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Abstract

The objective of this work is to investigate the dependencies between the physical parameters of vibration
isolating modules for the complete attenuation of harmful oscillations in mobile machinery. To achieve this,
algebraic criteria for the stability of dynamic systems developed by V.S. Voronov were utilized. Their good
adaptability to dynamic processes in technical devices is demonstrated. A numerical calculation is presented
based on the developed methodology for selecting proportional coefficients between physical characteristics of
the same dimension. The achieved desirable result is demonstrated. A method for selecting the physical
parameters of mechanical vibration damping modules is developed based on asymptotically stable, rapidly
decaying oscillations to ensure optimal vibration isolation settings.
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I. INTRODUCTION

The complex technological design of modern vibration isolation elements in machinery is closely
linked with the mathematical modeling of corresponding types of dynamic vibration dampers. In laboratory
conditions, such actions are accompanied by the installation of elastic multilayer materials, rubber gaskets,
pneumatic and hydraulic shock absorbers, spring modules, and other components. Vibration dampers are used
to dampen the vibrations of a machine that occur when moving over uneven terrain and roads. These elements
can dampen or minimize the transmission of high-amplitude vibrations originating from the source and suppress
low frequencies. The most effective is the use of a combination of these elements, forming a single unified block
[1]. Recently, the automotive market has widely presented ready-made hydraulic support modules. Their varieties
differ in two main types: controlled and passive. Controlled hydraulic supports include those containing
rheological, magnetorheological fluids, and electronic devices that provide control over the movement of the
vibration-isolated object, with position sensors, speed and acceleration controls. They are called active vibration
dampers, capable of changing their stiffness characteristics in accordance with the event that occurred during
the operation of the mechanical device. The principle of operation of passive hydraulic dampers is based on the
use of physical properties of structural elements during operation and converting the kinetic energy of the
body's vibrations into the thermal energy of the fluid flowing through restricted openings. These single-axis
damping devices occupy leading positions in the global automotive industry in terms of cost, simplicity of
manufacture, economy, replaceability; they do not require additional expenses for creating electronic devices
that maintain electrical andmagnetic fields in active hydraulic supports.

The vibration isolation system of a modern technical device includes several elastodamping elements,
working sequentially and in parallel, performing different functional purposes. Elastic metal springs soften
vibrations and support the structure, being part of the load-bearing support. Damping elements, by absorbing
excess kinetic energy, provide quality parameters of smooth running in various road conditions.

For each specific case, individual schemes and methods of vibration isolation are developed, and their
corresponding mathematical models are studied.

Il. Derivation of the Motion Laws for the Mathematical Model of a Car Suspension with aHydraulic
Support and Inertial Mass
We investigate the effect of an additional inertial mass inside the hydraulic support on the damping of
both natural and forced oscillations of a part of the car. This considers a variant of passive vibration isolation of
mobile machinery with a conventional metal spring, hydraulic damper, and hydraulic support with inertial mass

WWW.ijres.org 165 | Page



Study of Asymptotic Attenuation of Oscillations Using HydraulicSupports with Inertial Masses

[1]. The overall model of the machine part's vibration isolation is represented in Figure 1 as a dynamic scheme
with a single-axis hydraulic support and an inertial transformer [3-9]. It includes elements: mQ — the mass of the
base, m2 — the mass of the inertial transformer, M — the vibration-isolated mass, c2 — the linear elasticity
coefficient of the hydraulic support, c1 — the elasticity coefficient of the cylindrical spring of the car suspension,
b2 — the damping coefficient of the hydrodynamic medium of the hydraulic support, b1 — the damping
coefficient of the hydraulic damper of the suspension with linear properties relative to the vertical speed of
displacement movement.

$r

Figure 1: General Dynamic Scheme of Vibration Isolation for a Body with Mass M and InertialMass m2
of the Hydraulic Support

m,
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The dynamic scheme in Figure 1 recreates the movements of a three-mass mechanical system, in which
the masses m and M have finite values. and the mass my 1s considered infinitely large. as 1t 1s identified with the
base. The car wheel running over natural road surface wrregularities leads to the application of a periodically
varying vibrational load F(f) = 4-sin(er), causing its kinematic excitation with vibration displacement xp, having
an amplitude a and frequency w, vibrational velocity x,, and vibrational acceleration i .= These can be easily

established through experimental measurements, using diagnostic sensors. To simplify the understanding of the
influence of physical parameters on the most effective method of vibration isolation in this scheme, only vertical
oscillations are considered, applying the equations of static equilibrium of the mechanical system as a whole.
Based on these observations, the general mathematical model of the movements of the two-mass system will take

the form:
¥ = By + 6% — By — 6y + B X, +65,, o
%= '!3'21-’i:|2 +Cy Xy _bzzi’i —CpX,,
where:
bi=bima,  bu=(b+ba)ima, b=bims.
b= bao/M, bn = ba/M, (2)
cuw=cimz, en=(c1+ec)ima, c12=calma,
1= ol M, cn = ol M,

xo=— a-sin{ @),
x, =— a-o-cos(af),
X, = a-ar-sinf cr),

F(£) =my%,()-
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Initial conditions at ¢ = 0:

x1(0)=0.02 m, ﬂ =0.05m/'s, x(0)=-0.01 m, dx, =0.03 m/s. (3)
d“: r=0) 1 =0
In canonical form [4, 6, 8], the system of equations (1) will become:
{Ll (%) —dy, (x,) = ~haw cos(wr) — qpasm(cr), ()
—dy () + L () =0,
d
where m-)— bl. S e, u)— +b2 +c,2, dy(4) = b.a T An()=by—tey -2

collection of dlﬁ'erentml opemtms. In these nctatmns, 1t 15 quite sumple to sepamte the equations by variables xi(f)
and x,(f)

L(L(x))—dp(dy(x, }}—

+hby } 3 +("xz +eyy + by — by 1’21) )

dx;
Hephy +epby —eyby —63by) +("zzc1| — Gy )X, =12

then
{Ll (L () —dyy (dy () = a(@ (By, +639) — €16 ) sin(@) +acx( By —Byyyg —Byocyy) cos(x), (6)
L (L,(x)) —dyy (dy () = a(Bohy, — g6y ) sin(@x) —acbye,, +by6,) cos(ar).
Based on the left-hand sides of system (6) and formula (5), the general characteristic equation 1s formed
as follows:

At +a i +a it +ad+a, =0. )]

In this case, the stable, rapidly decaying movements of the dynamic scheme shown in Figure 1 and the
mathematical model (4) will be solutions of the form:

x; (1) = Cye™ + Cie™ + Cye™ sin(A,1) + Cye™ cos( A1) + Cjs sin(ar) + Cg cos(wr), i=12. (8)

The unknown arbitrary constants Cy, i =1,2, j = 1.6, must be determined from the solution of the
homogeneous system of differential equations, taking mfo account the mitial conditions (3) and the
nonhomogeneous (4). The first four terms ensure the rapid convergence of the graphs of nafural
oscillation laws of motion x1(f) and x(f) to their resting state x;(f) — 0 and x(f) — 0. Their graphs
rapidly decrease to zero values, thereby ensuring the rapid asymptotic damping of oscillations using
hydraulic supports with inertial masses.

IIIL. Investigation of the Stability Criteria of the Dynamic System for Ensuring the Fastest
Damping of Oscillations
We investigate the stability of the dynamic system based on the known algebraic criteria of V.S. Voronov
[2]. For this purpose, from the charactenistic equation (7), we write down the coefficients in accordance with the
notations adopted in the stability criteria

Ay = €y — Cpabay-

ay = cpbyy +eybey —eyByy —6aby ©)
ay =cy+oy by _blzbzl-

a;=b, +by.

a, =1

A necessary condition for the stability of the dynamic system will be the fulfillment of the inequalities

N R . = (10)

a4y Gy Gy ay

WWW.ijres.org 168 | Page



Study of Asymptotic Attenuation of Oscillations Using HydraulicSupports with Inertial Masses

The sufficient conditions for stability are associated with restrictions of the form:

2 —
0,-—% - 148 k=Ln-1L an

T 1Ty

The conditions for stability with a margin are the requirements

a.a

W, =%l .3 k=1n-2 az)

Oy Ty

The stability conditions formed according to the quality indicators of the dynamic system must satisfy the
mequalities
Q, >3, k=Ln-1 (13)

To ensure asymptotically stable, rapidly decaving oscillations, we require the fulfillment of the
combination of the last two inequalities (12) and (13). Substituting formulas (2) mto (9) and (12), (13) will lead
to nonlinear multiparametric conditions, which 1n general cannot be resolved. To simplify these calculations, we
will consider the variables in the form of correspondmg comparisons of physical parameters with the same
dimensions, let's assume

M

iy

a_ L —
=k =1
© 5 .

€

=n- (14)

Then, assuming a = coma/ba” (@ < 1), we obtain new expressions for the coefficients (9) in the form:

ok bye, (k+1) com,y (n(k+1)+1)+551 By (n(l+1)+1)
ay=—5-, a= g . oay= 3 . ody=— .oa,=1 (1%
m.n m,n Fii, ?’Im:

By substituting these values into the dependencies of the quality indicators of the dynamic system and the
mdicators of stability with a margin, we obtain

By substituting these values into the dependencies of the quality indicators of the dynamic system and the
indicators of stability with a margin, we obtain

_ Ik—a’:l1
Tkt amE+D+D)

2 16
JID _(I+amE+1)+1) (16)
T alk+D(n+)+1)

0,- (n(l+1)+1)* ’

| nla(m(E+1)+1)+1)
o _ (B[ +a(n(k +1)+1))
| t ak(n(l+1)+1) : a7
:“,_[n(f+].)+l]1F—a(n(k+].)+l}:|
| 1 cen(k+1) )

Let's check what the coefficients Q; and 75 will be for unlimitedly large values of the parameters & n.
and /. To do this. we calculate the corresponding limits

D limo, =$:>J§__

2) limo, =0,
3) !j_..IJ;lQ1=3=C,
4) lmo, =, 1s)
5) Eﬂx=x,

6) Lm0, 1.6
B g

7) lLimo, =0.

k—sx

) J+1
§ mo-"nn” V5.

9) LmO;=oc.
=
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Based on the calculations made, 1t can be concluded that the limits i 1tems 3-5 and 9 are always met.
conditions 2 and 7 show that the parameters k. n should never take excessively large values. Conditions 1 and 6
lead to the same answer

1

H< . (19)

NP
From item 8, we obtain a condition that 1s imposed on the parameter &

the. Y (20)

e
Following this principle, let's write down the limits for the stability margin indicators 71 and >
) lmf;=x,
(E+1)(E+1)
2 W =33
) E(I+1) ey

3) lmP =,

4) ljmﬁ': =l+n(l+1) =3,

3) hmW, =w.

A=z

6) Lm, =c.
F=+m

The four conditions from items 1, 3, 5, and 6 are always met. From the second condition. we derve the
relationships between & and /

Eol+1+4P+1+1. (22)

Condition 4 from (21) imposes restrictions between n and /

n
n>—. (23)
I+1

which 15 always valid when /= 1.

Based on the calculations performed for the dynamic system in Figure 1 and to ensure its fastest damping
of emerging vibrations, the following recommended methodology for selecting physical parameters and
coefficients &, n. and [ should be adhered to:

1) the constant n 15 selected based on the mequality (19). given the known characteristics of the hydraulic
support a = coma/ba’;

2) the coefficient 1 is set arbitranly and must be greater than one. From the double inequality (20) and (22).
the magmitude of & 15 selected

- 1+1)
I+1+ E"+E’+1-\:k-:"|: +1) 1- (24)

Z Jgﬂr -

3) at this stage, the validity of all chosen coefficients ». [, and k is checked from the condition (13) Q; > .f3 .
then

S e ) S G U (25)
Blk+Da  PBk+Dka k+1

IV. Verification of the Credibility of the Developed Methodology for Selecting Parameters of the
Dynamic Damping of Harmful Oscillations

Let's assume that for the hydraulic support scheme shown m Figure 1. all physical parameters such as
m2=0.05kg. b>= 70 N-s/m., ¢z = 50 N/m are already known. To choose the value of n. we use the first point of
the methodology n<1/\3a or n < 1131.61. Naturally, the vibration-isolated body with mass A is a thousand or

more times greater than the mertial mass of the hydraulic support, so let's set n = 1000 and M = 50 kg.
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Let's assume that the coefficient ] = 50, then &; = 3500 N-s/m. and based on the second point of the
methodology, we choose the value of & from condition (24) 68 35 < & = 2943307 58. Let's set I to be 140, then
c1= 7000 N/m.

The final stage will be the coordination of the found parameters that ensure rapid asymptotic damping of
harmful oscillations affecting the wvibration-isolated object. Substituting all the found parameter values into
wnegquality (25), we get n < 1374 41. The chosen n = 1000 meets the last verification condition.

Let's verify whether the necessary stability conditions (10) of the dynamic system are satisfied:
aglaz = 0.586. ar/as =3.725, azlas=239001. The ratios of these parameters are arranged in ascending order, which
precisely corresponds to mequality (10).

The quality stability conditions of the dynamic system, satisfying mequalities (13). have the values:
0Q;=2.115 ©,=3008, ;=21331.1238. As can be seen, they are also fully met.

The stability margin conditions (12) are given by the values 7} = 6.36 and 7: = 64154 158, which also
fully comply with these stability criteria.

All newly adopted values of physical quantities of the dynamic scheme m Figure 1 should be substituted
into the problem conditions (4) with initial data (3). The new limitations on the parameters that we have adopted
should be reflected 1n the asymptotic decrease i the amplitude of natural oscillations and the mimmuization of the
amplitude of forced oscillations. Precise solutions to the original system of differential equations have been
obtained at a frequency @ = 5 rad/s and an amplitude @ = 0.007 m of the external load regime, in which we
distinguish the part with natural oscillations x1°(f) and x2°(r)

x1°(f) = 0.01994412358 &1 9545798674 _ 1 047729132 105 £ 71398052611 _ (26)

— 0.00004010782238.¢ -SH008E T £11n(0.7198751436-1) +
+ 0.00005706029411 ¢ 0-B6080968 56(() 7198751436-1),

x2°(f) = — 0.01661789834 e~ 1954579671+ 3 446617935 10711 g 71308052807 + 27
+0.002958048177-e~ 08940609681 ¢13(0 7198751436-1) +
+0.006615967231-e 08060968 000(0 T198751436-1)
and forced x1*(7) and x2%(r)
x1°(f) = — 6.887602129-10 %in(5-7) + 6.385292456-10%cos(5-7). (28)
x2'(f) = — 2.576252663-10-s1n(5-1) + 1.931082713-10"%cos(5-1). 29)
The general solutions satisfy the posed problem (4) with mitial conditions (3) and should be combined
as x1(f) =x1°(H) +x1°(1) and x2(f) = x2°(7) + x2 (7). All free coefficients are established in the form of dependencies
relative to parameters and are not presented here due to their complexity [10 — 14].
Using the obtained formulas, it is easy to recreate the graphs of the laws of motion of the bodies under

consideration, which are the vibration-isolated body and the inertial mass of the hydraulic support. Formulas for
the damping natural oscillations are presented in Figures 2 and 3, and the general oscillations in Figures 4 and 5.
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t, time, s
Figure 2: Natural Oscillations of the Vibration-1solated Body
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Figure3: Natural Vibrations of the Inertial Mass of a Hydraulic Support
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Figure 5: General Vibrations of the Inertial Mass of a Hydraulic Support from the Time Momentt=6s

Let's try to compare the vibration damping model with a vibro-support as shown in Figure 1 with new
selected parameters, with the standard model without a hydraulic support, using the same parameters ma, b, ¢.
Let the parameters of the new problem remain the same: M= 50 kg, by = 3500 N-s/m. ¢; = 7000 N/m. o = 5 rad/s,
a=0.007 m. We will find out which model of vibration damping. single-stage or two-stage. turns out to be better.
Then. the differential equation of motion for a body with mass M is

dx(1)

dt

d=x :(r) .
dt-

+ ey (1) = —Dbgaw cos( o) — cjga sin(or) - (30)

by

The solution to equation (30) with all known coefficients will be a dependency of the form x1(f) = x1°(f) + x1 (7).
consisting of natural x1°(f) and forced x; () vibrations

WWW.ijres.org

x1°(f) = 0.02146170134.¢72 0906618167 _ 0 001012081504.¢767#3%38184, (31)
x1°(f) = — 0.007148277768-sin(5-1) + 0.0004512801621-cos(51). 32)
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whose graph is shown in Figure 6.
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Figure 6: General Vibrations of the Vibration-Isolated Body without a Hydraulic Support

V. CONCLUSION
Comparing the two models of vibration damping, the two-stage model with a hydraulic support as shown

in Figure 4 and the single-stage model without a hydraulic support as shown in Figure 6. we conclude that the use
of additional inertial masses m» in their designs, as in Figure 1. significantly increases the resistance of the
medium, thereby reducing the vibrational load on the body isolated from harmful vibrations.

Stricter requirements and conditions imposed on physical parameters lead to complete asymptotic

damping of natural vibrations in the two-element system. Figures 2 and 3. and a significant reduction in forced
vibrations. Figures 4 and 5.
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