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ABSTRACT 

 In the present investigation, we mathematically establish that the Soret-driven thermosolutal convection of 

Veronis’ type in the presence of uniform vertical rotation and magnetic field cannot manifest as oscillatory 

motions of growing amplitude if the Thermosolutal Rayleigh number Rs, the Lewis number  , the Prandtl 

number  and the magnetic Prandtl number 1  satisfy the inequality 
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sR being the stability ratio. 
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I. INTRODUCTION 

Overstability is a characteristic feature of double diffusive convection and can occur, for example, in a 

fluid layer with stable solute gradient that is destabilized by raising the temperature of the lower boundary.  The 

Linear stability theory for this case is well understood [11,13] and much information is available about the non-

linear development of the instability [5].  Here, overstability depends on the stabilizing effects of the imposed 

concentration gradient.  However, such gradient can also develop in response to the applied temperature 

difference.  This phenomenon, known as Soret effect [3], arises when the mass flux contains a term that depends 

on the temperature gradient.  The analogous effect that arises from a concentration gradient dependent term in 

the heat flux is called the Dufour effect [3] and is important in gases. The phenomenological equations relating 

the heat flux JQ and the solute flux JC to the thermal and solute gradients present in a binary fluid mixture may 

be formulated (see, for example, de Groot and Mazur [4]) as 

,CD
C

TCTKJQ 



  (1.1) 

   ,1 TCCSCDJ TC   (1.2) 

where T is the temperature, C is the concentration,  is the density, K is the thermal conductivity, D is the 

diffusivity, ST is the Soret coefficient,  DSD T  is the Dufour coefficient and  is the chemical potential of 

the solute.  In liquid mixtures one can neglect the second term in JQ , the Dufour effect term, but the same 

approximation cannot be justified in gaseous mixture.  On the other hand, the second term in JC , the Soret effect 

term, can be significant in both liquid and gaseous mixtures.  An externally imposed temperature gradient 

produces a chemical potential gradient in the system, the normal Soret effect occurs when the concentration of 

higher molecular mass is higher in the colder region.  Similarly, an imposed chemical potential gradient results 

in a temperature gradient, and the ‘normal’ Dufour effect is defined in analogy with the Soret effect.  The sense 

of migration of the molecular species is determined by the sign of the Soret coefficient.  The rough predictions 

are as follows: 

(a) When the denser component migrates towards the cold plate (positive Soret coefficient), here the 

upper boundary, we expect the liquid layer to be less stable than in the pure liquid case, 

(b) Migration of the denser component towards the hot plate (negative Soret coefficient), here the 

lower boundary, we expect the liquid layer to be more stable: the critical Rayleigh number increases. 
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Caldwell [2] pointed out the concentration gradient set-up by the Soret diffusion would lead to a situation 

similar to that considered by Veronis’ [13], if the sign of the Soret coefficient ST were opposite to the normal 

one.  Usually the solute is caused by thermal diffusion to flow from hot to cold.  Such diffusion would be 

destabilizing, and so could not cause an increase in critical Rayleigh number.  Veronis’ [13, 14] has studied the 

onset of steady and oscillatory convection generated by infinitesimal perturbations, and has also done 

calculations on the onset of finite amplitude modes, all with free surface boundary conditions.  Hurle and 

Jakeman [8] assumed a salt distribution set-up by thermal diffusion, and included the Soret effect in their 

perturbation equations as they calculated the onset of steady and oscillatory modes for both free and solid 

boundaries, for infinitesimal perturbation only.  Thus, Hurle and Jakeman included the Soret effect in their 

equations but Veronis’ did not. Veronis’ (and Shirteliffe [10]) used a quantity called Rs, a solute Rayleigh 

number and for reasonably dilute solution (c < < 1), 

Ts RR     or     

T

s

R

R
    , (1.3) 

where RT is thermal Rayleigh number, the parameter   is called the “Stability ratio” when applied to 

Thermosolutal or double diffusive phenomenon. 

From a geophysical standpoint, the effect of rotation and magnetic field, acting separately or simultaneously, on 

the present problem is of practical interest.  The case when rotation alone is present has been analyzed by 

Antoranz and Velarde [1].  The effect of magnetic field alone on convective instability in a horizontal layer of 

Binary liquid metal has been examined by Masaki Takashima [12] and it has been shown that even if a magnetic 

field is present the presence of solute plays a prominent role through the Soret effect and that even if the solute 

is present the magnetic field inhibits the onset of instability. 

   In the present paper, we mathematically prove that the Soret [3]-driven thermosolutal convection of the 

Veronis’ [13]  type under the simultaneous effect of uniform vertical rotation and magnetic field cannot 

manifest as oscillatory motions of growing amplitude if the thermosolutal Rayleigh number Rs, the Lewis 

number , the Prandtl number  and the magnetic Prandtl number 1 satisfy the inequality 
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sR  being the stability ratio. 

 

II. MATHEMATICAL FORMULATION AND ANALYSIS 
The relevant governing non-dimensional linearized perturbation equations of Soret-driven Thermosolutal 

convection of the Veronis’ type in the presence of a uniform vertical rotation and magnetic field with slight 

change in rotations are given by [1,8,12]: 

    zTT haDQDTDSaRaRw
p

aDaD 22222222 



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




  , (2.1) 

  wpaD  22
  , (2.2) 

     waDpaD  2222
, (2.3) 

DwhaD z 
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and 













 DaD 122

, (2.6) 

where   ,0,1,and0, 00

44
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 CCS

dg
R

dg
R TsT  

with 

 DDwhw z0  at z = 0 and z = 1,  (2.7) 

or 

 DDwDhw z

20  at z = 0 and z = 1,  (2.8) 
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where z is the real independent variable such that 10  z , 
dz

d
D  is the differentiation with respect to z, a2 

> 0 is a constant, 0  is a constant, 01   is a constant,  > 0 is a constant RT and Rs are positive constants, 

T > 0 is a constant, Q > 0 is a constant, p = pr + ipi is a complex constant and as a consequence the dependent 

variables      ,ziwzwzw ir   

     zizz ir  ,      zizz ir  ,            zizzzizz irir  and  are 

complex valued functions of real variable z.  The meaning of symbols from the physical point of view are as 

follows:  z is the vertical coordinate, 
dz

d
 is the differentiation along the vertical direction, a2 is the square of the 

wave number,  is the Prandtl number, 1 is the magnetic Prandtl number,  is the Lewis number RT is the 

thermal Rayleigh number, Rs is the concentration Rayleigh number, T is the Taylor number, Q is the 

Chandrasekhar number, p is the complex growth rate, w is the vertical velocity,  is the temperature, is the 

concentration, hz is the vertical magnetic field,   is the vertical vorticity, and   is the vertical current density.  

It may further be noted that equations (2.1)-(2.8) describe an eigenvalue problem for p and govern Soret-driven 

Thermosolutal convection of the Veronis’ type in the presence of uniform vertical rotation and magnetic field 

for any combination of dynamically free and rigid boundaries. 

We prove the following theorem: 

Theorem 1 If RT > 0,  Rs > 0, T > 0, Q > 0, 1 , 0,0  ir pp  and  
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sR , then 

a necessary condition for the existence of non-trivial solution  phw z ,,,,,,  of equations (2.1)-(2.6) 

together with either of the boundary conditions (2.7) or (2.8) is that  

Ts RR    or 1 . (2.9) 
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Equations (2.1)-(2.8) assume the following forms  
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with 
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 DDwhw z  at z = 0 and z = 1,  (2.17) 

or 

 DDwDhw z

20  at z = 0 and z = 1,  (2.18) 

where  0
21





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
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


B , and the sign ‘~’ has been omitted for simplicity. 

Multiplying equation (2.11) by w* (* indicates complex conjugation) throughout ad integrating the resulting 

equation over the vertical range of z, we get 
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1

0
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Making use of equations (2.12)-(2.16) and the fact that w(0) = 0 = w(1) we can write 

  

1

0

**22

1

0

2*2 dzpaDaRdzwaR TT    , (2.20) 

  





1

0

**22

1

0

2
*

2

11
dzpaD

a
Rdzw

a
R ss 









, (2.21) 

   



















1

0

*
*

22

1

0

22
*

2

11
dz

p
aD

B

a
Rdzw

a
R ss , (2.22) 

  

 





















1

0

1

0

**
*

22

1

0

1

0

**
*

22

1

0

*

1

0

*

dzDTQdz
p

aDT

dzDTQdz
p

aDTdzDwTDwT











 

  
























1

0

1

0

1

*
22**

*
22 dz

p
aDTQdz

p
aDT , (2.23) 

and 

     

1

0

1

0

*2222* dzDwhaDQdzhaDDwQ zz  

  













1

0

*1

*
2222 dzh

p
aDhaDQ zz  (2.24) 



On The Soret –Driven Magnetorotatory Thermosolutal Convection (MRTC) Of the Veronis’ Type  

www.ijres.org                                                                                                                                            161 | Page 

Combining equations (2.19)-(2.24) we obtain  

 

 



























































































1

0

1

*
22*

1

0

*
*

22

1

0

*
*

22
22

1

0

*
*

22
2

1

0

*
*

22

1

0

22222*

1

1

dz
p

aDTQdz
p

aDT

dz
p

aD
B

a
R

dz
p

aD
a

R

dz
p

aDaRwdz
p

aDaDw

s

s

T

  

  dzh
p

aDhaDQ zz

*1

*
22

1

0

22













    . (2.25) 

Integrating the various terms of equations (2.25) by parts for an appropriate number of times and making use of 

either of the boundary conditions (2.17) or (2.18), it follows that  
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Equating real and imaginary parts of both sides of equation (2.26) and cancelling 0ip  throughout from the 

imaginary part, we get 
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and 
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We write equation (2.27) in the alternative form 

 

 
   

   

 
 

 

   










































 

  









1

0

2

1

1

0

1

0

1

0

2222

1

0

222
221

0

2222

1

0

2
22

1

0

222

1

0

222
1

0

222
2

1

0

222
1

0

2422
2

2

11

1

1

2

z
ss

Tr

sT

z

s

r

d
T

B

RR
Rap

dzaD
B

a
RdzaDaR

dzhaDQdzaDTQ

dzaDTdzaD
a

R

dzwaDw
p

dzwaDwawD

 

,

1

0

1

0

222

2

12

2

1

















   zzz dhaDh

a
Q

a
TQ  (2.29) 

and derive the validity of the theorem from the resulting inequality obtained by replacing each one of the terms 

of this equation by its appropriate estimates. 

We first note that since  and,,, zhw  satisfy        100,100  ww , 

       100,100 zz hh   and    100  , we have by Rayleigh-Ritz inequality [Schultz, [9]]. 

                    ,

1

0

22

1

0

2

  dzwdzDw                                                       (2.30) 

                   ,

1

0

22

1

0

2

  dzdzD                                                      (2.31) 

,

1

0

22

1

0

2

  dzdzD  (2.32) 

 

1

0

22

1

0

2
dzhdzDh zz   , (2.33) 

and 

.

1

0

22

1

0

2

  dzdzD  (2.34) 

Further, 
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

  





1

0

2*

1

0

2*

1

0

1

0

1

0

2*2*2

dzwDwdzwDw

wdzDwwdzDwdzDw

 

2
1

1

0

2
2

2
1

1

0

2
1

0

2




























  dzwDdzwdzwDw   

                                             (utilizing Schwartz inequality) 

2
1

1

0

2
2

2
1

1

0

21


















  dzwDdzDw ,                                        (using 2.30) 

so that we have 

 

1

0

24

1

0

22

1

0

2
2 dzwdzDwdzwD . (2.35) 

                                                                    (using 2.30) 

Therefore by utilizing inequalities (2.30) and (2.35), we obtain 

   




 

1

0

2222

1

0

2224
2

2 2 dzwadzDwawawD . (2.36) 

Second, since ,0rp  we have 

  


1

0

222
0dzwaDw

pr
. (2.37) 

Next, multiplying equation (2.12) by * throughout and integrating the various terms on the left hand side of the 

resulting equation by parts for an appropriate number of times by making use of the boundary conditions on , 

namely    100  , we have from the real part of the final equation 

 

,

ofpartReal

2
1

1

0

2
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1
1

0

2

1

0

1

0
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1

0
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0

1

0
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1

0

2222
















































 

dzwdz

dzw

dzw

wdz

wdzpdzaD r

 

                                                         (utilizing Schwartz inequality)  

and combining this inequality with inequality (2.31) and the fact that ,0rp we get  

  


















1

0

1

0

2
1

0

2222 ,dzwdzdza  

which implies that 
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 
,

1
2

1
1

0

2

22

2
1

1

0

2




















  dzw
a

dz  

and thus 

 
 

.
1

1

0

2

22

1

0

222

 
 dzw

a
dzaD  (2.38) 

Similarly it follows from equation (2.13) that 

 
 

.

1

0

2

22

1

0

222

 
 dzw

a

B
dzaD  (2.39) 

Also, using the same technique as is used to derive we obtain, since hz = 0 = hz(1) the result  

.

1

0

22

1

0

2
2

  dzDhhD zz  (2.40) 

With the help of (2.33) and (2.40) we obtain  

 

  dzhaDha
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zzzz

zzzz
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







 

    dzhaDhQadzhaDQ zzz

22

1

0

2
1

0

22
2

22     . (2.41) 

Equation (2.28) upon using (2.30) yields the following inequality 

     




1

0

2
1

0 1

2222 dzwadzhaDhQ zz  
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


1

0

2

1

1

0

2

1

2

1
dz

T
dz

a
Rs   . (2.42) 

Therefore, from inequalities (2.41) and (2.42), we get 
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222

1

dza
T

  . (2.43) 

Also, from equation (2.28) and the fact that ,0rp  we obtain 
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dzRap ss
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1 
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
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







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a

Q
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a

TQ
zz  (2.44) 

Now, if permissible sT RR   or 1 .  Then, in that case, we derive from equation (2.29) and inequalities 

(2.31), (2.36)-(2.39), (2.43) and (2.44) that  
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22 











  dzaT  . (2.45) 

Therefore inequality (2.45) implies that 

 
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





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2
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a

a
Rs , (2.46) 

 

so that we necessarily have 

 
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


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





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1

2

sR  , (2.47) 

Since the minimum value of 
 

2

322

a

a
 for 02 a  is 

4

27 4
.  

 

Hence, if  














 11

4

27

1

4

sR , then we must have  

Ts RR   or 1  ,                                                                          (2.48) 

 

and this completes the proof of the theorem. 

 

Theorem 1, from the physical point of view, implies that magneto-rotatory Thermosolutal convection of 

Veronis’ type in the presence of Soret effect cannot manifest as oscillatory motions of growing amplitude if the 

thermal Rayleigh number Rs, the Lewis number , the Prandtl number  and the magnetic Prandtl number 1, 

satisfy the inequality  














 11

4

27

1

4

sR  and the stability ratio 1 . 

 

Note  1  It is to be noted here that when both the boundary surfaces are dynamically free the resulting 

eigenvalue problem described by (2.11)-(2.16) together with boundary conditions (2.17) or (2.18) can be exactly 

solved with 

z
p

a

A






 cos

22

, 

where A is an arbitrary constant, and therefore 

 

 

1

0

2
1

0

22
dzdzD , 

 

so that inequality (2.45) again implies (2.46), (2.47) and (2.48) and the theorem is thus proved. 

2.  In the context of oceanography,  = .01 and 7 (Veronis’ [13]). 
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