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Abstract 
The mathematical approaches that can be used to formulate the relationship between the strength of a 

stimulation pulse and its duration are examined in a spatially extended FitzHugh–Nagumo model. Apart from 

some known purely phenomenological methods specifically introduced to formulate the strength-duration curve, 

we also propose other mathematical empirical relationships widely used in optical science and optical industry 

for use in threshold curve fitting. The empirical theoretical predictions are compared with the numerical 

simulations, highlighting different qualitative agreement. 
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I. INTRODUCTION 

Neurons are specialized cells in the body of living organisms and they are basically responsible for 

transmitting information to other nerve cells or other types of cells, such as muscles. Transient electrical 

signals are considered to be particularly important as they carry time-sensitive information over long distances 

and these electrical signals are produced by changes in the current flow into and out of the cell [1]. This ability 

of nerve cells to generate and propagate electrical activity is called excitability. Communication between 

electrically coupled cells refers to an excitable medium and it is usually defined as nonlinear reaction-diffusion 

system, where the reaction term defines how the constituents of the system are transformed into each other, 

and the diffusion part provides propagation of information [2] (see 

alsohttp://www.scholarpedia.org/article/Excitable_media for more detailed explanation). 

In a single cell excitable system or in a spatially extended excitable system, strength-duration curve is 

a powerful tool for evaluating the excitability. One of the most successful mathematical models in the field of 

electrophysiology is FitzHugh-Nagumo model, a prototype of a single cell excitable system [3–5]. Therefore, 

we specifically choose FitzHugh-Nagumo (FHN) model to analyze the strength-duration throughout this 

paper. 

There are many different forms derived from the original FitzHugh-Nagumo equation that have been 

used as to model the cardiac/neuron dynamics and considered as a prototype for excitable systems. One of 

which(in one spatially extended form) has been introduced in [6] as 

 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓 𝑢 − 𝑣, (1.1) 

𝑣𝑡 = 𝛾 𝛼𝑢 − 𝑣 ,  

 

where 𝑓(𝑢) is only nonlinear cubic polynomial function 𝑓(𝑢) = 𝑢 (𝑢 − 𝛽)(1 − 𝑢), the variables 𝑢 and 𝑣 

represent the state of excitation of the medium and the recovery variable, respectively. The small positive 

parameter 𝛾 describes the ratio of time scales of the variables 𝑢 and 𝑣, 𝛼 is a constant, 𝛽 ∈ (0, 1/2) is threshold 

parameter. 

We aim to study the asymptotic behaviour of the solution of (1.1) as 𝑡 →  ∞ subject to the following 

initial and boundary conditions, 

𝑢 𝑥, 0 = 𝑢𝑟 ,  𝑣 𝑥, 0 = 𝑣𝑟 , (1.2) 

𝑢𝑥 0, 𝑡 = −𝐼sΘ 𝑡s − 𝑡 ,  𝑣𝑥 0, 𝑡 = 0,  

 

where  𝑢𝑟 , 𝑣𝑟 =  0,0  is the resting state for the system and Θ ⋅ is the Heaviside step function. The 

parameters 𝐼s and 𝑡s respectively represent the stimulus strength and duration of the stimulus. The solution of 

(1.1) with initial and boundary conditions given by (1.2) either approach the propagating pulse solution or the 
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resting state as 𝑡 → ∞. The graphical representation of the relationship between 𝑡sand 𝐼sthat separates these 

two outcomes is called a strength-duration curve. 

 

II. ESSENTIAL NUMERICAL METHODS 

From a mathematical point of view, numerical methods are necessary to study the boundary value 

problem since analytical results are not always possible to obtain explicitly. Even when analytical solutions are 

feasible it can be convenient to validate and estimate their accuracy by means of some numerical procedure. 

Thus, this section is devoted to numerical techniques for approximating strength-duration curve and the 

computation of the parameters in the analytical expressions. 

 

2.1 DIRECT NUMERICAL SIMULATION  

For numerical simulation of the FHN model we discretize the problem on a regular space grid on a 

finite interval 𝑥 ∈ [0, 𝐿] as an approximation of 𝑥 ∈ [0,∞), with fixed space step Δ𝑥  and a regular time grid 

with time stepΔ𝑡 . In view of the discretization of the FHN model, 𝑢𝑖
𝑗
 and 𝑣𝑖

𝑗
 are denoted the numerical solutions 

at time 𝑡 = 𝑗Δ𝑡and position 𝑥𝑖 = 𝑖Δ𝑥such that𝑥𝑁 = 𝐿. We use explicit Euler forward difference in time whereas 

explicit second-order central difference approximation in space for the diffusion term is employed. Hence the 

discretization formula for the FHN model is 

 

𝑢𝑖
𝑗+1

= 𝑢𝑖
𝑗

+
Δ𝑡

Δ𝑥
 2
 𝑢𝑖+1

𝑗
− 2𝑢𝑖

𝑗
+ 𝑢𝑖−1

𝑗
 + Δ𝑡𝑓 𝑢𝑖

𝑗
 − 𝑣𝑖

𝑗
, 

(2.1) 

𝑣𝑖
𝑗+1

= 𝑣𝑖
𝑗

+ Δ𝑡γ α𝑢𝑖
𝑗
− 𝑣𝑖

𝑗
 ,  

 

where 𝑓 𝑢𝑖
𝑗
 = 𝑢𝑖

𝑗
 𝑢𝑖

𝑗
− β  1 − 𝑢𝑖

𝑗
 . Meanwhile, considering that the initial condition is the unperturbed 

resting state and there is a constant current injected through the left boundary of the interval gives the 

followingdiscretization formula for initial and boundary conditions 

 

𝑢𝑖
0 = 0, 𝑢0

0 = 𝑢2
0 + 2Δ𝑥𝐼sΘ 𝑡s − 𝑡 ,  𝑢𝑁+1

0 = 𝑢𝑁−1
0 , (2.2) 

𝑢0
𝑗+1

= 𝑢2
𝑗+1

,  𝑢𝑁+1
𝑗+1

= 𝑢𝑁−1
𝑗+1

,  

𝑣𝑖
0 = 0, 𝑣0

0 = 𝑣2
0 , 𝑣𝑁+1

0 = 𝑣𝑁−1
0 ,  

𝑣0
𝑗+1

= 𝑣2
𝑗+1

,  𝑣𝑁+1
𝑗+1

= 𝑣𝑁−1
𝑗+1

,  

 

where no-flux Neumann boundary condition is applied at 𝑥 = 0 and 𝑥 = 𝐿. 

Numerical procedure for identifying the threshold curve can be developed using the bisection method, 

an algorithm for finding the threshold values by means of some upper and lower estimates which are 

respectively known to be suff icient for ignition and to fail to ignite. The idea behind this shooting procedure is 

to numerically solve the FHN model (1.1) for initial and boundary conditions given by (1.2) using finite 

difference discretization formula described above, see (2.1) and (2.2). 

Throughout this paper, we consider the FHN model with fixed values of the slow dynamics parameters 

𝛾 = 0.01, 𝛼 = 0.37 and fixed value of the excitation threshold for the fast dynamics 𝛽 = 0.05. Other 

parameters used for numerical computation are Δ𝑥 = 0.03 and Δ𝑡 = 4Δ𝑥
2 /9. 

 

2.2 LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt algorithm is one of the most widely used standard iterative technique to 

solve nonlinear least-squares problems. This optimization algorithm, which was introduced firstly by Kenneth 

Levenberg in 1944 [7] and revised by Donald Marquardt in 1963 [8], provides a numerical solution to the 

following nonlinear least squares curve fitting problem: 

 

𝑆 𝜃 =   𝑦𝑖 − 𝑓 𝑥𝑖 , 𝜃  
2𝑚

𝑖=1 , 

 

(2.3) 

where  y1, y2 , ⋯ , ym is the desired output vector, 𝑓 (𝑥, 𝜃) is the function of an independent variable 𝑥 and 𝑛 

parameters 𝜃, and 𝑆(𝜃) is the function to be minimized. 

The Levenberg-Marquardt algorithm is an iterative technique that starts with an initial guess for the 𝑛 

parameters 𝜃 that are updated at every iteration until a stopping criterion is satisfied, i.e.the absolute change in 

the parameter estimates between two consecutive iteration steps is less than a user-defined tolerance value. For 
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each mathematical expression detailed below that can be used to describe the strength-duration relationship, the 

values of the parameters are obtained using the Levenberg-Marquardt algorithm. 

 

III. MATHEMATICAL EXPRESSIONS FOR STRENGTH-DURATION CURVE 

Due to the complex nature of the problem, it is not always possible to analytically investigate the 

behaviour of the solutions of the nonlinear reaction-diffusion systems. Therefore, several attempts have been 

made to establish the strength-duration relationship as experimentally tested theoretical models. Here we review 

some of these attempts that are dedicated to mathematically model electric current flow in excitable cells in 

(𝑡s, 𝐼s)-plane along with some other theoretical formulas that have been originally proposed to describe the 

dispersion of optical materials. 

 

3.1 LAPICQUE-WEISS (LW) 

Phenomenological models dedicated to the studies of pulsed electrical stimulation goes as far back as 

1901 when Weiss [9] experimentally derived a linear relationship between the threshold charge 𝑄 required to 

excite an axon and the pulse duration 𝑡s, which is later on reformulated by Boston [10] in the following form 

 

𝑄 = 𝐼rh τ + 𝑡s , (3.1) 

where 𝐼rh and τare considered to be coeff icients depending on the specimen type. This linear relation is known 

as the Weiss excitation law for the charge. 

In 1907, French scientist Lapicque [11] (its translation version [12]) modeled the neuron using a 

capacitor and a resistor which are connected in parallel and proposed the following current law for excitation 

 

 
Figure 1:Lapicque hyperbolic strength-duration curve for current 𝑰sand Weiss linear strength-

durationrelationshipfor charge 𝑸. 

 

𝐼s = 𝐼rh  1 +
τ

𝑡s
 , (3.2) 

which is equivalent to (3.1) as𝑄 = 𝐼s𝑡s. 

 

 
Figure 2:Comparison of direct numerical simulations and Lapicque-Weiss hyperbolic strength-duration 

curve along with the absolute difference between two curves. 

 

The parameter 𝐼rh is called rheobase referring to the minimal amount of intensity needed to reach spike 

threshold whereas the parameter 𝜏 is called chronaxie representing the value of the stimulus pulse duration when 

the current amplitude is equal to twice the rheobase current. The sketch of the Lapicque hyperbolic strength-

duration curve and the Weiss linear charge-duration relationship is shown in Figure 1. The plot of the direct 

numerical threshold curve compared with Lapicque-Weiss theoretical strength-duration curve is depicted in 
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Figure 2. In all comparison figures, red stars denote numerical results of the FHN model which is the same for 

all cases, blue dashed lines denote the result of the theoretical approach considered and green dashed linesin the 

right panel of each represent the absolute difference between the two data sets. The values of parameters of the 

examined models are obtained using the Levenberg-Marquardt method and presented in Table 1. 

 

3.2 LAPICQUE-BLAIR (LB) 

The expression (3.2) is based on the idea that the stimulus strength 𝐼sis inversely proportional to the 

time duration 𝑡s. An alternative theoretical relation for the threshold mechanism is derived by Lapicque and 

Blair [13, 14] in the following exponentially decay form 

 

𝐼s =
𝐼rh

1 − ex p −𝑡s/τ 
. 

(3.3) 

 

 
Figure 3:Comparison of the strength-duration curves obtained from Lapicque-Blair exponential function 

and the critical curve obtained by direct numerical simulations. 

 

Comparison of this Lapicque-Blair exponential model with the direct numerical simulations is shown in 

Figure 3. As seen, reasonable agreement between the two data sets is observed as in the case of Lapicque- 

Weiss. 

 

3.3 RASHEVSKY-MONNIER-HILL (RMH) 

As Lapicque-Blair’s model provides a reasonably good fit to experimental data, particular attention has 

been devoted to develop the idea that the nerve excitation can be described using two variables in which one 

refers to excited state and the other inhibition of excitation. Some of the leading studies of this approach have 

been independently conducted by Rashevsky [15], Monnier [16] and Hill [17] in the mid-1930s. The equations 

they considered are equivalent and so are their results. They calculated the strength-duration curve as a function 

of two time-constants 

𝐼s =
𝐼rh 1 − 𝜅/𝜆 

exp −𝑡s/𝜆 − exp −𝑡s/𝜅 
, 

 

(3.4) 

where 𝜅 is the time constant of excitation and 𝜆 is the time constant of accommodation, in which the term 

accommodation represents the membrane potential response to a suff iciently slow increase in the stimulating 

current without exciting [18]. Remark that when 𝜆 → ∞ and 𝜅 = 𝜏, Hill’s equation (3.4) reduces to Lapicque- 

Blair’s equation (3.3). 

Figure 4 shows this theoretical curve compared with the direct numerical simulations. As evident from 

the right panels of the above three figures, the formulas (3.2), (3.3) and (3.4) fit the numerical data well and the 

absolute differences between the data of (3.3) and (3.4) are not easily distinguishable. This is expected 

considering that the estimated value of the time constant of excitation is 𝜆 = 6.6849e10. 
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Figure 4:Comparison between strength-duration curve obtained by direct numerical iterations and 

analytical expression (3.4). 

3.4 CAUCHY (C) 
In the field of optical design, there have been extensive studies on the dispersion variations of optical 

material types that are currently used for optical manufacturing and refractive index and dispersion are two very 

important parameters for the application of optical materials. Apart from some exceptional cases, the refractive 

index increases as the wavelength decreases and therefore, it can be usually defined as a function of wavelength. 

In optical system design, it is usually desired to require the knowledge of the refractive index for unmeasured 

wavelengths. Therefore, to date, various well-known analytical closed expressions have been developed and 

introduced to compute the relationship between refractive index and wavelengths. This relation is named as 

dispersion formula. In terms of the behaviour of the resulted curves, these formulas can be also interpreted as an 

approximation to the strength-duration relationship and therefore they can be used to approximately describe the 

data considered throughout this paper. For convenience and brevity, similar notation will be adopted for all 

following models even though the problem itself is different. 

The study of the index-wavelength relation was first carried out by Cauchy who derived following 

empirical formula [19] 

 

𝐼s = 𝐴1 +
𝐴2

𝑡s
2

+
𝐴3

𝑡s
4

, 
(3.5) 

 

where 𝐴1 , 𝐴2 and 𝐴3 are unknown constants yet to be determined. This nonlinear interaction does not have a 

firm physical ground and thus, alternative expressions were later on developed. Indeed, results obtained by 

Cauchy formula (3.5) is not in close agreement with numerical results, not even comparable to those obtained by 

previous empirical approaches. 

 
Figure 5:Approximation of the strength-duration curve compared with direct numerical simulations. 

 

3.5 HARTMANN (H) 
Cauchy’s formula does not fit very well with direct numerical results as shown in Figure 5, and thus 

Hartmann [20] introduced the following formula for a better comparison and quantitative analysis 

 

𝐼s = 𝐵1 +
𝐵2

 𝑡s − 𝐵3 
𝐵4

, 
(3.6) 

 

where the number of coeff icients is now 4. 
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Figure 6:Illustration of the difference between numerical results and fitted data obtained from 

Levenberg-Marquard method using formula (3.6). 
 

Figure 6 illustrates this theoretical strength-duration curve, compared to the direct numerical simulations. 

Remark that the performance of the resulting approximation based on the analytical expression (3.6) for the 

strength-duration curve produces significantly better results than all previous methods. 

 

3.6 SELLMEIER (SE) 
In 1871, Wolfgang von Sellmeier conducted another empirical study of index-wavelength relationship 

and came up with the following expression [21] 

 

𝐼s
2 = 𝐶1 +

𝐶2𝑡s
2

𝑡s
2 − 𝐶3

+
𝐶4𝑡s

2

𝑡s
2 − 𝐶5

. 
(3.7) 

 

Here, 𝐶𝑗  are coeff icients of the development in Laurent series that must be experimentally determined 

by the fitting process. 

 

 
Figure 7:Sketch of the comparison between the analytical formula’s result and numerical strength-

duration curve where (3.7) is used. 

 

The behaviour of the theoretical expression (3.7) compared with the numerical threshold curve is 

illustrated in Figure 7. Even though the number of parameters is more than that of Hartmann model, the 

estimated strength-duration curve has somewhat larger deviation. 

 

3.7 SCHOTT (SC) 
Due to widespread use of this formula and excellent fitting properties, there have been several attempts 

to recast the Sellmeier model. In 1966, Schott proposed another commonly used dispersion relation formula, 

which is later on named as Schott dispersion formula, written in the following form [22] 

 

𝐼s
2 = 𝐷1 + 𝐷2𝑡s

2 +
𝐷3

𝑡s
2

+
𝐷4

𝑡s
4

+
𝐷5

𝑡s
6

+
𝐷6

𝑡s
8

, 
(3.8) 

where 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5and 𝐷6are coefficients that can be predicted based on measured data. This model 
is derived as a Laurent series expansion of the finite order of the Sellmeier formula.  
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Figure 8:The plot of the comparison between numerical strength-duration critical curve and the 

analytical expression (3.8). 

 

The result of Schott equation (3.8) behaves similarly to that of Sellmeier equation (3.7) to a certain 

degree in terms of agreement with the numerical result, as portrayed in Figure 8. 

 

3.8 MODIFIED SCHOTT (MS) 
After careful consideration of the above theoretical approaches, here we propose a mathematical model 

for the analytical description of the strength-duration threshold curve in the following form 

 

𝐼s = 𝐸1 + 𝐸2𝑡s
𝐸3 +

𝐸4

𝑡s
𝐸5

+
𝐸6

exp −𝐸7𝑡s 
, 

(3.9) 

where the number of coeff icients is now 7. First 3 terms in this formula can be seen as a slight change version of 

the first 3 terms of Schott equation, with the difference that the powers of duration term 𝑡s are also unknown 

coeff icients instead of square. The last term, which is in the Lapicque-Blair form except that the denominator is 

now 𝑒𝑥𝑝 −𝐸7𝑡𝑠  is added as a correction term. 

 

Figure 9:Approximation of the strength-duration curve for (3.9) compared with direct numerical 

simulations. 

Figure 9 shows the comparison between this theoretical prediction and the numerical curve. As 

observed, these results indicate that the described method perform best since the absolute error is the smallest 

one. 

Further analysis can be performed in order to compare the theoretical strength-duration curves 

described above in terms of accuracy. Two most widely-used error metrics are 𝐿1 and 𝐿2 norm defined as 

 

𝐿1 =   𝑦𝑖 − 𝑓 𝑥𝑖  

𝑛

𝑖=1

, 𝐿2 =   𝑦𝑖 − 𝑓 𝑥𝑖  
2

𝑛

𝑖=1

, 
(3.10) 

where 𝑦𝑖refers to the data points of the numerical threshold curve for the FHN model and 𝑓 𝑥𝑖  refers to the 

data points of the estimated values of the theoretical threshold curve in our case.  
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Figure 10:The sketch of the least absolute deviation 𝑳𝟏 versus least squares 𝑳𝟐. 
 

Figure 10illustrates 𝐿1 and 𝐿2 norms of each empirical expression. It can be seen from this figure that 

Modified Schott equation achieves the best result, followed by Hartmann equation while the result for Cauchy 

equation is the worst by far and the others give more or less similar results as they are clustered and overlapping. 
 

IV. DISCUSSION 

In this work, mathematical formulations of the relationship between the minimum stimulus amplitude 

required to excite an axon and the duration for which the stimulus is applied are reviewed. Such formulations 

define strength-duration threshold curves that play an important role in nerve excitability studies. There have 

been some well-known theoretical models such as Lapicque-Weiss (3.2), Lapicque-Blair (3.3) and Rashevsky-

Monnier-Hill (3.4) that specifically used to describe the strength-duration relationship. Apart from these 

formulations, we can also adopt some widely used dispersion relation introduced for the application of optical 

materials whose two very important parameters are refractive index and dispersion due to the similarities in 

graphical representation. 

All above approaches were phenomenological and the parameters in the strength-duration relationships 

were to be fitted to experimental data. To measure and calculate the parameters of the closed-form of the 

analytical expressions for threshold stimulating current, we use Levenberg-Marquardt method, one of the most 

used nonlinear, least-squares fitting algorithm. 
In this work, the strength-duration relationship is reviewed for the FHN model and there have been 

some well-developed semi-analytical approaches for the FHN model in the literature (see, for example [23–25]) 

and thus one may ask whether the empirical derivation is indeed necessary. However, these formulations can be 

adopted in practice to determine the equivalent curve for both simpler and more complex excitable media in 

which analytical analysis may not be possible. 

 
Table 1: Computed coeff icients used in the analytical expressions 

Model Parameter Values 

LW 𝐼rh = 0.0086, 𝜏 = 37.7243 

LB Irh = 0.0162 , τ = 19.9995 

RMH 𝐼rh = 0.0162, λ = 19.9995, 𝜅 = 6.6849e10 

C 𝐴1 = 0.1815,𝐴2 = 0.4492, 𝐴3 = −0.0266 

H 𝐵1 = 0.0060, 𝐵2 = 0.3262, 𝐵3 = 0.0062, 𝐵4 = 0.9795 

SE 𝐶1 = −5.5364, 𝐶2 = 6.1822, 𝐶3 = 0.0117, 𝐶4 = −0.6448,𝐶5 = −0.0614 

SC 𝐷1 = 0.0012, 𝐷2 = −8.5885𝑒−6, 𝐷3 = 0.1138, 𝐷4 = −0.0037, 𝐷5 = 6.9970𝑒−4,𝐷6 = −4.0354𝑒−5 

MS 𝐸1 = 0.0024, 𝐸2 = 0.3090, 𝐸3 = 1.0136, 𝐸4 = 0.0240,  𝐸5 = −0.4371, 𝐸6 = −0.0013,𝐸7 = −0.0339 

 

REFERENCES 
[1]. Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven A Siegelbaum, and AJ Hudspeth. Principles of neural science, volume 

4. McGraw-Hill New York, 2000.  
[2]. Y. Guo, Y. Zhao, S. A. Billings, Daniel Coca, R. I. Ristic, and L DeMatos. Identification ofexcitable media using a scalar coupled 

mapped lattice model. International Journal of Bifurcation and Chaos, 20(7):2137–2150, 2010.  
[3]. Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6):445–466, 

1961.  
[4]. Richard Fitzhugh. Thresholds and plateaus in the Hodgkin-Huxley nerve equations. The Journal of General Physiology, 43(5):867–

896, 1960.  
[5]. Jinichi Nagumo, SuguruArimoto, and Shuji Yoshizawa. An active pulse transmission line simulating nerve axon. Proceedings of the 

IRE, 50(10):2061–2070, 1962.  
[6]. John C Neu, R Stephen Preissig, and Wanda Krassowska. Initiation of propagation in a one-dimensional excitable medium. Physica 

D: Nonlinear Phenomena, 102(3):285–299, 1997.  



A systematic study of the mathematical modeling of the strength-duration relationship 

www.ijres.org                                                                                                                                            188 | Page 

[7]. Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 

2(2):164–168, 1944.  
[8]. Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and 

Applied Mathematics, 11(2):431–441, 1963.  
[9]. Georges Weiss. Sur la possibilite de rendrecomparables entre eux les appareils servant a l’excitationelectrique. Archives Italiennes 

de Biologie, 35(1):413–445, 1990.  
[10]. H Bostock. The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. 

The Journal of Physiology, 341(1):59–74, 1983.  
[11]. Louis Lapicque. Recherchesquantitatives sur l’excitationelectrique des nerfs traiteecommeune polarization . Journal de physiologie 

et de pathologiegénérale, 9:620–635, 1907.  
[12]. Nicolas Brunel and Mark CW Van Rossum. Quantitative investigations of electrical nerve excitation treated as polarization. 

Biological Cybernetics, 97(5-6):341–349, 2007.  
[13]. Henry A Blair. On the intensity-time relations for stimulation by electric currents. i. The Journal of general physiology, 15(6):709–

729, 1932.  
[14]. Henry A Blair. On the intensity-time relations for stimulation by electric currents. ii. The Journal of general physiology, 15(6):731, 

1932.  
[15]. Nicolas Rashevsky. Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma, 20(1):42–56, 1933.  
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