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Abstract This paper develops a neural network (NN) attitude controller for real-time unmanned aerial
ve- hicle (UAV) control implementation. UAV path plan- ning is achieved by position trajectory-
tracking which is necessitated by the action of the lower-level attitude controller. Thus accurate attitude
trajectory-tracking is indispensable for UAV path planning. Sensory data from UAV onboard sensors
is continuously processed by the onboard UAV flight controller in order to up- date UAV position and
orientation. IMU sensors may provide attitude information, while the GPS provides the UAV position.
An onboard control algorithm utilise these sensory information for UAV guidance and con- trol. In this
paper, focus is made on the development of the lower level attitude controller for UAV applications. The
control of UAV attitude is key to all successful UAV applications. A PID and a neural network controller
are developed for attitude control. The PID controller was used for bench marking as well as to
facilitate the de- velopment of the neural network controller. The per- formances of the respective
controllers are investigated on a UAV test platform. The main challenge for the NN controller
development is training data collection and preparation for effective attitude control. Further- more the
low computational power in most open sourcemicro-controller units (MCUS) poses a major limita- tion.
Keywords Multi-rotor drones - Real-time control - Neural networks - Inertial measurement unit - Kalmanfilter
- Low-pass filter - Unmanned aerial vehicle - Feedback control
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l. Introduction

Unmanned aerial vehicles (UAVs) are found in a wide range of applications. These include survey
and map- ping, transportation, environmental monitoring, disas- ter relief, industrial monitoring, traffic
monitoring, bor- der surveillance as well as military services such as air defence early warning, battlefield
surveillance, target lo- calisation and tracking, and military strikes [1-3]. The rapid adoption of UAV
systems has bee due to advance- ment in computing, sensing, and control [4, 4-6]. UAVs serves as a
platform on which many, such as the afore- mentioned, applications can be implemented. It acts as a
carrier vehicle for applications payloads. Various payload sensors are attached onboard UAVs for vari- ous
application, object detection is discussed in [7, 8], onboard cameras are used for vision. Various cameras
such as multispectral and hyperspectral cameras can be attached to UAV systems for precision
agriculture. High quality images could be captured in order to ex- tract vegetation indices to enable farmers
to monitor crop variability, stress conditions, as well as diseases and pests [9]. UAV applications in
transportation is dis- cussed in [10], transportation of medical supplies, blood specimens, vaccines, as well
as blood transfusions using UAVs was discussed. In all UAV applications the suc- cess of the mission
relies on successful UAV control. Furthermore the attachment of payloads increase UAV dynamics leading
to more demands on the UAV control. The control of UAV includes position and attitude con-
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trol. Attitude control is the lower level control and the
attitude controller is manipulated to enable UAV posi-
tion control. Various control strategies are discussed in
the literature, however most UAV control implementa-
tions are dominated by PID controllers. Neural network
controllers promises better performance than classical
PID controllers but they have not been widely adopted.
Most previous studies apply neural networks in obsta-
cle avoidance during UAV navigation [11-15], as well
as in compemsator models for external disturbance and
model errors [13,16]. Furthermore most of the works re-
garding NN-based UAV control are of simulation while
others run models on host machines and communicate
with the UAV system via links such as wireless LAN [14]
without actually porting the model to an onboard em-
bedded MCU. This is due to shortage of computational
power in most open source MCUs, as well as imple-
mentation complexity and other technical challenges.
Therefore, there is limited studies on the employment
of NN models for attitude control.

This paper develops an NN attitude controller for
real-time UAV control implementation. A test platform
was built for testing the controller. A PID controller was

first developed and implemented on the test platform.
The NN controller was then developed based on data
from the PID controller and controller performances
were compared. The NN controller model was trained
using ANNHub platform. This i1s a machine learning
platform that optimises NN models for resource con-
strained MCUs, enabling models to be embedded on
low computational power MCUs, The platform can ex-
port trained models to real-life applications.

2 UAV Control Strategies

UAV altitude, as well as velocity-and-heading control
needs a robust and accurate controller [17]. The alti-
tude controller is to achieve UAV desires altitude dur-
ing flight, take off, and landing stages of the UAV. The
velocity-and-heading controller on the other hand en-
sures UAV follows desired waypoints [18]. Various con-
trol strategies are discussed in the literature to achieve
UAV control objectives, these includes Fuzzy Logic,
Linear Quadratic Regulator (LQG), Sliding Mode Con-

trol (SMC), Proportional Integral Derivative (PID), Neu-

ral Networks (NN), e.t.c. Robust control have been con-
sidered to address parametric uncertainties as well as
external disturbances. In multirotor UAVs, disturbance
noise cansed by propeller rotation, blade Happing, and
variations in propeller rotational speeds needs a robust
nonlinear controller [19]. In [19] robustness as well as
Compensation for system nonlinearities was addressed
by combining nonlinear sliding mode control (SMC),

robust backstepping controller and a nonlinear distur-
bance observer (NDO). The backstepping controller sta-
hilised translational movement while the SMC controlled
the rotational movement of the quadrotor. The NDO
provided all the estimates of disturbances ensuring ro-
bustness of the feedback controls. Sliding mode control
(SMC), robust backstepping controller and a nonlinear
disturbance observer (NDO) were cooperatively used
to address system nonlinearities [19]. The backstepping
controller was employed for translational movement sta-
hilisation and the SMC controller was used for control
of rotational movement. System disturbances were es-
timated by the NDO to ensure robustness in feedback
estimates.

A PID controller and a direct inverse control neu-
ral network (DIC-ANN) were compered via simulation
in [20]. Both controllers were excited with the same
altitude reference input and their responses were plot-
ted. Quadrotor flight was simulated in four stages com-
prising take-off and climb phase at 0 < t < 10 s,
hovering phase at 10 < t < 20 s, climb in ramp
phase at 20 < t < 22.5 s, and lastly the final alti-
tude phase at 22.5 < t < 50 s. The DIC-ANN out-
performed the PID controller in handling quadrotor al-
titude dynamics. At hovering conditions the DIC-ANN
displayed less steady state error as compared to the
PID controller. The transient oscillations damped faster
with the DIC-ANN, this means it handles nonlinear-
ities better than the PID controller. Most autopilot
systems employs PID controllers due to their ease of
implementation. PID controllers, however, have limita-
tions when subjected to unpredictable and harsh envi-
ronments. The performance and accuracy of a neural
network controller was investigated in [21]. The neural
network (NN) based controller is trained through re-
inforcement learning (RL) state of the art algorithms,
the Deep Deterministic Policy Gradient (DDPG), Trust
Region Pocy Optimisation (TRPO), and the Proximal
Policy Optimisation (PPO). The NN controller was com-
pared with a PID controller to establish the smitability
of NN controller in high precision, time-critical flight
control. Controller performances ware evaluated in sim-
ulation, using GYMFC environment. The results re-
vealed that RL trammed NN controller can trail accu-
rate attitude controllers, also the controller trained with
PPO outperformed a fully tuned PID controller on al-
most every criteria.

The linear quadratic regulator (LQR) optimal con-
trol algorithm controls a dynamic system hy minimiz-
ing an appropriate cost function [22]. When the LQR
15 used n combination with a linear quadratic estima-
tor (LQE), and Kalman filter, it is called the linear
quadratic Gaussian (LQG). The LQG was employed in
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[23] for quadrotor micro aerial vehicles (MAVs) altitude
control. The linearised model for altitude control prob-
lem was obtained as (1), disregarding air resistance.
The state space model is given by (2) , while the cost
function is given by (3), referred to as the quadratic
form criterion in [23]. The objective is to determine the
control input U(t) to minimise the cost function. [22].
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The linear Quadratic Regulator (LQR), Linear Quadratic
Gaussian (LQG), and a non-linear controller were con-
sidered in [24] to address external disturbances for fixed

wing UAV control. The control techniques were applied
to a linearised model of the UAV. Controller perfor-

mances were assessed on simulation using Matlb /Simulink

toolbox. The nonlinear controller showed faster response,
good robustness and stability as compared to the LOR
and LOQG. The LOQG preformed better than the LQR
controller in the presence of disturbances. In some con-
trol implementations, shiding-mode control (SMC) strat-
egy 1s considered. Sliding-mode control is a nonlinear
control strategy that applies a discontinuous control
signal to the system ensuring that it slides along a pre-
scribed path or sliding surface [22]. An SMC based fault
tolerant control design for underactuated UAVs was im-
plemented on a gquadrotor in [25]. system dynamics were
separated into two sub-systems, a fully actuated and an
under-actuated subsystem. A Nonsingular Fast Termi-
nal Sliding Mode Controller (NFTSMC) was designed
for the fully actuated subsystem, the Under-actuated
Sliding Mode Controller (USSMC) was then derived
for the under-actuated subsyvstem. The controller per-
formanece was evaluated on a quadrotor platform. The

controller demonstrated excellent robustness to actua-
tor fanlts and external disturbances. It had fast con-
vergence and high tracking precision. Herrera et al. de-
signed a sliding-mode controller and applied by simu-
lation to a quadrotor. They considered a PD (propor-
tional Derivative] sliding surface for vertical take-off
and landing. A wide scope on control algorithms for
quadrotors can be found in [22].

3 Feedback Control

State estimates, such as estimates for UAV transla-
tion, rotational movements, and position, are required
for unmanned aerial vehicle (UAV) feedback control
[26-28]. The flight controller generates UAV state es-
timates using onhoard sensor measurements. The need
for state estimation is due to uncertainties in sensor
measurements arising from factors such as atmospheric
disturbances, vibrations noise, inaccuracy of coordinate
transformations, and missing measurements [26,29]. Fur-
thermore signal obstructions for sensors such as global
positioning system (GPS) affects the reliability of the
sensor. Despite all setbacks timelv response of UAV
and robotic systems is critical [30-32]. Multiple sen-
sors can be used together for augmentation purposes
[28]. This compensates missing signals from affected
sensors. The gyroscope, accelerometer, magnetometer,
GPS, and pressure sensors, for example, may be com-
bined for UAV localisation. A high frequency update on
UAV states is required for effective UAV control. Low
update frequency of some Sensors, such as the GPS,
with a typical update frequency of 4Hz, can be negated
for using Kalman filtering techniques. Kalman filter-
ing techniques can also be emploved for gyroscope drift
correction. Gyroscope drift errors can also be addressed
using model compensation where the gyroscope random
drift is modelled, and the model is used to predict the
drift. The gyroscope reading is then offset by the pre-
dicted drift [33,33,34].

The accelerometer and gyroscope are widely used
in stabilisation platforms [35,36]. Accelerometer mea-
surements suffer from high-frequency noise while gvro-
scope readings are prone to drift error due to mtegra-
tion [35,37]. In the literature, several compensation ap-
proaches for gyroscope drift are discussed. In [38] gyro-
scope drift was modeled in order to predict the drift er-
ror of a micro electro-mechanical systems (MEMS) gy-
roscope. The wavelet threshold denoising algorithm was
used to separate drift error and white noise. Improved
Elman neural network was used to promote gyroscope
drift model accuracy [38]. The gyroscope reading was
offset by the drift error predicted by the gyvroscope dritt
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model. Adaptive Heo Kalman filter was used for ran-
dom gyroscope drift modelling in [39]. In [40], empirical
mode decomposition (EMD) algorithm was used to de-
compose the gyvroscope drift signal, threshold denoising
and a clustering algorithm was then used to extract the
non drifting gyroscope signal, and ensemble-ELM (ex-
treme learning machine) predicted and compensated for
the gyroscope drift error. Some implementations uses
the zero velocity compensation (ZVC) method to over-
come gyroscope drift errors [41-43]. The ZVC employs
the gyroscope data static and moving mean mean. If
the moving mean is less than zero, the velocity 1= added
with the static mean and if the moving mean is higher
than zero, the static mean is subtracted from the veloc-
1tv. The selection of drift error compensation techniques
1s application dependent.

4 Real-time Control

In order to implement real-time control for TAVs, tasks

have to be defined. An RT'OS is required for tasks schedul-

ing, inter-task communication, and management of avail-
able resources such memory, power consumption, etc.
Each task 1s allocated a memory space, called a stack,
in the microprocessor. This is enabled by the RTOS ker-
nel’s support for multi-threading. Real time implemen-
tation in UAV control is needed, especially, for man-
agement of multiple UAV tasks, to_ensure timely re-
agement of multiple UAV tasks, to ensure timely re-
sponse and context switching between the tasks. A real-
time operating system (HTOS) is used for task schedul-
ing, inter-task communication. It also manages avail-
able computing resources, power consumption, ete. Task
scheduling and prioritisation, as well as sensor update
frequency ensure timeliness of application tasks. In [44],
an RTOS (RT-Thread) is used to address such needs
as real-time response, heavy workload and difficulty
in control of a quadrotor. Results showed that quad-
copter control system implemented on RT-Thread dis-
played good response time and smooth flight with a
PID controller. Tasks such as attitude information ac-
quisition, attitude information fusion, and PID con-
trol were considered in this work. Application tasks
were implemented on RT-Thread RTOS running on
STM32F407TVGT6 microprocessor. The processor has
a high-performance ARM Cortex-M4 core with maxi-
mum system frequency of 168MHz, an FPU (floating-
point unit}, 1 Mbyte of flash, and 192 Khytes of SRAM.
It has peripherals such as ADC, SPI, USART, controller
area network (CAN) bus, DMA, etc. High operating
frequencies and high-speed memory provide high com-
putational power to enable guadcopter complex caleu-
lations to be performed. Also additional peripherals re-
duce the need for external IC and reduce computational

burden from the microprocessor. The implementation
in [45] uses a dual processor configuration. One pro-
cessor 1= used for telemetry while the other 1= used for
quadcopter control. The telemetry processor performs
software tasks such as communicating reconfiguration
and monitoring data with the ground control station
(GCS), sensor data collection, and wireless transmis-
sion of data to the GCS. The tasks are managed by
pC/OS-IT™, an RTOS. The control processor runs the
PID controller algorithm for the quadcopter stabiliza-
tion and navigation. This task was achieved through
several tasks allocated to the control processor. Tasks
include reading GPS, compass, IMU, and altitude sen-
sor data recelved from the telemetrv processor. Other
tasks include implementation of the roll, pitch, yaw, and
altitude PID control loops, and communicating recon-
figuration and monitoring data with the telemetry pro-
cessor via CAN bus. The literature on real-time imple-
mentation of drone control systems is relatively limited,
and the number of reported studies on UAV schedul-
ing has been minimal [26]. The leading characteristic
of a real-time implementation is the employvment of an
RTOS, referred to as AV operation system in some
literature. An RTOS is mostly needed with increased
number of UAV tasks and missions. It provides a real-
time kernel for implementation of UAV tasks. The tim-
ing requirements of each task is achieved by the use
of real-time scheduling algorithms [46, 47]. FreeRTOS
ol real-time scheduling algorithms’ [46, 47]. FreeR1'0N
is the widely used RTOS for UAV applications [47]. It
has features such as multi-threading, task scheduling
and prioritisation, inter-task communication ete.

5 Neural Networks

Artificial neural networks (ANN), or simply neural net-
works (NN), learns from past data and when given new
data responds by making predictions or classifications
based on past experience of input-output characteris-
ties [48-50]. The advantage of ANN is the ability to
transform system inputs to outputs without the knowl-
edge of their corresponding physical relation [50-57].
NN models are used in a variety of applications from en-
gineering, medicine, and finance, to name a few [58-61].

In terms of UAV applications, some examples can be
highlighted; Jiang et al. [16] proposes sigma-pi neural
networks (SPNN) angmented dynamic inversion con-
troller for UAV flight control performance improvement. The
UAV dynamics inversion model was used to linearise
the UAV nonlinear system while a neural network was
incorporated to eliminate errors caused by the dynam-
ies model. Experimental and simulation results demon-
strated that the NN-based control system outperformed
the PID -based control system in terms of trajectory
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tracking accuracy. Padhy et al . [14] facilitates a UAV
with a monocular camera for navigation in previously
unknown and GPS denied indoor environments. A video
from UAV front camera is fed mnto a deep neural net-
work model which determines the next course of ma-
neuver. Authors used the Parrot AR Drone as their
test platform. The NN model was run on a host ma-
chine which interfaced with the UAV via wireless LAN.
The UAV was expected to take off and navigate along
an indoor corridor before landing safely at the corridor
end. Authors determined the performance of the UAV
based on some ratios; the no collision ratio (NCR) and
the full flight ratio (FFR). The NCR considers the ra-
tio of the number of times the quadcopter successtully
navigates the whole length of the corridor, without any
collision with the walls, to the total number of trials.
The FFR is the same as the NCR except that it tol-
erates less impactful sideways collision with the walls.
The proposed model generated necessary control com-
mand to safely navigate the UAV in unknown corridor
environments.

5.1 Neural Networks in Embedded Systems

The significant benefits of machine learning (ML) meth-
ods has been hindered on MCUs applications due to
large memory demand and expansive computational
throughput of ML inference models [62-64]. There has
been mounting interest for NN inference applications
on embedded MCUs, This offers the advantage that
data can be processed locally, which averts challenges
posed by data transmission latency, when transferring
to ground processing unit (GPU], or to the cloud, such
as in mobile applications [65,65,66]. Also data captured
by sensors may be lost due to transmission costs, band-
width limitations, as well as power constraints [67-70].
To enable ML on embedded MCUs, neural architec-
ture search (NAS) algorithms have been developed and
ML algorithms are in recent years being implemented
on embedded MCUs . The paradigm of embedding ML
algorithms on MCUs 1is referred to as TinyML. It is
an active research field aiming to see efficient perfor-
mance of ML models on embedded computers. NAS
algorithms optimise neural network inference for de-
plovment on resource constrained hardware, such as
MCUs [71-73]. Various NAS algorithms are discussed
in the literature. NAS targeted for embedded applica-
tions need not only optimisation of model performance
but also have consideration of the resource constrained
nature of embedded MCUs. Cassimon et.al [73] make
improvements on a recent NAS, the Efficient Neural
Architecture Search (ENAS), to take into account em-
bedded resource constraints. Extra constraints such as

MCU flash memory, cache memory, and NN model com-
pression estimation were considered when designing the
ENAS algorithm’s reward function to raise the NN in-
ference model’s awareness of the resource constraints of
the targeted embedded MCU. The improved algorithm
was used to train an NN model to predict English words
at they would be spoken. The model was ported to a
Raspberry P1 3B MCU having 1GB RAM, half of which
was used by the model. The need to expand the focus
of TinyML research from ML model size reduction and
optimisation of existing models, which in most cases are
static, is addressed in [65]. Authors highlight the fact
that many of the data monitored by embedded Inter-
net of Things (IoT) applications is constantly changing
and 1n some cases evolves to an unprecedented format
due to unforeseen disturbances. The constant evolution
of the data render offline static ML models ineffective.
Authors present a novel evolving algorithm, the Tiny
Anomaly Compressor (TAC) for local and online data
compression on embedded IoT devices.

5.2 Neural Networks Training

During training, ANN model learns the input-output
relationship. NN learning can be categorised into su-
pervised, unsupervised, and reinforcement learning. In
supervised learning the NN model produces an inferred
function to map inputs to outputs based on example
input-output pairs. Unsupervised learning on the other
hand only have input data with no corresponding out-
put, and an appropriate learning algorithm is used to
explore hidden data patterns to find similarities and
differences for purposes of data clustering. In reinforce-
ment learning a machine learning model or agent is
trained to take an action, and it i1s given rewards or
penalties for the action taken as a means to optimise
its performance. Neural networks structure conform to
the multilayer perceptron (MLP), widely used in most
applications[74-76]. The MLP is a supervised learning
paradigm that use feed forward and back propagation.
Data flows forward from the input layer to the out-
put layer which determines the output prediction. The
structure of an MLP NN is shown in Fig. 1, where
T1,T2,F3, and x4 are generalised inputs and there is
one output, y. There could be more than one output
as well as more than one hidden layers. Each neuron in
the NN layers has an activation function which deter-
mines the output level of the neuron, for example, the
sigmold function has an output range of 0—1. Each neu-
ron is connected to neurons in the next layer and has
an associated weight, w. NN training happens in feed
forward and back propagation where inputs: 72,23,
and x,, fed into the input layer, are processed by the
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Input Layer Output Layer

Hidden Layer

Fig. 1: Neural network

activation function and scaled by their corresponding
welghts as they pass through the input layer, the hid-
den layers, and the output layer. The output prediction
of the neural network is determined by the output layer.
Prediction values are compared to known outputs pro-
vided in the training data. The error between the pre-
diction of the NN model, 7 and the known output y is
used during back propagation to adjust the weights of
the NN neurons from the output layer to the input layer
to increase the precision of the NN model, see Fig. 2 .

Hidden layer(s)

a®

Wa, -
Wy
Back properfation

Fig. 2: NN training

6 Experiment Setting

Accelerometer and gyroscope sensors are used to pro-
vide feedback information on UAV attitude. However,
the high sensitivity noise and gyroscope drift errors re-
quires that sensor measurements be processed before
they can be used for TAV control. The GY-85 MEMS
inertial measurement unit (IMU) was used int this pa-
per for feedback update. An arduino-UNO was used
as the flight controller MCU. A single axis platform
with two counter-rotating propellers was built to test
the PID and NN attitude controllers. The single axis
can represent either the roll-axis or pitch-axis of a sym-
metric quadrotor. In this paper the control of the roll
axis was considered. Effects of motor vibrations on sen-
sory data were considered. Accelerometer and gyro-
scope data was processed using a low-pass filter, and a
complementary Kalman filter. On board the test plat-
form is an arduino board, the GY-85 MEMS IMU, and
a radio receiver. A PID controller was implemented to
stabilise the test platform. Figures 4 and 5 depicts the
platform used to tune the gains of the PID controller.
PID controller inputs and outputs data was then used
in the development of a neural network controller. Fig-
ure 3 depicts a free body diagram of the test platform
[77]. A pitch about the y-axes results in a horizontal
force (resultant thrust vector) to the left {right if tilted
in the opposite direction). A roll about the x-axis re-
sults in a horizontal foree (forward into the paper and

backward out of the paper depending on the direction

of the tilt). When # = 0 and the drone is level, a simul-

taneous increase in thrust to all motors such that the

total thrust vector T' = myg will result in a vertical up-

ward force. The hardware used is a custom built frame

of the test platform, brushless DC motors, power dis-

tribution board, and electronic speed controllers. The

hardware was assembled in the laboratory and inter-

faced with an arduino board for flight control. The soft-

ware implementation was done in ¢4+ using arduino

integrated development environment (IDE). It took ad-

vantage of the basic linear algebra arduino library for

the implementation of the Kalman filter algorithm. The

library enables more compact matrix initialisation, as

well as direct matrix computation without need for

element-by-element operation as in c¢/c++ based pro-

gramming environments. Figure 6 shows a block dia-

gram of the UAV platform control system with umty

feedback closed loop. The PID controller used in this

work ,(denoted C'(s)), can be expressed as in (4). The

PID controller transfer function (TF) can be found by

taking the Laplace transform of (4) giving (5). Figure 7

depicts a diagram of the planar model of the TAV plat-

form, this has the corresponding equation (6).
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Herizontal Force

Fig. 3: Force components acting on a quadrotor, picture
reprinted from [77].

Fig. 4: Unstable system, no steady state achieved, video
can be viewed at https://www.youtube.com/watch?
v=suwssJHjQNE.

function is caleulated as (9). Substituting (5) and (8)
into (9) yields (10). The characteristic equation of this
closed loop transfer function is given in (11). Table (1)
15 the Routh table for stability analysis of the UAV
platform system. According to the Routh method, the
stability of the system 1s guaranteed if all the elements
of the first column in the Routh array are positive and
there 1s no sign change in the first column. Clearly all
the elements of the first column are positive and there
15 no sign change, however, this solely depends on the
choice of parameters constituting the third element of
the Routh array. The parameters should be chosen such
that KyK,—K;l.; = 0. The terms K, K;, and K4 can
all be adjusted during PID tuning. The value of I, is
positive even though not readily available. See Table
(1) footnote for the meaning of parameters used in the
equations. The system stability can therefore be guar-
anteed and is dependent nupon PID parameter tuning,
this is covered in Section 8.

Grmls) ' e u

C(S) ¢r [S}L

G
"

Fig. 6: Block diagram of the PID controlled UAV sys-
tem

de

u(t) = Kpe(t) + K;(t)dt + K, T (4)
Kl' Kd52 - K 5+ K,'
Fig. 5: Stable system, coming to steady state, video i s s Toge= sp (5)
can be viewed at https://www.youtube.com/watch?
v=IdfV9ztwVuo. i 0 _71 sin(¢) 0 .
£l = =] + | Zeoste) 0 | [%] ©
. : . é 0 g | BE
This model makes the assumptions that there is no Izz
translational movement in the e, direction, and fur-
thermore the UAV platform translation in the e, and ¢ = 22 (7)
e. directions is zero since the center of mass of the test Lrx
platform is fixed at center pivot. The dynamics of the
platform therefore simplifies only to the roll rate (¢) P(s) = P(s) o 1 )
about the x — axis. The roll rate is given by (7). The U(s) Ires?
system transfer function can be calculated by taking the
Laplace transform of (7), and is given by (8). From fig 6, 1
and letting H(s) = C(s)P(s), the closed loop transfer CTF =H(s) + 1+H(s) &)
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Table 1: Routh table for the UAV test platform system component is projected in the = (denoted 4, ) and y (de-
! noted A, ) axis, then the roll and pitch angles can be cal-
culated by trigonometry. When the sensor resolution is

. K set to full scale, the sensitivity scale factor for all ranges
£ t = is 256 Ish/g according to the ADXL345 datasheet. The
raw accelerometer readings are therefore divided by 256

52 Iﬁi fi; before they are used in calculations. The GY-85 MEMS
= - IMU is equipped with an ITG-3200 gyroscope for mea-

. KoK KT, suring angular rates. The sensor was used in this paper
# LKy to estimate roll and pitch angles. The output data from
the gyroscope is in two's complement format for each =,

&0 {—: y, and z axis, Output data for each axis comprises two

bytes, for the least significant and most significant byvtes
respectively. The most significant byte is shifted eight
positions to the left to avoid overlapping when adding
the least significant and most significant bytes to com-
pute an output for each axis. The gyroscope was set to
a full-scale range. Readings were sampled at 100Hz and

2 )
Kas™ + Kps + K (10) the digital low-pass filter cut off frequency was set to
Ipzs® + Kgs? + Kps + K; 49Hz.

! Kp —proportional gain; K- derivative gain; K; — Inte-
gral gain; [.. — moment of Inertia for UAV platform;

CTF =

53-!—&.524-&54—}{

L= (11)

III IIJ‘ IJ'I

7.1 Accelerometer and Gyroscope Setbacks

Accelerometer readings are very sensitive to external
noise [78-80], while the gyroscope values is susceptible
to drifting due to integration when calculating for gyro-
scope angular position. Disturbance forces acting on a
quadcopter can therefore greatly affect the integrity of
the data from the accelerometer. Rotor vibrations can
not be neglected as they would be fused into accelerom-
\ eter readings. It is, therefore, necessary to improve the
quality of accelerometer readings through filtering to
remove noise. In this paper, a low-pass filter is used to
process accelerometer data.

u, = moment

Acceleromeler Roll and Pilch Angles

Fig. 7: Planar UAV model. o e P — Rav —— bt

2 4

1 4

0 4
7 Sensor Data Processing 'RE

3

GY-85 MEMS IMU’s ADXL345 accelerometer measures g z ]
up to +16g. In the case of attitude estimation, an ac-
celeromerer sensor continually measures the gravita- *
tional force of up to £16g, at a resolution of 13-bit. o
The digital output data is formatted as 16-bit two’s 5 -
complement and was accessed via I°C interface. When '7‘9 = == =
the GY-85 MEMS IMU is placed spirit level, the gravi- Time
tational force is only in the positive z-axis (downwards). ; ; :
When the IMU rolls and pitches, the gravitational force Fig. 8: Filtered and unfiltered angle estimate.
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The gyroscope measures angular rate in degrees per
second (7 /s). Therefore gyroscopic readings are in terms
of angular velocity which when integrated can give in-
formation of the tilt angle. In this paper, the roll and
pitch angles from the gyroscope are estimated through
integration according to (12) and (13) respectively.

ql‘u:/w:dt
ql‘u:/wydt

The gyroscope estimates of the tilt angles tend to
drift from static conditions over time. This is indicated
in Fig. 0. The roll and pitch angles drift from the start-
ing values while the IMU has not been physically ro-
tated. Gyroscope drift is a major setback in that over
time the gyroscope angle estimates can no longer be
trusted and hinders the performance of the considered
application. In this paper, a Kalman filter is used to
address the gyroscope drift. A process model (14) in
state-space representation defines the evolution of pro-
cess states from time k — 1 to time k.

(12)

(13)

Gyro Drift on Roll and Pilch Estimaies

=T — T
o

[

Amplitudo
d

§
arm 3834 pas kL)

Tieni

aas a4

Fig. O: gyroscope drift for roll and pitch angle estimates.

xp = Axp_1 + Bup_1 4+ wp_ {14}
A is the state transition matrix, B is the control input
matrix, z. is the state vector, ug_; is the control vector,
and w18 the process noise vector. Assuming the pro-
cess noise 1s a zero-mean Gaussian distribution, it has
a related process noise covariance matrix (). Associated
with the process model is the measurement model (15)
which relates the state z; to the measurement at the
current time step k.

2 = Hxp 4+ v (15}

where zp. i1s the measurement vector, H 1s the mea-
surement matrix, and vy is the measurement noise vec-
tor having an associated measurement noise covariance
matrix H, assuming a zero-mean Gaussian distribution
of the measurement noise. The process model can be
written as (16) [81], where & is a generalisation for the
roll and pitch states, # is a generalisation for the roll
and pitch biases, T' is the gyroscope sampling time,
whereas up i1s the angular rates from the gyroscope.
The matrix equation (17) shows the matrix form state-
space representation of the process considered in this
paper, the states are the roll (¢) and pitch (#) angles
as well as their biases 3, and [, respectively. Compar-
ing (14) and (17), the matrices A and B can be deduced
while the control vector wy, is the angular rates from the
gyroscope [wy, wg|T. The measurement matrix H is ob-
tained from the relationship between the current states
and future states as (18).

oy =gy — T + wpaT (16)
S BT Bl o
e, oo oAl oo™
o= o

Different approaches to determining measurement
noise covariance matrix R and the process noise covari-
ance matrix () are documented in the literature [82],
but in this paper, a method based on the IMU measure-
ment error was considered. The IMU was placed level
and the accelerometer readings were taken. The read-
ings are supposed to be zero when the offset error is re-
moved. Fifty readings were taken from the accelerome-
ter for both roll and pitch to form a 2X 50 measurement
noise vector. To obtain the process noise, the vibrations
due to quadcopter propellers were modeled as the main
contributor to process noise. A set of fifty readings were
taken from the gyroscope roll and pitch with station-
ary quadrotor propellers, another set was taken with
quadrotor propellers throttled to takeoff thrust. These
sets of readings were then subtracted to form 2X 50 vee-
tor for process noise. The covariance matrices of these
vectors were computed to form the measurement noise
covariance matrix (19) and process noise (20) covari-
ance matrix.
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| 0.0353 —0.0062

T |—0.0062 0.0393 (19)
100.8424 0 —12.6204 0
0 0 0 0

@= —12.6204 0 1447351 0 (20)

0 0 0 0

The Kalman filter consists of two parts, the predic-
tion of the state under consideration and the update
of the predicted state. The prediction can be written
as (21) and (22). The update part entails the computa-
tion of the measurement residual (23), the Kalman gain
(24), the updated state estimate (25), and the updated
error covariance (26). The prediction &, predicts the
current state using the state estimate from the previ-
ous time step and the current input wg_;. The update
part of the Kalman filter equation uses the measure-
ment 2z to compute the measurement residual Y. The
measurement refers to that the part of the system state
that can be measured with certainty. Accelerometer roll
and pitch angle estimates are used as the measurement
in the Kalman filter equation.

G = Adg_1 + Bug_, (21)
P =AP; AT +Q (22)
Y =2 — Hi; (23)
K =P H'(R+ HP H")™! (24)
i =i + KiY (25)
P =(I — K H)PT (26)

Kalman filter roll and pitch angle estimates depicted in
Fig. 10 show elimination of gyroscope drift by Kalman
filtering. The Kalman filter uses the roll and pitch angle
estimates from the accelerometer and the raw gyroscope
outputs [we, wyl?.

Kalman hlter Bl and Piich Estmales

et ,M'“'-‘“-a..-.---.‘w_.-" B e "

Amplituids

Time

Fig. 10: Kalman Filter Roll and Pitch Angles.

8 Results and Discussions
8.1 PID Controller

A PID controller was tuned empirically for quadrotor
control. The Kalman filter roll estimates were used to
implement PID roll-axis control on the test platform.
Figure 11 depicts the approach taken for system dewvel-
opment. The PID controller was considered tuned when
it could stabilise the test platform and also ensuring the
platform system has a good settling time after distur-
bance. Figure 12 shows the performance of the PID con-
troller when subjected to disturbance. The disturbance
was introduced into the system by flicking underneath
the propeller with the hand. The system demonstrated
good performance, returning to its steady state in about
2 seconds.

Figure 13 shows the transient and steady-state re-
sponse of the quadrotor system when the roll-reference
angle signal was provided by the RC. The quadrotor
system, at a steady-state, was given a reference signal
of about 27° on the positive roll-axis. The reference-
signal input i1s not a perfect step input, nevertheless,
step response time analysis suffices to give insight into
the performance of the system. Time response analy-
sis provides detailed information in terms of the re-
sponsiveness of the system, and it was therefore con-
sidered for system performance evaluation in this work.
Figure 14 shows an elaborated view of the system re-
sponse. A small perturbation in the reference signal at
t = 30.41 seconds causes a slight response of the system.
This happens after the system has come to a steady-
state value of 28.73°. The peak value of the system re-
sponse is 32.21°. Table (2) gives the characteristic time
responses of the system.
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Fig. 13: PID system transient and steady state re-
sponse.

Fig. 11: Hardware-software integration and PID tuning
for quadrotor control.
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an Tahle 2: System Time Response Characteristics 2
0 000 4000 6000 400D 10000 12000 14000 18000 18000 Parameter Description Magnitude
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Fig. 12: PID controlled system response to disturbance
with reference angle set to 0°. Trise 10% - 90 % of 2635
peak value .
dead time Tsiep - Trise 0.13=
8.2 NN Controller Development response error
settling time within 2%  of | B.96s
. steady state value
8.2.1 Data for NN Model Training
S5E R.—88 1.73°
The NN model was developed using data from the PID ! Titep —step response time; Trize- rise time; SSE — steady

state error; R, — reference signal input (27° in this case);

controlled TTAV system. The IMU roll angle, the control SS - steady state value (28.73° in this case)

error, the gvroscope rate about x-axis, and the PID out-
put value for corrective action were considered for train-
ing data. This constituted a four column data set de-
picted in Fig 15, the PID corrective output value is the
output to be predicted by the NN model, while the first
three columns are input data. NN model training was
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therefore a supervised learning approach which aims to
approximate the PID corrective output. The success of
the NN model depends on the choice of the training
data parameters. A combination of input parameters
are needed in the training data set that best estimate
the output parameter. A strong correlation between the
input and the output has to exist in the training data
set. Therefore a careful selection of the parameters has
to be made for the best prediction of the output pa-
rameters, Input parameter combination of thrust, roll
angle, and reference angle from the RC controller have
demonstrated poor prediction of PID corrective action.
Critical analysis on the cholce of training data parame-
ters considered the fact that the PID controller, widely
adopted in UAV control, uses control error. This in-
forms on the proportion of the corrective action to be
taken. It was observed that for better performance the
NN model needs knowledge of the platform attitude in
terms of the roll angle in addition to the control error.
Furthermore, inclusion of the gyroscope rate ensured
that the NN model acquires knowledge about distur-
bances. A total of 155000 training and 5947 testing data
sets were captured. The data sets were taken from the
PID controlled platform, all possible movements of the
platform as well as disturbances were simulated. Dur-
ing training, the training data set was split, 60% for
training and 40% for validation and testing.

IMU Roll  Control error Gyrorate Predicted Output
1.02 -1.02 556 104.06
0.86 -0.86 87 1141
0.76 -0.76 -254 -56.13
0.7 -0.7 -543 -113.51
0.58 -0.58 -634 -130.89
0.61 -0.61 -697 -143.65
0.65 -0.65 -695 -143.58
0.72 -0.72 -417 -88.41
0.75 -0.75 -150 -35.26
0.84 -0.84 55 5.14
0.86 -0.86 197 33.41
0.82 -0.82 362 66.65
0.77 -0.77 442 83.02

0.7 -0.7 437 82.49
0.64 -0.64 473 90.11
0.56 -0.56 341 64.25

0.5 -0.5 202 36.92
0.48 -0.48 81 12.86

Fig. 15: Sample training data for NN model.

8.2.2 NN Model Development and Training

The NN model was developed using ANNHub plat-
form. ANNHub i1s a machine learning platform that
enables ML model design, training, and validation. It
facilitates the user to develop ML models and export
them to various applications to solve real-life problems.
ANNHub optimises models to be able to fit into re-
source constrained MCUs such as the ardimino-uno used
in this implementation. It supports advanced training
algorithms such as Scaled Conjugate Gradient, Lev-
enberg Marquardt, QQuasi-Newton, and Bayesian reg-
ularisation. The Bayesian regularisation showed good
performance. Model over-fitting problem 1s handled by
early stopping through selection of few but adequate
training epochs or by the Bayesian regularisation auto-
matically. Training data is first uploaded to ANNHub
before configuring the model. Figure 16 shows the NN
model configuration. The mean square error (MSE) was
used as a cost function. The model was then trained,
as shown in Fig 17. The model has an MSE of about
48, this implies a root mean squared error (RMSE) of
about 6.9. In this case the quantity being predicted is
the pulse width modulated (PWM) value written to
the electronic speed controllers (ESCs), and hence no
specific units for MSE and RMSE. The RMSE of 6.9
suffices given the output data range of 800. Further-
more lower RMSE implies, in most cases, an over-fitted
model that lacks the generalisation ability.

Training Engne Activation Function  Activation Function Neurs| Network Type
{Bayezian Regularisation Rell Purelin Customised Type
Post Processing
Fre Prooessing 8 =
Min Max - Lol
e M
“n M
o -1000° 1000

Cont Function
Mean Squated Error

Trairirg Date -
Ratio |%) - 2
%)

Hidden Nodes 15

Fig. 16: NN model configuration.

8.2.3 NN Model Testing and Evaluation

The trained model was tested using an unseen data set
to the NN inference. Figure 18 depicts the data set used
as well as the NN inference prediction of the corrective
output. The NN model prediction is satisfactory and al-
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Fig. 17: NN model training.

most within the range of the actual output. The predic-
tion has an R? value of about 0.64. R is the correlation
coefficient and R? is the coefficient of determination.
These quantities are widely used to evaluate the good-
ness of NN models. The value of R has a range of —1 -1
while R? has a range of 0 — 1. A value close to 1 indi-
cate a strong positive correlation between the predicted
and actual output while a value close to —1 indicates a
strong negative correlation between the two variables.
Figure 10 shows the explanations of R { as well as F? )
for various R ( R? ) ranges, where R? takes the positive
half of the range —1 — 1. It is indicative, therefore, that
the R? value of this NN inference model falls in the
strong category and has positive correlation. The value
of 0.64 for R may seen low but it suffices given that
the range of the output data is relatively high, about
800. The corresponding R value is about 0.8, Figure 20
shows a plot fit of the NN prediction to the actual out-
put. It shows a quite good fit with much resemblance
between the predicted and actual output.

8.3 NN Model Deployment and Comparison with the
PID Controller

So far the ANN inference has been tested only within
the ANNHub platform. ANNHub has provision for ex-
porting the trained model for use in real world applica-
tion. The model was exported for use on arduino IDE.
The generated arduino file for the model was integrated
with the rest of the arduino code for the test platform.
The code was then uploaded to the onboard arduino
flight controller. The performance of the model on the
platform was evaluated. The main purpose of the model
is to estimate the corrective action to the motors for

Tecting data

Input1 Input? Imputd Output Predicted Outy
1370000 1370000 15000000 ~6,530000 ~5705473
1400000 - 1400000 23.000000 ~5.180000 -4 701440
1420000 1420000 28000000 4340000 4080737
1440000 - 1.240000 31.000000 - 1.ET0000 -3 751540
1450000 1450000 36000000 2.870000 -3313880
14T000 1470000 31000000 -4,070000 -3915538
1490000 - 1430000 29.000000 4. 600000 -A31651
1450000 1490000 22000000 ~3.830000 5192233
1.500000 -1.500000 11.000000 -8.300000« -6.998211
1510000 1510000 6.000000 -0.370000 782513
1510000 1510000 -5.000000 11530000 -9.388005
1.520000 1.520000 -8.000000 = 12260000 -835035%3
1530000 1530000  -5.000000 12500000 -10.000885
1.530000 1530000 -2000000 - 11100000 -0.059208
1.530000 1.530000 7.000000 ~8.310000 -T.745624
1.540000 1.540000 16000000 7530000 -6 48657
1560000 1560000 2000000 £.520000 6011823
1570000 1570000 33000000 4420000 4166936
<

R Squered Value

0639396 Plot Fit Cunve

Fig. 18: Testing data and ANNHub NN model predic-

tion.
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Fig. 19: Explanation of B ( B? ) values, reprinted from
[83]
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Fig. 20: ANNHub fit-plot depicting how the NN model
approximate the true output.
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platform stabilisation. Figure 21 shows the performance
of the NN controller when the test platform was sub-
jected to disturbance. The disturbance was introduced
by flicking underneath the propeller with the hand. Re-
sponse shows fewer oscillations as compared to the PID
controller, see Fig 12 for comparison. This indicates
that the NN model handles system non-linear dynamics
better than the PID controller. The system also returns
to a stable state faster as compared to the PID con-
troller. Figure 22 shows the transient and steady state
response of the test platform subject to NN controller
action. Figure 23 shows an expanded view of the plat-
form system response. The time response characteris-
tics of the system are shown in Table (3), the table also
includes the PID controller time response characteris-
tics for comparison. The NN controller shows overall
good performance, it has a lower settling time, as well
as a lesser overshoot. See Fig 24, with a link for the
performance of the NN model.

System Reference Angle Tracking

— Error —

Syslem Resporas |

3
27000 21500 22000 22500 23000 23500 24000 24500 25000 25500 26000

Time

Fig. 21: NN system response to disturbance with refer-
ence angle set to 0°.

Although the NN model was developed using data
trom the PID controller, it offers significant advantages
in this implementation approach. First of all, NN model
considers all PID controller performance and uses the
performance data to relate input to output. Few oc-
casions of PID controller under-performance are not
strongly captured during model training as the NN model
will only capture the predominant data features. This
is shown in less oscillations with the NN controller.
Furthermore the platform algorithm is shortened with
the use of an NN model leading to faster computations
and high motor update frequency. This is due to par-
allel processing as the NN model takes in input vari-
ables simultaneously as they are generated while the
PID algorithm needs the error to be ecaleulated first.
The generalisation ability of the NN modeled ensured
good performance even with the roll angle estimate
from the accelerometer. This further shortened the con-
trol algorithm and reduced computational burden from
the flight controller MCU due the heavy dependence
of the kalman filter algorithm on matrix calculations.
The platform algorithm has a loop time of 10ms with
the PID algorithm compared to 6ms with the NN algo-
rithm, this corresponds to motor update frequencies of
100H z and 16TH » respectively. This can be attributed
to the smaller rise time with the NN model depicted in
Table (3).

System Reference Angle Tracking

20000
Tima

1] S000 10000 18000 28000 0000 A5000 4000

Fig. 22: NN system transient and steady state response.

9 Conclusion

The work of this paper furthers the adoption of NN
controllers for UAV control. UAV control systems are
dominated by PID controllers due to their ease of im-
plementation despite their difficulty in tuning. The NN
controller developed in this paper demonstrated better
performance in attitude control of a single axis plat-
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Fig. 23: NN system transient and steady state response
elaboration.

Fig. 24: Neural Networks controller used for attitude
control, video can be viewed at https://www.youtube.
com/watch?v=tWPMAHZIBCs.

form. This was enabled by advancement in TinyML
where NN models are optimised for implementation on
resource constrained embedded computers. This work,
therefore, is a motivation for improvement and further
works on UAV NN attitude controllers. The developed
NN model cannot be effective in real life applications
on full UAV dynamics control due to limited training
data nsed. The future direction of this research would
require more training data that will cover all possible
UAV maneuvers. This will ensure that the built NN
model will be extensively exposed to diverse UAV op-
erational environments. In addition, the model can be
more extensive if it includes all possible environmental
disturbances. However this requirement can not be met
by performing several experiments. Thus, external dis-
turbance should be incorporated into NN learning to

Tahle 3: System Time Response Characteristics *

Parameter| Description PID con- [ ANN con-
troller troller
0% - 632
Tsiep % of peak | 2.76s 2.34s
value
10% - 90
Trise % of peak | 2.63s 1.98s
value
. Tstep -
dead time i 0.13s 0.3s
response
setthin error within
e 2% of | 8.96s 6.725
steady state
value
SSE R.—88 1.73% 2.3¢
overshoot ':;‘"'k“"’e' 4.16° 3.75°

! Tstep —step response time; Trise- rise time; SSE - steady
state error; H: — reference signal input S5 — steady state
value

ensure that such environmental disturbances and UAV
maneuvers are included in the NN model.
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