correction functional is given by

Oun(x, dvp(x,
wﬂmo=wmo—ﬁQ%?Ll§ﬁ+%ma+Wma}ﬁ

v (x, dup(x,
wﬂmﬂ=wmo—ﬁ@§@—i§ﬂ+%ma+Wma}m

We can select uy(x, 0) = sinh x, vy(x,0) = cosh x, by using the given initial values. Accordingly, we obtain
the following successive approximations

uy = u(x,0) = sinhx, vy = v(x,0) = coshx,
u; = sinhx — t cosh x,

v; = coshx — tsinhx,
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. t2
u, = sinhx — t coshx + 7smh X,

. t2
v, = coshx — tsinhx + ;coshx,

u, = sinhx(1+t2—2!+-~-) —coshx(t+§+---),

Up =coshx(1+t2—2!+---)—sinhx(t+t3—3+---),

When n — oo then

(u,v) = (sinh x cosht — cosh x sinh t, cosh x cosh t — sinh x sinh t)

(u,v) = (sinh(x — t), cosh(x — t))

Example (5). Consider the Nonlinear system

U + UV, =2

Ve + U v, =0

u(x,0) =x, v(x,0)=x

Solution :

the correction functional is given by

U1 (6, 8) = (2, £) — fot (aun(x,f) + aun(x,f)_avn(x.é’) _ 2) de,

I3 dx dx

Vpra (0, 8) = 0,06, 0) — (a”n("'f) + aun(x'f).avn(x.f)) dc,

¢ ox ox

We can select uy(x,0) = x, vy(x,0) = x, by using the given initial values. Accordingly, we obtain the
following successive approximations

uy = ulx,0) =x, vy =v(x,0) =x,

U =x+t,
vy =x—t,
U, =x+t,
v, =x—t,
U, =x+t,
v, =x—t

WWW.ijres.org

250 | Page



Solutions of Couples of linear partial differential equations and nonlinear partial ..

When n — oo then

wv)=x+t,x—1t)

Example (6): Consider the following Nonlinear system
U+ 2vu, —u=2

vy —3uv, +v =23

u(x,0) =e*, v(x,0)=e™*

Solution : the correction functional is given by

t (Oun(x, dup (x,
106, 8) = () = fi (252 4 20, (0, 222D — 0y (,6) — 2) 6,

t (Ovp(x,8) dvp (x,
Una (66 = v, 0) = [y (22— 3w, (3, ) 2258 - 3) i,

We can select uy(x,0) = e*, vy(x,0) = e™*, by using the given initial values. Accordingly, we obtain the
following successive approximations

uy =ulx,0) =e*, vy=v(0)=e""%
u, = e* + te*,
v, =e X —te™¥,

t? 2
u, = e* +te* +—e* +-t3,
2 3

_ _ t? _
v,=e*—te "+;e * 4¢3,

un=ex(‘1+t+§+---),

2
v, e‘x(l—t+%+-~),
When n — oo then

(u' U) - (ex+t'ex—t)

V. CONCLUSION

The linear partial differential equations and nonlinear partial differential equations have been solved by
variational iteration method , this method is very effective and accelerate the convergent of solution ,the study
showed that this method is easy to apply and it is more accurate and effective.
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