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Abstract 

In this paper, We proposed attribute and inter-attribute domain constraints on the classes of a fuzzy 

object-oriented database model based on hedge algebra. In this approach, the verification of whether 

an object satisfies the constraints according to specific conditions and whether the attributes are bound 

together or not is at level k (kZ+), where k is the similarity level determined for each fuzzy attribute 

that matches the data constraints in the model, and the implementation of direct data matching on 

linguistic values is more intuitive and simpler than other approaches. 
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I. INTRODUCTION 

 

When designing a fuzzy object-oriented database, in addition to designing objects and object classes, 

designing constraints is a very important step. Designing and specifying constraints such as requirements that 

need to be satisfied between attributes within a class or attributes between classes [9-10]. For example, when 

storing information about lecturers in a university, some constraints can be used on the value domain of lecturer 

attributes such as citizen identification number, lecturer code, age, teaching and scientific research capacity... in 

which the value of citizen identification number, lecturer code must not be duplicated, the age of the lecturer is 

relatively young, the teaching and scientific research capacity of the lecturer is very good. The existence of 

constraints is a reality, so the problem is to include them in data models to make the data more meaningful and 

contextual [1]. Constraints are also used to set standards for updating and processing data to ensure consistency, 

correctness and completeness. 

In general, an object-oriented database is desirable to users when it satisfies all possible constraints on the 

classes of that database, creating a flexibility and semantic completeness in terms of data storage and 

manipulation. On the contrary, there will be limitations on the data if a database does not satisfy or does not 

provide constraints. The structure of the paper is presented in 5 parts, in addition to the introduction, part 2 presents 

some basic knowledge about hedge algebra and fuzzy object-oriented databases based on hedge algebra, parts 3 

and 4 present some data constraints such as value domain constraints and constraints between attributes, part 5 

presents the conclusion and future research directions of the paper. 
 

II. RELATED WORK 

2.1. Hedge algebra 
 

Hedge algebra is an approach to discovering the algebraic structure of the value domain of linguistic 

variables [9-10]. According to this approach, each value domain of the linguistic variable X can be understood as 

an algebra. A X = (X, G, H, ≤), where Dom (X) = X is the domain of linguistic values of the linguistic variable X 

generated from the set of generating elements G = {c-, c+} with the action of the hedges in H =H- H+,  is a 

semantic ordering relation on X, it is induced from the natural qualitative meaning of the word. When some special 

elements are added, the hedge algebra becomes an abstract algebra X=(X, G, H, , , ≤), where ,  are operators 

that take the limit of the set of elements generated when subjected to successive actions of hedges in H. 

Alternatively, if we denote H(x) = {h  …hp x/h1 , … , hp H} then x = inf H(x) and x = sup H(x). Thus, the 

hedge algebra  X built on the foundation of a hedge algebra  AX = (X, G, H, ≤), where X = H(G), by adding two 

operators , . Then X = X Lim(G) with Lim(G) being the set of limiting elements: for all x Lim(G), there 
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exists uX such that x = u or x = u. These limiting elements are added to the hedge algebra  X to make the new 

calculations meaningful and so X = (X, G, H, , , ≤) is called a fully linear hedge algebra. The semantic 

quantification function (), the fuzziness measure function (fm), the sign function (Sgn) and the properties of the 

hedge algebras can be found in published works [6-8]. 

 
 

2.2. Similarity level k 
 

When defining a neighborhood of level k we want such representative values to be interior points of the 

neighborhood of level k. Therefore, we define the similarity of level k as follows: we always assume that each set 

H- and H+ contains at least 2 hedges. Let Xk be the set of all elements of length k. Based on the fuzzy intervals of 

level k and the fuzzy intervals of level k+1 we informally describe the construction of a partition of the domain 

[0, 1] as follows: 

i) With k = 1, the level 1 fuzzy intervals include I(c-) and I(c+). The level 2 fuzzy intervals on the interval 

I(c-) are I(hp c-) = I(hp-1c-) = … = I(h2c-) = I(h1c-) = A(c-) = I(h-1 c-) = I(h-2 c-) = …= I(h-q+1 c-) = I(h-q c-) . Then, we 

construct a level 1 similarity partition consisting of the following equivalence classes: S (0) = I(hp c-), S(c-)= I(c-) 

\[I(h-qc-) I(hpc-)]; S(W) = I(h-qc- ) I(h-qc+); similarly we have S(c+) = I(c+)\[I(h-qc+) I(hp c+)] and S (1) = I(hpc+). 

ii) Similarly, with k = 2, we can construct a partition of similarity classes of level 2. In a similar way, we 

can construct partitions of similarity level k at any. However, in practical applications, we can restrict the 

consecutive hedges acting on the primitive elements c- and c+ to some integer k *. The canonical values and the 

fuzzy values are said to have similarity of level k if their representative values lie in the same similarity class of 

level k. 

Example 2.1. Consider the relational schema U = {CODE, FULLNAME, NUMBER_ISI, NUMBER_PRO} 

with the meaning: Lecturer code (CODE), Lecturer's full name (FULLNAME) are 2 explicit attributes, Number 

of articles published in prestigious international journals (NUMBER_ISI), Number of topics at all levels chaired 

(NUMBER_PRO) are 2 attributes with fuzzy values. In which DNUMBER_ISI = [0, 20] and DNUMBER_PRO = [0, 10]. 

LDNUMBER_ISI and LDNUMBER_PRO have the same set of linguistic values with the generator set {0, low, W, high, 1} 

and the hedge set {less, possibly, more, very}. Although the considered fuzzy attributes have the same set of 

linguistic values, their quantitative semantics are different. 

 

i) For the attribute NUMBER_ISI 

We have:  fm(high) = 0.4, fm(low) = 0.6, (possibly) = 0.25, (less) = 0.3, (more) = 0.2 and (very) = 

0.25. We partition the interval [0, 2 0] into 5 intervals similar to level 1: fm(very high )  20 = 0.25  0.4  20 = 

2. Therefore, S(1)  20 = (18, 20]; (fm(possibly high) + fm (more high))  20 = (0.25  0.4 + 0.2  0.3 )  20 = 

3.2 and S(high ) 20 = (14.8, 18]; (fm(less low) + fm(less high))  20 = (0.3  0.6 + 0.3  0.4 )  20 = 6 and S(W) 

 20 = (8.8, 14.8]; (fm(possibly low) + fm(more low))  20 = (0.25  0.6 + 0.2  0.6)  20 = 5.4 and S(low)  20 

= (3.4, 8.8], S(0)  20 = [0, 3.4].   

 

ii) For the attribute NUMBER_PRO 

We have: fm(high) = 0.35, fm(low) = 0.65, (possibly) = 0.2, (less) = 0.25, (more) = 0.35 và (very) = 

0.2. We partition the interval [0, 10] into 5 intervals similar to level 1: fm(very high)  10 = 0.2  0.35  10 = 0.7. 

Therefore, S(1)  10 = (9.3, 10]; (fm(possibly high) + fm(more high))  10 = (0.2  0.35 + 0.35  0.35)  10 = 

1.925 and S(cao)  10 = (7.375, 9.3]; (fm(less low) + fm(less high))  10 = (0.25  0.65 + 0.25  0.35)  10 = 2.5 

and S(W)  10 = (4.875, 7.375]; (fm(possibly low) + fm(more low))  10 = (0.25  0.65 + 0.35  0.65)  10 = 3.9 

and S(low)  10 = (0.975, 4.875], S(0)  10 = [0, 0.975].  

 
 

2.3. Fuzzy object-oriented database 
 

In Fuzzy Object Oriented Database [9], the following four cases can be used to distinguish object class 

relationships: 

i) Clear class and clear object: this case is similar to that in object-oriented databases, meaning that an 

object belongs or does not belong to a class with certainty. 

ii) Sharp class and fuzzy object: class is precisely defined and has precise boundaries, while object is fuzzy 

because its attribute values can be fuzzy. In this case, object can be a member of class with some degree of 

belonging . 

iii) Fuzzy class and clear object: similar to case ii), objects can belong to classes with different degrees of 

belongingness k. For example, a class of young students and a 20 year old student. 

iv) Fuzzy class and fuzzy object: in this case, the object also belongs to the class with the degree of 

belonging level k. 
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For each fuzzy linguistic value x, we will define an interval representation for x. In practice, the number of 

hedges in linguistic values is finite so there exists a positive integer k * such that 0 <|x|k*, xX. For any xX, set 

j=|x|, for every integer k, with 1 k  k * , the minimal neighborhood k of x denoted by Omin,k (x) is defined as follows: 

if k = j then Omin,k(x) = Ik+1(h-1x) Ik+1(h1x), if 1  k < j then Omin,k(x) = Ij(x) and if j+1  k  k * then Omin,k(x) = 

Ik+1(h-1y)Ik+1(h1y). Therefore, we represent fuzzy linguistic data according to the following definition: 

Definition 2.1. Given x X  C, an interval representation of x is a set IRp(x) of intervals defined: IRp(x) = 

{Omin,k(x)|1  k k*}. 

Consider X as a hedge algebra, with H+= {h1 ,..., hp } and H- = {h-1 ,..., h-q }, where p, q > 1. Let H1 be the 

set of negative hedges, H2 be the set of positive hedges in the sense that when acted upon it will change the 

meaning stronger than the number of hedges in H1, that is, the sets H1 and H2 include: H1 = {hi , h-j | 1  i  [p/2], 

1  j  [q/2]}, H2 = {hi , h-j | [p/2]  i p, [q/2]  j  q}. Let Pk+1(Hn) = {I(hiy)| y Xk , hi Hn }, with n = 1, 2. Two 

intervals I(x) and I(y) in Pk+1(Hn) are called connected if there exist consecutive intervals in Pk+1(Hn) ranging from 

I(x) to I(y). This relation will divide Pk+1(Hn) into connected components. We have that, for each y Xk , Pk+1(H1) 

is divided into clusters of the form {I(hi y)hi H1}. Furthermore, I(h-1y)  (y)  I(h1y) or I(h1y)  (y)  I( h-1y) 

we have (y) {I(hiy)| hi H1}. We cluster the fuzzy intervals of Pk+1(H2). Suppose Xk = {xs| s = 0,…, m-1} 

consists of m elements arranged in a sequence such that xi  xj if and only if i  j. Set and 

. Note that and . The clusters generated from the fuzzy intervals of Pk+1(H2) 

are of three types: the cluster to the left of x0: I(hi x0)| hi H2
+}; the cluster to the right of xm-1:{I(hi xm-1)| hi H2

+}; 

the cluster between xs and xs+1 with s = 0,…, m-2, depend on Sgn(hp xs) and Sgn(hp xs+1) as follows: C ={I(hixs), 

I(hj
’xs+1)| hiH2

+, hj
’H2

-}, if Sgn(hpxs) =+1 and Sgn(hpxs+1) = +1; C ={I(hixs), I(hj
’xs+1)| hiH2

+, hj
’H2

+}, if 

Sgn(hpxs) = +1 and Sgn(hpxs+1) = -1; C ={I(hixs), I(hj
’xs+1)| hiH2

-,hjH2
-}, if Sgn(hpxs) = -1 and Sgn(hpxs+1) = +1; 

C ={I(hixs), I(hj
’xs+1)|hiH2

-,hjH2
+}, if Sgn(hpxs) =-1 and Sgn(hpxs+1) = -1. 

The set of all clusters is denoted by C. Because {Sk(C)| CC} is a partition on the reference domain, it 

defines an equivalence relation and we will call it the k -level similarity relation. Due to the nature of the partition, 

for each value x of the attribute, there exists a unique cluster C such that (x)Sk(C) and we define the k- level 

similarity interval as follows: 

Definition 2.2. For each C in C, we call the similarity interval of level k corresponding to C as: Sk (C) = 

{I(u)|I(u) C}, then Sk(x) = Sk(C). 

Definition 2.3 . Given any object o on the attribute set {A1, A2 ,..., An} of class C, X is a hedge algebra, for 

each k, 1  k  k *, Sk is a similarity relation of level k on the attribute domain Ai of class C. Then, for every u  

X , the values o(Ai ) and u are said to be equal at level k, denoted o(Ai)= ku, if and only if Omin,k(o(Ai )) Sk(u). 

Definition 2.4 . Given any two objects o1 , o2 on the attribute set {A1 , A2 ,..., An} of class C, X is a hedge 

algebra , for each k, 1  k k * , Sk is a similarity relation of level k on the attribute domain Ai of class C. Then: 

i) Two values o1(Ai) and o2(Ai) are said to be equal to level k, denoted o1(Ai) = k o2(Ai), if and only if there 

exists an equivalence class Sk(u) of the similarity relation Sk such that Omin,k(o1(Ai)) Sk(u) and Omin,k(o2(Ai ))S 

k(u). 

ii) Two values o1(Ai) and o2(Ai) are said to differ by degree k, denoted o1(Ai) k o2(Ai), if there does not 

exist an equivalence class Sk(u) of the similarity relation Sk such that Omin,k(o1(Ai))  Sk(u) and Omin,k(o2(Ai)) S 

k(u). 

Definition 2.5. Let C = {c1, c2,.., cn} and O = {o1 , o2 ,…, om} be the set of constraints and the set of objects 

on class C, respectively. For each constraint ci  C that one or more objects oj O is fully defined through its 

syntax and semantics as follows: 

Syntax of a constraint: 

𝑐<𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠>
<𝑛𝑎𝑚𝑒> [ ] in <class name> [reference to <class name*>] 

[satisfied with level of <k>] 

Where: <name>: name of the constraint; <properties>: Set of properties of the class participating in the 

constraint; [] : with  either an empty value; or a set of properties; or a numeric value, range or fuzzy value 

depending on each given constraint; <class name>: name of the class participating in the constraint; [reference to 

<class name*>]: name of the class that references the constraint if any; [satisfied with level of <k>]: Level k that 

satisfies the constraint (if any). 

 

III. ATTRIBUTE DOMAIN CONSTRAINTS 
 

According to the hedge algebra approach, when considering the relationship between classes/objects or 

objects that satisfy fuzzy query conditions, that object belongs to a class or satisfies fuzzy query expressions with 

a level k. certain definition. With this idea, from the data constraint perspective, we also consider objects that 

satisfy constraints with a level k due to the fuzziness expressed in the given constraints. For example, as a 

  HHH 22

  HHH 22



  2Hh q

 2Hhp
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constraint for the lecturer object, the salary attribute is relatively high and the number of published scientific 

research papers is quite large. Therefore, the satisfaction of this constraint should only be evaluated by a certain 

level depending on the fuzzy interval of level k. To evaluate level k like that, we must represent the values on the 

attributes of the objects participating in the constraint as fuzzy intervals at each level. Then, determining the 

objects satisfying the constraint is done by matching the attribute values of the objects participating in the 

constraint at each level k with the usual matching method, this is a prominent advantage of the hedge algebra 

approach. 

For fuzzy attributes, the data types are also based on the basic data types as above to allow the 

representation of fuzzy information. Some specific proposed constraints are as follows: 

“not null” constraint: For this constraint, the attribute on the specified object must always have a defined 

and valid value. To represent this constraint, we use the syntax: 𝐶{𝑖𝑑}
𝑛𝑜𝑡_𝑛𝑢𝑙𝑙

in <class name>    (3.1) 

Where, id describes the attribute to which the “not_null” constraint is applied on the class named <class 

name>. 

“null” constraint: For this constraint, the property on the object can contain null value as opposed to the 

“not_null” case above. To represent this constraint we use the syntax:  𝐶{𝑖𝑑}
𝑛𝑢𝑙𝑙in <classname>.   (3.2) 

“Value” constraint: To represent this constraint, we use the syntax: 𝐶{𝑖𝑑}
𝑣𝑎𝑙𝑢𝑒[ ] in <class name> Satisfied 

with level of <k>.           (3.3) 

Where, is a value constraint that can be an explicit value, an interval value, and an opaque linguistic value 

to limit the value domain of the attribute specified as id and k is a given level indicating the constraint satisfaction 

level of the object on the class named <class name>. 

Example 3.1. For example, we constrain the Salary attribute of the Lecturer class to values such as about 

10,000,000 or 15,000,000 Salary 20,000,000 or "very high" then we have the corresponding constraint 

representations as follows: 

      𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [about 10,000,000] in Satisfied Lecturer with level of <k> 

      𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [15,000,000  Salary  20,000,000] in Lecturer Satisfied with level of <k> 

      𝐶{𝑆𝑎𝑙𝑎𝑟𝑦}
𝑣𝑎𝑙𝑢𝑒 [very high] in Satisfied Staff with level of <k>. 

If the level k equality relation (k Z+) occurs, then there exists an equivalence class Sk(x)Sk , where Sk is 

an equivalence relation of level k on the attribute id such that the minimum neighbor represents the value of the 

attribute under consideration and the value constraint belong to the same equivalence class Sk(x). 

Algorithm 3.1. Check whether an object o satisfies the value constraint c with a given level k. 

Input: Object o and attribute id to be considered. Constraint c is represented from (3.3), k Z+ is given to 

indicate the constraint satisfaction level of object o, Sk is an equivalence relation on the domain of attribute id. 

Output: Object o either satisfies the value constraint or not. 

Method: 

1. Begin 

2. Constructing the hedge algebra AXid for the attribute id includes constructing the fuzzy parameters, 

hedges and generators. 

3. Determine the domain that defines the id attribute as D(id) = (minid, maxid) where minid, maxid are the 

smallest and largest values of id. 

4. Calculate Omin,k(o(id)) and Omin,k () 

5.  if (Omin,k(o(id)) = kOmin,k()) then 

6.   return “object o satisfies constraint c with level k” 

7.  else 

8.   return “object o does not satisfy constraint c with level k” 

9. End. 

Algorithm 3.1 is correct, algorithm complexity is O(1). 

 

IV. INTER-ATTRIBUTE DOMAIN CONSTRAINTS 
 
 

In reality, there are constraints of the form “If two employees o1, o2 have relatively good working ability, 

then the salary of o1, o2 is relatively high”, it is seen that there is a relationship between the teaching ability and 

salary of o1, o2. If we consider that the relationship between the teaching ability and salary of two lecturers o1, o2 

is a constraint in a fuzzy object-oriented database, we call this constraint a constraint between attributes on class 

C containing these two attributes, or in other words, it is a form of fuzzy data dependency between two attributes. 

Definition 4.1. Let A = {A1, A2,.., Am} be a set of attributes and C be a class defined on that set of attributes. 

Consider X, Y A. We say that the object o C satisfies the inter-attribute constraint X, Y denoted X ⥲𝑘Y, read 

as Y, the fuzzy inter-attribute constraint X with level k: if oi C, oi (X) =k o(X) then oi (Y) =k o(Y). 
The syntax for inter-attribute constraints is: 
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𝐶{𝑌1, 𝑌2,…, 𝑌𝑚}
𝑖𝑛𝑡𝑒𝑟_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

[X1, X2,.., Xn] in <class name> Satisfied with level of <k>    (4.1) 

In which, X = {X1, X2,.., Xn} and Y = {Y1, Y2 ,.., Ym} are the sets of attributes on the class named <class 

name>, required the level of satisfaction of the constraint between X and Y. 
 

Algorithm 4.1. Algorithm to check whether an object o C satisfies the given inter-attribute constraint X, 

Y with a given level k Z + or not. 

Input: A = {A1, A2,…, Ap} is the set of attributes on class C, the object o C to be considered. C contain 

the set of objects o1, o2,…, oq} and X, Y  A, X = {X1, X2,…, Xn}, Y = {Y1, Y2 ,..,Ym}, m, n  p; the inter-attribute 

constraint is shown at (4.1), k Z+. 

Output: Object o satisfy the inter-attribute constraint X ~> k Y with level k Z+ or not. 

Method: 

1. Begin 

2. Construct the hedge algebras for the fuzzy attributes in X and Y, assuming the sets X, Y have s, r fuzzy 

attributes in X and Y respectively as S = {X1, X2,…, Xs}, R = {Y1, Y2,…,Yr}. 

3. Determine the value domain of the Xi attributes S and Yi R is D(Xi) = (minXi, maxxi) and D(Yi) = 

(minYi, maxYi) where (minXi, maxXi) and (minYi, maxYi) are the minimum and maximum values of Xi. Yi, 

respectively. 

4. i: = 1; stop: = false; 

5. while (i  q-1) and (stop = false) do 

6.  begin 

7.   if SatisfyX(oi(X) =k o(X)) then 

8.    begin 

9.     if SatisfyY(oi(Y) =k o(Y)) then Stop:=false; 

10.     else Stop: =true; 

11.    end i: = i+1; 

12.  end 

13. if (i  q-1) then return “o does not satisfy the constraint” 

14. else  if (i = q-1) then return “o satisfies the constraint” 

15. End. 

//Building function SatisfyX, function SatisfyY 

1. Begin 

2. r: = 1; Stop:=false; 

3. while (r  n) and (stop = false) do 

4.  begin 

5.   if (Xr is an explicit attribute) then 

6.    begin 

7.     if oi (Xr) = o(Xr) then stop:= false 

8.     else stop: = true; 

9.    end 

10.   else if (Xr is a fuzzy attribute) then 

11.   begin 

12.    Find Omin,k(oi (Xr)) and Omin,k (o(Xr)); 

13.    if (Omin,k(oi(Xr )) =k Omin,k(o(Xr))) then stop:=false 

14.    else stop:= true; 

15.   end 

16.   r: = r+1; 

17.  end 

18. if (r = n) then return SatisfyX: = true 

19. else return SatisfyX: = false; 

20. End. 

//Building the SatisfyY function 

1. Begin 

2. z: = 1; Stop:= false; 

3. while (z  m) and (stop = false) do 

4.  begin 

5.   if (Yz is an explicit attribute) then 

6.    begin 

7.     if oi (Yz) = o(Yz) then stop:= false 

8.     else stop:= true; 
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9.    end 

10.   else if (Yz is a fuzzy attribute) then 

11.   begin 

12.    Find Omin,k(oi(Yz)) and Omin,k (o(Yz)); 

13.    if (Omin,k(oi(Yz)) =k Omin,k (o(Yz ))) then stop:=false 

14.    else stop:= true; 

15.   end 

16.   z: = z+1; 

17.  end 

18. if (z = m) then return SatisfyY: = true 

19. else return SatisfyY: = false; 

20. End. 

With the object o that needs to satisfy the constraints between the proposed attributes, algorithm 4.1 need 

to go through the remaining t-1 objects on that class. Algorithm 4.1 is correct, ensuring stopping and stopping 

when the function SatisfyX(oi(X) =k o(Y)) satisfies and the function SatisfyY(oi(Y) =k o(Y)) does not satisfy or has 

gone through all the objects of the class. The algorithm complexity of the SatisfyX and SatisfyY functions is O(n) 

and O(m) respectively. Therefore, the complexity of algorithm 4.1 is O(t), with n, m  t. 

Corollary 4.1: Given Object o ∈C, A = {A1, A2,…, Am} is the attribute set of class C. Let X,Y ⊆ A with Y 

fuzzy inter-attribute constraint at level k, denoted X ⥲𝑘Y, we have: 

i) With X being fuzzy or clear. If object o satisfies constraint X ⥲𝑘Y at level k then o also satisfies constraint 

X ⥲𝑘′Y at all levels k’Z+: k’ < k. 

ii) With X it is clear. If object o does not satisfy constraint X ⥲𝑘Y at level k then o also does not satisfy X 

⥲𝑘′Y at all levels k’Z+: k’ > k. 

Proof. 

i) Because object o satisfies constraint X ⥲𝑘Y level k , we have ∀oi∈ 𝐶, oi ≠o: oi (X)  =k o (X) ⇒ oi (Y) =k o 

(Y) or oi (Xi) =k o(Xi)⇒ oi (Yi)  =k o(Yi) (*), ∀ Xi ∈X, 1≤ i ≤n , n is the number of attributes in X and ∀Yi ∈Y, 1≤ i 

≤m , m is the number of attributes in Y. For the left side of (*), for each oi(Yi) =k o(Xi), if oi (Xi ) =ko(Xi) then oi (Xi) 

=k' o (Xi), ∀k' < k. Similarly for the right side of (*), for each oi (Yi) =k o(Yi) then we have oi(Yi) =k' o(Yi), ∀k' < k. 

Therefore, for oi (Xi) =k o(Xi)⇒ oi (Yi) =k o(Yi) we have oi(Xi) =k' o(Xi)⇒ oi (Yi)  =k' o(Yi) with ∀k' < k or oi(X)  =k' 

o(X)⇒ oi (Y)  =k' o(Y) with ∀k' < k if o satisfies the constraint X ⥲𝑘′Y for all levels  k’Z+: k’ < k. 

ii) Because object o does not satisfy constraint X ⥲𝑘Y level k, we have ∃oi∈ C, oi ≠o: oi (X)=k o(X)⇒ oi 

(Y)  ≠k o (Y) or at least one attribute Yi exists ∈ 𝑌: oi (Xi) =k o(Xi)⇒ oi (Yi)  ≠k o(Yi)(**),∀ Xi ∈ fK, 1≤ i ≤n , n is the 

number of attributes in X. For the right side of (**), if oi (Yi)  ≠k o(Yi) then oi(Yi)  ≠k' o(Yi), ∀k' > k. Similarly for the 

left side of (**), since X is a clear key (∀ Xi ∈X is an explicit attribute) so for oi (Xi) =k o(Xi) then oi (Xi) =k' o(Xi), ∀ 

Xi ∈X, ∀k' > k . Therefore, ∀k' > k , ∃oj ∈ C , oj ≠o : oj (Xi) =k' o(Xi)⇒ oj(Yi)  ≠k' o(Yi ),∀ Xi ∈X, ∃Yi ∈ 𝑌 in other 

words ∃oj ∈ C, oj ≠o : oj (X) =k' o(X)⇒ oj (Y)  ≠k' o(Y) so o also does not satisfy X ⥲𝑘′Y ,k’Z+: k’> k where X is 

a clear key. 

Corollary 4.2: Given Object o ∈C, A = {A1, A2 ,…, Am } is the attribute set of class C. Let X,Y, 𝑍 ⊆ A. We 

have: 

i) If object o satisfies constraint X ⥲𝑘Y level k then o also satisfies constraint XZ ⥲𝑘YZ level kZ+. 

ii) If object o satisfies constraints X ⥲𝑘Y and Y ⥲𝑘Z with level k then o also satisfies constraint X ⥲𝑘Z 

with level k’Z+: k’ > k. 

Proof. 

i) Because object o satisfies constraint X ⥲𝑘Y level k, then  ∀oi ∈ C, oi ≠o: oi (X)  =k o(X )⇒ oi(Y)  =k o(Y). 

Furthermore, with oi(XZ)  =k o(XZ) and oi(X) =k o(X) implies: oi(Z)  =k o(Z) (*). 

From oi(Y) =k o(Y) and oi(Z) =k o(Z) implies: oi(YZ)  =k o(YZ) (**). Thus, from (*) and (**) we have  ∀oi ∈ 

C, oi ≠o: oi (XZ) =k o(XZ )⇒ oi (YZ ) =k o(YZ ) or we say that object o satisfies constraint XZ ⥲𝑘YZ level kZ+. 

ii) Because object o satisfies constraints X ⥲𝑘Y and Y ⥲𝑘Z level k should be ∀oi ∈ C, oi ≠o: oi (X) =k 

o(X)⇒ oi(Y) =k o(Y) (*) and oi(Y)  =k o(Y)⇒ oi (Z)  =k o(Z) (**). From (*) and (**) we have  ∀oi ∈ C, oi ≠o: oi(X)  

=k o(X)⇒ oi(Z)  =k o(Z) or we say that object o satisfies constraint X ⥲𝑘Z at level kZ+. 

 
 

V. CONCLUSION 

In the process of designing fuzzy data structures, determining the types of data constraints is an important 

issue. For example, the type of constraints on the attribute value domain is the basis for determining fuzzy keys, 

the constraints between attributes are the basis for determining fuzzy functional dependencies, an important basis 

in building fuzzy standard forms to minimize data redundancy. The constraints on the attribute value domain aim 

to ensure the determination of data according to a certain rule specified when designing the database and ensure 
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the correctness of the data of an object in the fuzzy object class. Researching and proposing algorithms related to 

these types of data constraints is meaningful in terms of theory as well as application design in practice. Some 

issues related to special types of constraints are researched and presented in the following works. 
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