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ABSTRACT 

An investigation of small fluid particle motions in different fluid with compressibility changes, translational 

motions and pulsational motion is presented. When the particles are very small as compared to other relevant 

scales for the motion wavelength in the acoustic case. The approximate solution indicates that the motion of a 

particle can be characterized by a uniform translational motion where each point of the particles has a velocity, 

a rigid-body rotation with angular. Velocity without a change of volume. Each of these motions can produce a 

change in the suspension compressibility because it may affect the volume of a suspension. Ultimately each of 

these contributions can be related to energy-dissipation mechanism but it is advantageous to cast the problem in 

terms of the various particle motions that can be exist.  
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I. INTRODUCTION: 

It is known from basic fluid kinematics that the most general motion of a sufficiently small material 

element can be represented as the sum of uniform translation, a rigid-body rotation, and a stretching motion that 

can be split into a uniform expansion (or contraction), and a deformation of the element without a change of 

volume. Although the theorem does not apply to particles of finite size, we may expect that it remains 

approximately valid when the particles are very small when compared to other relevant scales for the motion 

wavelength in the acoustic case. If so, the motion of a particle can be characterized by a uniform translational 

motion where each point of the particles has a velocity up a rigid-body rotation with angular velocity Ωp, a uniform 

expansion with a volume-rate change dup/dt, and a change of area, dAp,/dt, without a change of volume.  

Each of these motions can produce a change in the suspension compressibility because it may affect the 

volume of a suspension. Ultimately, each of these contributions can be related to energy - dissipation mechanism 

but it is advantageous to cast the problem in terms of the various particle motions that can exist.  

 

SOLUTION AND DISCUSSION  

In what follows we ignore shape oscillations as well as particle rotation, so that the only remaining 

particle motions are the rigid-body translation and the uniform expansion/contraction, or pulsational, motion. Thus 

the equations for the by sound speed and the attenuation can be expressed by Temkin [1999] as  
𝑐𝑠

2(𝑜)

𝑐𝑠
2(𝑜)

 ∝2= 1 + ℜ[Ks(ω) / Ks(o) − 1]tr +ℜ[Ks(ω) / Ks(o) − 1]pul + ...      ..(1)     2𝛼
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 = |ℑ{Ks(ω)} / Ks(o)|tr 

+|ℑ{Ks(ω)} / Ks(o)|pul          …......                …..(2)  

Where the symbol ℜ and 𝔍 and used to represent real and imaginary parts.  

It is possible to include, at this stage, shape oscillations and particle rotations, which, like mass evaporation and 

condensation, would make additional contributions. However, for particles whose radius is smaller than the 

wavelength, shape oscillations are negligible. Particle rotations, on the other hand, do not exist in a strictly plane 

wave in dilute suspensions because of the symmetry of the motion around a sphere. If the right hand sides of 

equations (1) and (2) are known and are denoted respectively by X (ω) and Y (ω) the solution of these equations 

can be expressed as  
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(X2 + Y2)1/2 ]-1/2   ………        …………………           …(4) 

These may be simplified considerably when both the dispersion and the attenuation effects are small. After neglect 

α-2 compared to unity in equation (1) And set cs (ω) = cs (o) in equation (2) thus obtaining  
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 = X (ω)       ……………….. ………..       ……………………       ……(5)  

and 

α - =  
 1

2
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COMPRESSIBILITY CHANGES  

 The departing point in the calculation of the compressibility is  

(Ks = - 
 1

𝑠𝑇
 
 𝑑(𝛿𝜏)

𝑑𝑝
)  

      To use this equation we first consider a small volume element δτ having n equal particles which are allowed 

to pulsate, thereby changing their volume. The mass of the particles in the volume element δMp, and that of the 

fluids is δMf . The volume element is chosen so that it always contains the same particles and the same fluid, that 

is, δM = δMp + δMf, is a constant. The corresponding volume, δT= δTf  + δTp, is, however, variable. We may 

obtain δMp, and δMf, in various ways, for example, in terms of the particle and fluid phase densities; 𝜎p and 𝜎f  

defined by 𝜎p = 𝜙𝑢𝜌𝑝  where   𝜌𝑝(t)  = up ∫ 𝜌𝑝
−1

u𝐩
(𝑋, 𝑡)𝑑𝑣 is the average density within one particle. Thus δMf  =  

𝜎f δTf . Similarly, for the fluid mass, we obtain  𝜎f  = (1- 𝜙𝑢) 𝜌𝑓 ,   where   𝜌𝑓(t) = ( δTf  ) -1 𝑓δt𝐟  ( X,t)dv  is the 

average fluid density in the element, so that      δMf  =  𝜎f δTf . thus the density of the suspension element is  

 

ρ = (1- 𝜙𝑣) 𝜌𝑓 +  𝜙𝑣 𝜌𝑝       ……………………..               ………………….  (7) 

 

This is known as the effective density in a suspension, and may also be written in terms of the mass fraction. Thus   
1

𝜌
 = 

1−𝜙𝑚
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+  

𝜙𝑚

𝜌𝑝
     ………….           …………….. ……..  (8)   

 

TRANSLATIONAL MOTIONS  

              The contribution to the suspension compressibility arising from the translational motion was evaluated 

recently for dilute suspensions of rigid particles and is given by  

 

( 
𝐾𝑆(ω)

𝐾𝑆(o)
 -   1  ) tr = 

𝑐𝑚

1+  𝑐𝑚
 (v -1)      ………….     ……………. ……   (9)     

           

 where 𝑐𝑚 is the mass loading, given by 𝑐𝑚= 𝜎p/𝜎fo , v = up/Uf , where up is the complex translational velocity of 

a particle in a sound wave, evaluated in the absence of other particles, and Uf , is the complex velocity of the fluid 

in the sound, wave, evaluated in isentropic conditions and without particles.  

 

PULSATIONAL MOTION  

                 The contributions due to the pulsational motions may be expressed in terms of the pulsational velocity 

of the particle's surface, and this can, in turn, be expressed in terms of the pressure and temperature in the particles.  

            When the frequency of oscillation is finite, the changes of pressure and temperature in a particle are 

different from those of the fluid at some distance from it. That is, the suspension element is generally not in 

equilibrium. However, the volume element, δT, has been defined in such a manner so that it contains the same 

fluid and particles during the pulsations. Then, the total mass contained in δT is conserved so that the Lagrangian 

rate of change of the total mass in δT is zero, or d(ρ δT)dt=0. Thus  
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Since ρ is well defined in terms of the particles and fluid density averages and of the mass fraction, which is 

constant during the pulsations owing to our choice of volume element, the right hand side of equation (10) can be 

easily obtained from equation (8). Thus taking the derivative and linearizing the result, we obtain  
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2   ………..  …….. (11) 

 

Where 𝜌−1 𝑓 and 𝜌−1 𝑝 are the fluctuations of the average density in the suspension element, and where  𝜌𝑜  is 

the ambient suspension density.  
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