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ABSTRACT: Regularization is a technique used for solving regression problems in the presence of 

multicollinearity which ultimately leaves behind a singular design matrix. Recall that once the singular design 

matrix is available, the ordinary least squares (OLS) cannot produce any solution for a regression problem. 

This study, therefore reviewed three different techniques for regularization namely   the ridge (L2 penalty), 

lasso (L1 penalty) and elastic net. We emphasized on how the threes techniques use lambda and alpha as their 

shrinkage or turning parameter that decides how we can penalize the OLS cost function. The L1 and L2 penalty 

regularizes in a similar but different way.Their regression coefficient differs because L2 penalty add lambda 

and the sum of square of coefficients, and L1 add lambda and the sum of absolute value of coefficients as their 

penalty terms, while elastic net is the combination of both L1 and L2. We however, carried out our analysis on 

14 different datasets using R software as our statistical package to analyse these datasets.Using cross validation 

approach, we select the optimal value of lambda and alpha for elastic net. We then obtained R-squared(𝑅2), 

mean squared error (𝑀𝑆𝐸), and root mean squared error (RMSE) of these techniques as the output, and 

observed that, the output of these techniques on the studied dataset are nearly the same remarkably. Using 

permutational multivariate analysis of variance (because MANOVA failed the shapiro-wilks test of normality, 

indicating that the assumptions are not met) to test the hypotheses of null and alternative, to decide if there are 

significant difference in their performances, for L1, L2 and elastic net.  The result presented a p-value of 0.868, 

which shows that we cannot reject the null hypothesis, and there exist no significant difference between these 

techniques. The result of this analysis further solidifies that both ridge, lasso and elastic net regression tally in 

their output predictions. We however, carried out a simulation study to demonstrate that OLS does not perform 

when there are problems of multiple correlation, and singular design matrix (when 𝑝 ≅ 𝑛, 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝑝 ≫ 𝑛). 

Via the use of regularizationtechniques, these penalized OLS estimators (lasso, ridge regression and elastic net) 

were able to take care of the deficiency of OLS estimators when multicollinearity is available.  

KEYWORDS: Mulitcollinearity, Ordinary Least Square, Regularization, Ridge regression, Lasso regression, 

elastic net regression. 
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I. INTRODUCTION 

The term multiple linear regression is a statistical technique that uses multiple input variables to predict the 

output or response variable. The multiple linear regression has the model 

 

 Y = β0  + β1X1 + ⋯  βnXn  +  ε,   (1.1) 

where 

Y = target variable or response variable. β0 = intercept term or the value of y when other independent values are 

zero. β1= coefficient of regression for the  𝑋1 variable.  βn= coefficient of regression for the  𝑛𝑡ℎ  variable.X1  = 

independent, input, predictor or explanatory variable. ε = error term that associates with the model. 

 

In other to reduce possible biasness, numerous number of predictor variables may be introduced in the model, 

which may lead to a serious concern of multicollinearity (i.e. the explanatory variables are highly correlated, 

with each other) among the predictor variables. This poses a problem because if the data shows 

multicollinearity, the problem of figuring out the specific variable that contribute to the variance in the 

dependent variable arises.Also, in a multiple regression analysis it is always the case that p << n (where p is the 

number of predictors, and n is the number of observation), because, the model parameters tend to have low 

variance and will hence perform well on test data. But when p ≅ n or p>>n it becomes a problem, when 

 p ≅ n: This means that, the variability of the least square coefficient of estimation is much resulting in 

overfitting and poor prediction of observation not used in model training. 
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 p>>n: This mean that, number of predictors p, is larger than the number of observations of the sample, 

n.). 

 In this case, the OLS (ordinary least square regression) becomes unworkable and 𝑋𝑇𝑋is singular and its inverse 

ceases to exist, meaning that we are stuck and can’t move further. Penalized regression techniques comes into 

play with it parameters to deal with cases like this because, penalized regression methods do not clearly select 

the variables; instead they minimize the Regression Sum of Square by using a penalty on the size of the 

regression coefficients.  

 

1.1  REGULARIZATION 

Regularizationis a shrinkage regression procedure that is implemented when it not possible to use OLS because 

of the problem of singular design matrix. It makes little adjustment to the model such that, it performs well on 

both training and test data.  

 

1.2.1  How Does Regularization Work? 

The loss function in (1.2) for the estimated parameters is known as RSS (residual sum of square). This model 

parameters are adjusted by trading some bias at the expense of variance so as to reduce this loss function. The 

RSS is given as:  

 RSS =    yi − β0 − βjxij

p

j=1

 

n

i=1

2

 (1.2) 

Where n = number of observation and p= number of predictors. 

Regularization here will shrink or adjust the coefficients in (1.2) based on the training data. 

 

1.3  Bias-Variance Trade-Off in OLS and Regularization 

The concept of bias and variance emanated from (Geman et al. 1992), which indicates that there is a trade-off 

required between the ability of a model to reduce bias (maximise accuracy) and reduce variance (maximise 

precision), when there is an attempt to infer result from a stochastic process.The bias of a model is defined as a 

measure of how far or close the estimated values is to the actual values. It measures the accuracy of our 

estimates or model, and describes how well our model fits the training dataset.It can as well be defined as the 

difference between the expected estimate and the true population parameter we are estimating. 

 

Variance is a measure of variation in our prediction. It measures the spread, or uncertainty, in our estimates. It 

can also be defined as the measure of difference in fit between the training dataset and the test dataset.  

 
Figure 1.1:  Graphical illustration of the input of bias and variance to general error (Scott Fortmann-Roe, 

2012).  On the right-hand side of the graph, lies the unbiased estimates and large variance estimate, and on the 

left is the bias and low variance estimates which are both far from optimal. 

 

Figure 1.1 illustrates bias variance trade-off , where increasing model complexity has the eff ect of reducing bias 

in the model while increasing variance at the same time (Scott Fortmann Roe, 2012). 
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As the number of predictors increases, the bias decreases but the variance estimates increases and vice visa. This 

shows that large values result in poor prediction, and fewer values result in poor accuracy of the model. As we 

can see, there is an optimal point in the graph in which our total error is minimised between some intermediate 

model complexity where the balance between bias and variance is obtained and relatively low.  However, if our 

model complexity goes beyond it, it leads to overfitting, and if it falls short of it, leads to under fitting. 

Regularization comes into play because it able to improve the model by trading some variance at the cost of 

introducing some bias. This is achieved by introducing additional terms that penalizes or shrinks those 

coefficients that do not explain a greater number of the variance in the model.  

 

1.4  Regularization Techniques in Machine Learning 

Three regularization techniques are going to be reviewed here and they include the: 

 Ridge regression  

 Lasso regression and  

 Elastic net regression   

 

1.4.1  Ridge Regression 

A regression techniques that uses L2 penalty is called Ridge Regression (Hoerl and Kennard, 1970). Supposing 

n is the sample size and p is the number of predictor variables in a dataset. The OLS estimator β  is defined only 

if the design matrix 𝑋𝑇𝑋 is invertible, otherwise the design matrix is singular. Ridge regression can be a useful 

instrument when they have to deal with multicollinearity. The typical OLS function is constrained by the L2-

penalization, which shrinks coefficients towards zero. The illustration on ridge regression is shown in (1.4) 

   yi − β0 − β0xij

p

j=1

 

n

i=1

2

+ λ βJ
2 = RSS + λ β2

p

j=1

p

j=1

 (1.4) 

 Equation (1.4), modifies the sum of square residual by introducing a shrinkage parameter. Here, the regression 

coefficients are estimated by reducing this function. Lambda being the tuning parameter or hyper parameter 

decides the extent we penalize the workability of our model. As coefficients increases, our model complexity 

increases. However, to minimize the above function, these coefficients will be reduced as this penalty terms are 

added. Therefore, this shrinkage procedure is adopted in other to shrink or penalize higher coefficients.  

 

1.4.2  The Lasso (Least Absolute Shrinkage and Selection Operator) 

A shrinkage regression procedure that uses L1 penalty is known as Lasso. The lasso is an acronym for “least 

absolute shrinkage and selection operator” (Tibshirani, 1996). This acronym comes from its functionality as a 

shrinkage procedure and a variable selection technique.The L1 penalty forces some of the coefficient estimates 

of regression to be equally zero, this happens when the tuning parameter λ is large. The L1 penalty function of 

the lasso is shown in (1.5). 

   yi − β0 − β0xij

p

j=1

 

n

i=1

2

+ λ |βj| = RSS + λ |βj|.

p

j=1

p

j=1

 (1.5) 

Equation (1.5) shows how the function is minimized using lasso techniques. This is also known as the L1 

normalization (norm). It’s clear that, there are variation between ridge and lasso regression in terms penalizing 

coefficients that are high. Lasso uses lambda and the modulus of βjinstead of squares ofβj , as its penalty.  

 

1.4.3  Elastic Net Regression 

The elastic net represents a modification to ridge and lasso(Zou and Hastie, 2005). It is able to provide a spare 

solution, and eliminates the problem that occurs when lasso is used on data sets with highly correlated variables. 

Elastic net uses the penalties from both ridge and lasso techniques to regularize regression model. The technique 

combines both lasso and ridge regression by learning from their weaknesses. Elastic Net aims at minimizing the 

following loss function: 

 Lenet  β  =
  yi − xi

j
β  

2
n
i=1

2n
 + λ(

1 − α

2
 β j

2 + α |β j|)

m

j=1

m

j=1

, (1.6) 

 

where α is the turning parameter between ridge (α = 0) and lasso (α = 1). Thus, there are two turning 

parameters λ and α. 
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1.5  Selection of the Turning Parameter 

Unlike the OLS, the ridge and lasso estimator relies on a turning parameter or hyper parameter λ, used to 

regulate the balance between bias and variance. As the λ value increases, the value of coefficients decrease. 

Thisincrease in λ is important because it reduces the variance and as well avoid overfitting, without losing 

properties beneficial to the model.If lambda value is equated zero, it takes us back OLS. Moreover, if the value 

of lambda is very large it leads to under-fitting thereby adding too much weight to the cost function. Having said 

this, the choice of lambda value is paramount. This techniques works very well and help to avoid over-fitting 

problem. 

 

1.6  Cross validation 
This is a procedure used in other to obtain optimum value of lambda. That is, to find λ with the lowest mean 

squared error (MSE), by repeatedly holding out a subset of the observations, and applying the chosen method to 

predict the held-out outcome.There are many cross validation techniques but our focus is on the k-fold CV.The 

K-fold cross-validation procedure partitions the data set roughly into K different subsets, for training and 

testing.Each partition is term a “fold” of the dataset, typically five or ten folds are practically indicated as good 

for computational burden. The K-1 folds is the training set and the kth fold is used for test set (Clarke, Fokoue, 

& H. H. Zhang, 2009). This process is repeated k times, such that each fold is used for testing exactly once 

using each of the K subsets as a validation set, thus yielding K estimates of the MSE for each parameter value. 

The K-fold estimate (1.8) is simply the average value of the K estimates.  

 

 KCV =  
1

n
  yi − y  2 ,

n

i=1

 (1.8) 

where  𝑦  is the predicted or fitted values, and 𝑦𝑖  is the observed values on the 𝑘𝑡ℎ  fold and 𝑖 is the number of 

rounds in model training and validation.  The optimal 𝜆  is chosen as: 

 λ = arg  min KCV =  
1

n
  yi − y −k i  

2
n

i=1

. (1.9) 

The model with the lowest MSE, becomes the CV prediction error and it λ becomes the optimal value.  

 

II. AIM AND OBJECTIVES 

 

2.1  Aim 

To investigate different ways of achieving regularization, with particular reference to a situation where we have 

singular design matrix. 

2.2  OBJECTIVES 

 To develop a model that generalizes well on training and test set. 

 To know if the techniques differ from their performances or tally in output prediction. 

 To know whether the regularized regression leads to better prediction in general. 

 To examine the effect, if any, of the different regularization techniques discussed so far on the data (to 

know how they regularize). 

 

III. RESEARCH METHODOLOGY 

The following are material and methods used: 

 R software, glmnetfunction(), cross validation (k-fold) approach.  

 Ridge regression, lasso regression, elastic net regression.  

 R-squared, mean squared error, root mean squared error.  

 shapiro-wilks test of normality, nonparametric MANOVA(adonis2). 

 

IV. DATA ANALYSIS ON RIDGE, LASSO AND ELASTIC NET REGRESSION   

A total of 14 different real-world datasets and three simulated datasets will be used for this study. The real-

world datasets were accessed from the internet and they includeMtcars dataset(Henderson and Velleman, 1981), 

R built in data, Abalone dataset, Cancer data, Diamond data set, Kc house dataset, Bodyfat dataset, Real estate 

valuation, Concrete dataset, Forestfire dataset, Heart failure dataset, Heartdisease dataset, Steel industry dataset, 

Garment dataset and Fish dataset.These datasets can be accessed at  

https://archive.ics.uci.edu/ml/datasets/abalone;https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ 

andhttps://www.kaggle.com/datasets/shivam2503/diamonds?resource=download 
 
 

https://archive.ics.uci.edu/ml/datasets/abalone
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/datasets/shivam2503/diamonds?resource=download
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4.1  DATA ANALYSIS RESULTS 
  Ridge Regression Lasso Regression Elastic Net 

Dataset Dataset Dim 𝑅2 MSE RMSE 𝑅2 MSE RMSE 𝑅2 MSE RMSE 

Mtcars 32 × 11 0.97 
 

453.2 21.29 1.0 14.10 3.76 1.0 
 

14.38 3.79 

Abalone 4177 × 8 0.51 5.43 2.33 0.49 5.31 2.30 0.49 5.31 

 

2.31 

 

Cancer 3047 × 28 0.48 392.24 19.80 0.49 401.90 20.05 0.53 375.26 19.37 

Diamonds 53940 × 7 0.83 

 

2742750 1656.13 0.86 2251514 1500.5 0.86 2243514 1497.85 

KC House 21613 × 17 0.66 4.6E+10 

 

214768 0.66 4.6E+10 213638 0.66 4.6E+10 213638 

Bodyfat 252 × 15 0.96 3.24 1.80 

 

0.99 0.60 0.77 0.99 0.60 0.77 

Real Estate  4147 0.98 4.11 2.03 1.0 0.19 0.44 1.0 0.20 0.44 

Concrete 1030 × 9 0.63 106.479 10.31 0.63 106.807 10.33473 0.57 121.62 11.03 

Forest fire  517 × 11 1.0 
 

34.24 8.15 1.0 
 

3.53 1.88 1.0 
 

3.60 1.90 

Heart  1025 × 14 0.53 0.12 0.35 0.58 

 

0.12 0.35 0.47 0.14 0.37 

Heart Failure 299 × 13 0.36 
 

0.17 0.41 0.38 0.16 0.40 0.38 
 

0.16 0.40 

Steel 

Industry 
35040 × 5 0.91 105.60 10.28 0.91 100.75 10.04 0.92 100.75 10.04 

Garment 1197 × 10 0.28 
 

0.02 0.15 0.28 0.02 0.15 0.29 
 

0.02 0.15 

Fish 159 × 7 0.87 19522.5 139.72 0.88 18924 137.56 0.88 18924.8 137.57 

Table 4.1: Recording on the result of 𝑅2,𝑀𝑆𝐸,𝑅𝑀𝑆𝐸 values for ridge, lasso and elastic net. 

 

Table 4.1 represents the result of the R squared, mean squared error and root mean squared error on 

analysis of ridge, lasso and elastic net regression using from R software, on 14 different dataset. The result 

indicates that the R2output of the three techniques on all datasets is in conformity with each other or nearly the 

same, but the MSE  and RMSE produced close result for each techniques except for mtcar dataset where the 

mean square error output, of ridge regression by 420.82 difference larger than the others. Now the situation is to 

ascertainif these techniques differ from their performances based on their output.  In other to determine this, we 

will use multivariate analysis of variance to test the null hypothesis of equal mean across the techniques and the 

alternative hypothesis which says otherwise. Considering the P-value result obtained from the normality test 

(see Appendix A.5) using Shapiro-Wilk test, the normality assumptions of MANOVA are not met. However, 

using permutational MANOVA,the test procedure goes as follows: 

H0: 

μ11

μ12
𝜇13

 =  

μ21

μ22
𝜇23

 =  
𝜇31

𝜇32
𝜇33

 , 

H1: At least one 𝛍i ≠ 𝛍i′ ;   i, i′ = 1,2,3. 

 

Here, the null hypothesis states that there is no significant difference between the three methods, while the 

alternative hypothesis argues otherwise.Using PERMANOVA test, The P-value of 0.868 wasobtained, which 

indicates that there is no reason to reject the null hypothesis. 

 

4.2  A Simulation Study 

The purpose of this simulation study is to show that OLS offers no solution to a regression problem when 

collinearity is present. It is often the case when 𝑝 ≅ 𝑛, or 𝑝 ≫ 𝑛. The dataset used here is simulated using R 

statistical software. Three models are presented as follows: 

(a) The first simulation shows that the OLS model produces no result when p ≅ n. The stimulated dataset 

is with dimension 30 × 30,meaning thatn = 30 and p =30. 

Model summary: Residual standard error: NaN on 0 degrees of freedom. Multiple R-squared: 1. Adjusted R-

squared:   NaN.  F-statistic:   NaN on 29 and 0 DF, p-value: NA 

 

(b) The second simulation shows similar result when p ≫ n. The stimulated dataset is with dimension 

30 × 40, where n = 30 and p =40. 

Model summary: Residual standard error: NaN on 0 degrees of freedom. Multiple R-squared: 1, Adjusted R-

squared:    NaN. F-statistic:   NaN on 29 and 0 DF, p-value: NA 
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(c) The third simulation shows similar results as in (a) and (b) above. The stimulated dataset has dimension 

8 × 50where n = 8 and p =50. 

Model summary: Residual standard error: 3.885e-14 on 42 degrees of freedom,Multiple R-squared: 1, Adjusted 

R-squared: 1, F-statistic: 2.121e+28 on 7 & 42 DF, p-value: < 2.2e-16. 

 

Based on the p-value, R-squared and adjusted R-squared of the model summaries of the three simulated 

datasets, the OLS model here has no solution for a regression problem when datasets are highly correlated. 

However, it has been equally shown that the use of regularization techniques is able to correct this core 

weakness of the OLS, given highly correlated datasets. Appendix B consists of the R codes used for datasets 

simulations. 

 

V. SUMMARY/CONCLUSION 

So far, a total of 14 processed real-world datasets were analysed using R statistical software. Cross 

validation was used with glmnetfunction() contained in R software, to automatically select the optimum value of 

lambda and alpha in elastic net.With alpha as a turning parameter, to ascertain which techniquewe are concerned 

with, 𝛼 = 0if we are concerned with ridge and for lasso, 𝛼 = 1. In the case of elastic net, alpha is between 0 and 

1. We proceeded with the analysis, and obtained R2, MSE, and RMSEfor each regularization technique, on 

every dataset used in the study. The second phase is the use of MANOVA to run a test of hypothesis for 

decision making on whether to accept or reject the null hypothesis. At a p-value of 0.9998, the null hypothesis 

could not be rejected which goes further to support the claim that the three different techniques do not vary in 

the output generated.  However, on checking the normality test assumption for the MANOVA test, the null 

hypothesis was rejected meaning that the datasets for the study do not comply with the normality assumption. 

Furthermore, using a nonparametric permutational MANOVA test, we obtained a p-value of 0.868, meaning 

that we still cannot reject the null hypothesis.For this reason, it follows that any of the three regularization 

techniques is equally as good as the other. Hence, we conclude that with respect to the given datasets for this 

study, the output of ridge, lasso and elastic net regression do not differ from one another. 
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APPENDIX A 

A.0 Codes and Results of Data Analysis  

## Real Estate Valuation Dataset 

>rm(list = ls()).    >dat = read.csv(file.choose(), header = T); dat[1:2, ].   >> #creating training and test set 

> dd = sort(sample(nrow(dat), nrow(dat)*0.7)).    >>Xtrain = dat[dd,]   >>Xtest = dat[-dd,] 

> ## Forming data matrix.    >> X = data.matrix(Xtrain[, -1])       >> y = Xtrain$Y.house.price.of.unit.area 

>X.new = data.matrix(Xtest[, -1])   >>y.new = Xtest$Y.house.price.of.unit.area 

> ## Parameters Definition    >> n = nrow(X.new)   >> p = ncol(X.new)  

A.1 ## Ridge Regression 

> library(glmnet).     >>set.seed(123).    >>cv_model = cv.glmnet(X, y, alpha = 0, family = "gaussian") 

>best_lambda = (cv_model$lambda.min); best_lambda 

> #find coefficients of best model 

>best_model = glmnet(X, y, alpha = 0, type.measure="mse", lambda = best_lambda); 

best_model>coef(best_model) 

> #use fitted best model to make predictions 

>y_predicted = predict(best_model, s = best_lambda, newx = X.new) 

> #find SST and SSE.  >> #find R-Squared, mse, rms.    >>sst = sum((y.new - mean(y.new))^2); sst 

>sse = sum((y_predicted - y.new)^2); sse.   >>rsq=(1 - sse/sst); rsq 
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>mse = sum((y_predicted - y.new)^2)/(n-p-1); mse.    >>rmse = (sqrt(mse)); rms 

A.2 ## Lasso Regression (use alpha = 1, set.seed(123) and apply same procedure as ridge) eg 

>cv_model = cv.glmnet(X, y, alpha = 1, family = "gaussian").    >> #find SST, SSE, R-Squared, mse, and rms 

A.3 ##Elastic Net Regression.    >> library(caret).  >>set.seed(123) 

> Control = trainControl(method = "cv", number = 10) 

>elastic_model = train(Y.house.price.of.unit.area ~., data = dat, method = "glmnet",  

+                       trControl = Control, tuneLength = 10)  

> # Best tuning parameter.       >>elastic_model$bestTune 

>coef(elastic_model$finalModel, elastic_model$bestTune$lambda) 

> #use fitted best model to make predictions 

>y_predicted = predict(best_model, s = best_lambda, newx = X.new).  >> #find SST,  SSE, R-squared, mse, 

rms 

A.5 Shapiro-Wilk normality test 

>shapiro.test(dd$RS);     data:  dd$RS.     >>W = 0.88084, p-value = 0.0004035 

>shapiro.test(dd$MSE);   data:  dd$MSE.       >>W = 0.28443, p-value = 4.879e-13 

>shapiro.test(dd$RMSE);   data:  dd$RMS.      >>W = 0.28739, p-value = 5.199e-13 

A.6 Performance of Nonparametric ANOVA 

> dd = read.table(file = "clipboard", header = T); dd[1:6,] 

  Group    RS          MSE       RMS 

1 Ridge 0.970 4.532000e+02     21.29 

> library(vegan).   >> ## Create the Y matrix of variables under comparison:  

> Y = dd[, c("RS", "MSE", "RMS")]; head(Y) 

A.7 Nonparametric Test 

> ## Perform a one-way PERMANOVA:  >> ## See  https://f-santos.gitlab.io/2020-05-07-npmanova.htm 

## observe we use adonis2 and not adonis as contained in the website 

> adonis2(Y ~ dd$Group, method = "euclidean", permutations = 999) 

Permutation test for adonis under reduced model. Terms added sequentially (first to last) 

Permutation: free. Number of permutations: 999 

adonis2(formula = Y ~ dd$Group, permutations = 999, method = "euclidean") 

DfSumOfSqs R2  FPr(>F) 

dd$Group  2 1.1180e+16  0  0  0.868 

Residual 39 5.8442e+21  1          Total    41 5.8442e+21  1  

 

APPENDIX B 

B.0 SIMULATED DATA ANALYSIS SOLUTIONS AND RESULTS 

B.1.0 Simulated Dataset with Dimension 30x30  

rm(list = ls()).   >>## Data dimension 30X30.   >>library(MASS) 

>Mean.vector = sample(1:100, 30, replace = F).       >> library(clusterGeneration) 

> Sigma = genPositiveDefMat(dim = 30, covMethod = "unifcorrmat")[[2]] 

> n = 30.    >> # create multivariate normal distribution 

>Multi.sample = round(mvrnorm(n, mu = Mean.vector, Sigma = Sigma), digits = 2) 

>dat = data.frame(Multi.sample).       >>dat$y = round(abs(dat$X1+2-3^3*sqrt(5)), digits = 2); dat[1:2, ] 

> mod = lm(y ~., data = dat); summary(mod) 

Call:  lm(formula = y ~ ., data = dat).   >>Residuals: ALL 30 residuals are 0: no residual degrees of freedom! 

Coefficients: (1 not defined because of singularities) 

              Estimate Std. Error t value Pr(>|t|) 

(Intercept) -5.837e+01         NA      NANA 

X1           1.000e+00         NA      NANA 

Residual standard error: NaN on 0 degrees of freedom. Multiple R-squared:      1,     Adjusted R-squared:    NaN 

F-statistic:   NaN on 29 and 0 DF,  p-value: NA 

 

USING RIDGE, LASSO AND ELASTIC NET REGRESSION 

B.1.1 ##Fit Ridge Regression Model 

> library(glmnet).  >>set.seed(222).      >> Y = dat$y.   >> X = as.matrix(dat[, 1:30]) 

> model = glmnet(X, Y, alpha = 0).     >>cv_model = cv.glmnet(X, Y, alpha = 0) 

>best_lambda = (cv_model$lambda.min); best_lambda 

>best_model = glmnet(X, Y, alpha = 0, lambda = best_lambda).     >>coef(best_model) 

B.1.2 ##fit Lasso Regression (use alpha = 1, set.seed(222)and repeat the process) 

B.1.3## Elastic Net Regression (use library(caret), set.seed(222) and apply same procedure) and  
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> #Obtain coef(elastic_model$finalModel, elastic_model$bestTune$lambda) 

B.2.0 Second Simulated Dataset on 30X40 Data dimension  

>rm(list = ls())  >>## Data dimension 30X40.    >>library(MASS) 

>Mean.vector = sample(1:100, 40, replace = F).       >> library(clusterGeneration) 

> Sigma = genPositiveDefMat(dim = 40, covMethod = "unifcorrmat")[[2]].   >> n = 40 

> # create multivariate normal distribution 

>Multi.sample = round(mvrnorm(n, mu = Mean.vector, Sigma = Sigma), digits = 2) 

>dat = data.frame(Multi.sample).      >>dat$y = round(abs(dat$X1+2-3^3*sqrt(5)), digits = 2); dat[1:2, ]   

>dat = dat[1:30, ]; dim(dat).       >>[1] 30 41.    >> mod = lm(y ~., data = dat); summary(mod)    

 


