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ABSTRACT 

The paper investigates the nature of the lifting force acting on a porous cylindrical particle. The porous cylinder 

is located perpendicular to the flow and is flown by a viscous liquid in a flat channel. The calculation of the lifting 

force acting on the cylinder is made for different values of the Reynolds number, porosity and their location in 

the flow. 
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I. INTRODUCTION 

In many technological processes, viscous fluid flows are observed in areas with and without porous 

inclusions. In this regard, there is a need to study such phenomena [1-3]. 

The experimental results of Segre-Silberberg [4] on particle migration gave impetus to many researchers 

to search for an analytical expression for the lift force acting on a particle from the flow. An analytical expression 

for the lift force for a sphere in an unlimited linear flow was obtained in the work of  Saffman [5]. There were 

attempts to expand Saffman's formula by many authors [6-12]. In [6,7], a correction to Saffman's lift force is 

given. In the work of Asmolov [8], the formula for the transverse force acting on a spherical particle in a laminar 

boundary layer was expanded using the method of matched asymptotic expansions. The magnitude of the force is 

expressed through a multiple integral. In [10], using Asmolov's corrections [8,11], the motion of a particle in the 

Couette layer was investigated. Work [11] is devoted to the effect of inertia and the presence of a boundary on the 

lift force. The effect of inertia on the lift force in a linear velocity field was investigated in [11] using the numerical 

Fourier method. In [13], the flow around a cylinder by an infinite two-dimensional flow was numerically 

investigated based on the non-stationary Navier-Stokes equation in the variables of the stream function and vortex. 

Important elements of such studies are the mathematical description of such phenomena. The complexity 

of such flows lies in the consideration of the flow in two subdomains: the free zone and the porous subdomain. In 

the free zone, the flow is modeled by the Stokes/Navier-Stokes equations, and in the porous subdomain there are 

various approaches to modeling the flow in the porous region [1-3]. 

There are two directions of modeling such flows in the literature. The first direction is characterized by 

modeling the flow with its own equations in each subdomain. The flow in the free zone is modeled using the 

Navier-Stokes/Stokes equation systems. There are many equations to describe the filtration flow through a 

saturated porous layer [1-3]. In particular, the classical Darcy equation [1] is widely used to describe the flow 

through a porous layer. The Brinkman filtration equation is similar in type to the Navier-Stokes equation. When 

using a two-region model, a choice of interregional boundary arises. The Beavers-Joseph or Saffman conditions 

are used as the interboundary condition [14]. 

The second direction is characterized by the use of a single differential equation for the entire region 

[15,16]. In this case, the use of the interphase boundary is eliminated. In this case, the use of the equation in the 

free zone turns into the Navier-Stokes equation. 

In this article, we use a single equation for the entire region, and the model is obtained on the basis of a 

two-velocity continuum, first described by H.A. Rakhmatulin [18]. The study of filtration motion based on a two-

speed model was also carried out in works [19,20], in which the forces of interaction between the phases 

corresponded to Darcy's law, while observing the Kozeny-Carman relation. 

. 

II. MATHEMATICAL MODEL  

Let a porous cylinder be located in the region of a viscous flow (Fig. 1). To describe the flow inside and 

outside the porous cylinder, we proceed from the interpenetrating model of two-phase media. If in the two-velocity 

model for describing the flow of two-phase media we assume that 1) there is no motion of the discrete phase, 2) 

the deformation of the discrete phase can be neglected, 3) there is no heat and mass transfer between the phases, 
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4) the flow is incompressible, then the equations of motion and continuity in dimensionless Cartesian coordinates 

have the form: 
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where u  and v  are the longitudinal and transverse components of velocity, p  is the pressure, x y,  are the 

Cartesian coordinates;  is the porosity of the layer, Re / hU  is the Reynolds number, U is the average 

volumetric velocity, h  is the channel width,   and   is the density and viscosity of the flow, D h d  /  

is a dimensionless number, d  is the characteristic size of the porous medium,   is the proportionality 

coefficient. 

In the equations of motion (1), (2), the dimensionless variables are related to the dimensional ones as follows: 

 .Re,,,, 2UppUvvUuuhyyhxx   

Here the variables with primes are dimensional. 

Note that if we set   1 in equations (1) - (3), we obtain the Navier-Stokes equation for an incompressible fluid. 

This circumstance allows us to study the problem based on equations (1) - (3) in the entire region occupied by the 

porous layer and the fluid. We take the value   to be equal to one at the points of the region occupied by the 

fluid, and at the points of the porous region we set it equal to the porosity of the medium. 

We direct the axis x   along the bottom of the channel, and the axis y  perpendicular to it. At the entrance to the 

channel, a symmetrical velocity profile is specified.  We take the channel height as the characteristic dimension, 

and the average volumetric velocity over the channel cross-section as the characteristic velocity. 

In [21], the flow around a solid cylinder is numerically investigated using the Navier-Stokes equation. 

Here we investigate the nature of the change in the lifting force for a porous cylinder located in a flat channel and 

check that the above conclusion holds for a porous cylinder. 

Boundary conditions. No-slip conditions are set on the channel walls: 

.0 vu  

At the pipe inlet, we set a Poiseuille flow: 
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At a sufficient distance from the inlet section, we set a soft condition: 
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III SOLUTION METHOD  

To solve the systems of equations (1) - (3) under the corresponding boundary conditions, the SIMPLE algorithm 

[22] with the corresponding generalizations is used. A non-uniform grid, condensed near the cylinder, is used. 

The calculation is performed in the 3x1 region for different values of the Reynolds number: Re 1:500, and for a 

cylinder radius of  r = 0.1 and for different porosities. The particle center is located at points (1, ),sy   where us 

varies from 0.1 to 0.5 with a step of 0.05. 

Calculations were made for Re = 1,10,50,70,80,100,200,300,400,500. For a specific Reynolds number and 

cylinder location, calculations were made with the required accuracy  
410

 .  In all calculations, / 0.1hr   was 

assumed (
hr  is the characteristic size of the porous cylinder). 

The dimensionless lifting force per unit length of the cylinder was calculated using the formula: 
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The dimensionless force is related by the ratio: 
UL

F
F

y

y



  . Here   is the flow viscosity, L is the cylinder 

length, 
yF   is the dimensional lifting force. 

 

IV RESULTS AND DISCUSSIONS 

Figure 1 shows the change in the lift force for different porosities. 

Curve 1 in Figure 2 is obtained based on the Navier-Stokes equation. The nature of the change in lift forces for a 

porous cylinder, for the porosities considered, coincides with the nature of the solid cylinder. A similar nature of 

the change in lift force is observed for other Reynolds numbers. In Figure 2, the nature of the change in lift force  

 
Fig.1 Flow region 

 

is given for half the cross-section of the channel, since the change in lift force over the cross-section is an odd 

function relative to the channel axis. Therefore, Figure 1 shows the results for the lower part of the channel. It is 

evident from the graph that the porosity of the cylinder significantly affects the lift force, while with increasing 

porosity, the lift force decreases. If we place the center of the cylinder at points with coordinates (1; 0.5), due to 

the symmetry of the flow, the lift force is equal to the fill (by the way, this condition is necessary for the correctness 

of the calculation). Note that the influence of the Poiseuille flow is maximum when the cylinder is located near a 

solid boundary, regardless of the porosity of the cylinder. 

 
Fig. 2 Change in lift force at different porosities. 1-ε=0; 2- ε=0.1; 3- ε=0.3; 4-ε=0.7; Re=100. 

 

 

Fig. 3 shows the change in lift force at different Reynolds numbers. The behavior of the lift force for 

a porous cylinder coincides with the behavior of the lift force for a solid cylinder [21], although the 

range of change for a porous cylinder is reduced. An increase in the Reynolds number will lead to an 

increase in the range of change of the lift force. From Fig. 3 it is clear that the lift force vanishes not 

only on the channel axis (due to the symmetry of the flow), but also at other specific points changing 

with a change in the Reynolds number. Fig. 3 shows that the location of the point where the lift force 
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is equal to zero approaches the wall with increasing Reynolds number. On the other hand, with 

increasing Reynolds number, the maximum point of the lift force approaches the wall. Starting from 

appears where the lift force is equal to zero (Fig. 3). 

 

 

 
Fig. 3 Change in lift force at different Reynolds numbers. 

1-Re=70, 2-Re=100, 3-Re=200, 4-Re=300, ε=0.3. 

 

 

However, for porosity ε=0.8 and 0.9 up to Reynolds numbers Re=500, no equilibrium point was observed (Fig. 

4). In this case, the maximum value of the lift force does not approach the wall, but is in the middle between the 

channel axis and the channel edge. 

 

 
 

Fig. 4 Change in lift force at different Reynolds numbers, 1-Re=50, 2-Re=70, 3-Re=100, 4-Re=200, 

5-Re=500, ε=0.9 

 

Fig. 5 shows the change in the ratio of forces /y xZ F F   (
xF  is the drag force), which shows that in the boundary 

zones, at low porosities, the lift force is ≈ 50% of the drag force. With increasing porosity, although the 

contribution of the lift force decreases, this factor should still be taken into account. 
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Fig. 5. Change in the ratio of resistance forces. 

 

 

III CONCLUSION  

  The maximum value of the lifting force with increasing Reynolds number approaches the wall at ε ≤ 0.7. 

additional equilibrium points are formed symmetrically located relative to the channel axis at ε ≤ 0.7. Additional 

equilibrium points with increasing Reynolds number approach the walls. Within the framework of this model, at 

Re ≤ 500 for porosities ε ≥ 0.8, no additional equilibrium points are observed. Near the wall, for small values of 

cylinder porosity, the lifting force is 50% of the drag force. 
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