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ABSTRACT 

In this paper, we prove – strongly perfect graphs are the line graph L(G) of (0,1), cartesian product of graphs,  

bipartite graphs, Cartesian product of non-trivial graphs and tensor product graph.   
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I. INTRODUCTION: 

 The strongly perfect graphs were first introduced by Claude Berge at a Monday Seminars, M.S.H., 

Paris, 1978.  A graph is strongly perfect if each of its induced subgraphs H contains an independent set which 

meets all the cliques (maximal complete subgraphs) in H.  That is a graph is strongly perfect if each of its 

induced subgraphs contain a good independent set.  The strongly perfect graphs form an interesting class of 

perfect graphs because of the following:  

1) Complement of a strongly perfect graphs not necessarily strongly perfect unlike the complement of a 

perfect graph.  

2) In view of Ravindra’s conjecture (33) that every p-critical graph is sp-critical, the strongly perfect 

graphs are closely related to solution of the famous unsettled Berge’s Strong Perfect Graph Conjecture.  

3) A strongly perfect graph serves as one of the best mathematical models for a situation where one would 

like to choose an optimal set of leaders from a given set of people (Ravindra (52)). 

Berge and Duchet (6), Ravindra (31, 32), Chvatal (17) and Hoang (29) have obtained several interesting results 

in the area of strongly perfect graphs.  We list all of these in the form of Facts as below for the sake of ready 

reference and completion.  

FACT 1 (6, 31). Every P4 – free graph is strongly perfect. 

FACT 2 (6).  Every triangulated graph is strongly perfect. 

FACT 3.Every comparability graph is strongly perfect.  

FACT 4 (6).A perfect graph G = (V, E) is strongly perfect iff no two families C = (C1, C2, . . .,Ck) and D = (D1, 

D2, . . ., Dk) of maximal cliques (with possible repeated cliques) satisfy 

 |C| = |D| and |C(v)| > |D(v)| for all v V.  (C(v) is the sub-family of the cliques of C which contain v,  

D(v) has the similar meaning). 

FACT 5 (32). If every odd cycle of length at least five in a graph G has at least two chords, then G is strongly 

perfect.  

FACT 6 (61).  The line  graph L(G) of a graph G is strongly perfect if and only if each of the following 

properties is true.  

i) Every block of G is  either bipartite or K4-e or Kp(3  p  4). 

ii) If Cr and Cs are two even cycles such that V(Cr)  V(Cs) , then |V(Cr)  V(Cs)| is even.  

iii) If Ci and Cj are two disjoint even cycles in G then all paths in G connecting Ci and Cj are of odd length.  

FACT 7 (31).  A line graph L (G) of G is stronglyperfect iff it does not contain C2n+1 (n  2) or any of the 

graphs in Fig. 2, 3 as an induced subgraph.  

FACT 8 (31).  For a total graph T(G) of G the following properties are equivalent.  

i) T (G) is strongly perfect. 

ii) T(G) is perfect 

iii) Every block of G is either K2 or K3. 

FACT 9 (34).  Every strongly perfect B-graph contains a maximum and minimum good stable set. 

 Though Fact 4 gives a necessary and sufficient condition for a graph to be strongly perfect, there is no 

characterization of strongly perfect graphs in terms of forbidden subgraphs (that is, a complete set of sp-critical 

graphs is not known).  However, some of the forbidden subgraphs are identified by Ravindra. Berge (Fig.1) 

Chvatal (Fig.2. personal communication to Ravindra), Maffray (Fig. 3, personal communication to Ravindra).  
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Further, with respect to K1,3 – free graphs, Ravindra (33) has Conjectured that C2n+1 (n  2), nC  (n  5) and the 

graphs of the Fig.3 are the only sp-critical graphs.  

 

 
Fig. 1 

 

 
Fig. 2 

 

 
Fig. 3 

  

To solve an assignment problem, in operations research, one has to ensure that the maximum number 

of independent zeros in an effectiveness matrix to be equal to the minimum number of lines covering all the 

zeros.  Since (0, 1) – graphs are perfect, in view of the above  fact, (0, 1) – graphs have direct link with the 

solution of an assignment problem.   

 

2. Strongly Perfect (0,1) – graphs  

 Fact 7 shows that there are (0, 1) – graphs which  are not strongly perfect.  For example, consider the 

following graphs (4) as special cases of G1, G2 and G3 of Fig. 3 respectively.  
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 It can be verified that graph G4 is the (o, 1) – graph of A.  Similarly, we can see that G5 and G6 are (o, 

1) – graphs of some (0, 1) – matrices.  Therefore, by Fact 7, the (0, 1) – graphs G4, G5 and G6 are not strongly 

perfect. 

THEOREM 2.1. : The line graph L (G) of a (0,1) – graph G is strongly perfect iff it has no C2n+1 (n  2) an 

induced subgraph.  

Proof:  Suppose that the line graph L (G) of a (o,1) – graph G is strongly perfect.  Then by virtue of Fact 7, 

L(G) does not contain C2n+1  (n  2)  as an induced subgraph.  On the other hand, suppose that L(G) does not 

contain C2n+1  (n  2) as an induced subgraph.  If L (G) is not strongly perfect, then by Fact 7, L(G) contains G1, 

G2 or G3 as an induced subgraph.  That is G contains the following graphs (Fig.5) as subgraphs.  

 
Fig. 5 
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 If G7 is a subgraph of G, then we show that the induced subgraph on V1, V2, V2m, u1,  is K1,3.  For, if the 

induced subgraphon  V1, V2, V2m, u1,  is not K1,3.  Then (u1, V2m)  E.or(u1, V2)  E or (v2, v2m)   E. If (u1, 

v2)   E then  u1, v2, v3, . . .  V2m, v1 u1 is C2m+1 (m  2). Then this corresponds to an odd induced cycle of length 

 5 in L(G), a contradiction.  Similarly, (u1, v2m)   E. If (v2, v2m)  E then the induced subgraph on v2, v3, . . . 

.., v2m is a C3 or C2r+1 (r  2) in G.  In the former case m = 2 and the induced subgraph of G7 on V1, V2, V3, V4 is 

K4-E which is a forbidden subgraphfor  0.1 graphs.  The later case also does not arise since L(G) does not 

contain C2r+1 (r  2) as an induced subgraph.  Thus, G contains K1,3 as induced subgraph which is a forbidden 

subgraph for (0, 1) – graphs.  Similarly we can show that neither G8 nor G9 is a subgraph of G.  Hence the 

theorem. 

As an immediate consequence of the above theorem, we have the following.  

 

COROLLARY 2.1. :  A perfect line graph of a (0, 1) – graph is strongly perfect.  

3. Strongly Perfect Product Graphs. 

Ravindra and Parthasarathy (36) studied at length the perfectness of Normal products,  Cartesian products, 

Tensor products and Lexicographic products (compositions) and obtained necessary and sufficient conditions 

for the three latter products to be perfect.  

The following Facts due to Ravindra and Parthasarathy (36) characterize perfect Cartesian and tensor products.  

 

FACT3.1.  G1 X G2 is perfect iff it has no induced odd cycle of length at least five.  

FACT 3.2.  G1 X G2 is perfect iff one of the following holds.  

i) G1 and G2 are bipartite. 

ii) G1 or G2 is Meyniel and Z-free and the other is K2.  (Here Z is the graph of Fig.6). 

iii) G1 or G2 is  
rtttK ,...., 21

  Kt1,  (r  3 and t 2 for some i) and the other is a tree. 

iv) Every block of G1 or G2 is complete and the other is a complete graph.  

FACT 3.3.  G1 ^ G2 is perfect iff either  

i) G1 or G2 is bipartite, or 

ii) both G1 and G2 are Y-free Berge (where Y is the graph of Fig.2.2) 

 
Fig. 6 

 Here we characterise strongly perfect Cartesian and tensor product graphs.  

 Some of the observations made earlier or elsewhere are useful in  proving the following theorems and 

we list them as lemmas.  

LEMMA 3.1.If G is a triangle fee graph and if it does not contain an odd induced cycle of length at least five, 

then G is bipartite. 

Proof: If G has an odd cycle, let C be an odd cycle of G with minimum (least) length (5).  If C has a chord e, 

then e will divide the  vertices of C into an odd and even cycles of lengths at least 5 and 4 respectively, 

contradicting minimality of C.  Therefore, C is an induced odd cycle of length at least 5, a contradiction.  Thus 

G has no odd cycle and hence it is bipartite.  

LEMMA 3.2. nC n 5 is not strongly perfect.  

Proof:  Let V1 V2 . . .  . Vn  be the cycle Cn.  Let ei = Vi Vi+1 (subscripts taken addition modulo n) be an edge of 

C.  e cannot meet the maximal independent set containing Vi-1 Vi+2.  This implies that no edge of Cn meets all 

the maximal independent sets in it.  That is, nC  does not contain an independent set which meets all  the cliques 

in it.  Thus G is not strongly perfect.  
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THEOREM 3.1.  Let G be a Cartesian product of graphs other than K1.  Then G is strongly perfect if and only 

if it is bipartite.  

Proof :  Since a bipartite graph is obviously a strongly perfect graph, it is enough to prove that strongly perfect 

Cartesian product of non-trivial graph is bipartite.  

 Let G = G1 X G2 where G is strongly perfect and G1 and G2are  some graphs other than K1.  We now 

claim that G1 and G2 are bipartite.  If G1 and G2 are not bipartite,  let without loss of generality G1 not be a  

bipartite graph.  Then by Lemma 3.1 G1 contains a K3 as G1 is strongly perfect.  Since G2 is non trivial, it 

contains a K2. But then G contains K3 X K2 = 6C  (Fig.7) as an induced subgraph, a contradiction in view of 

Lemma 3.2, establishing G1 and G2 are bipartite.  

 

 
Fig. 7 

 

Let V1 = V11 V12 and V2 = V21 V22 be, respectively bipartitions of G1 and G2. By definition  of Cartesian 

product of graphs, it is not difficult to verify that G is a bipartite graph with bipartition 

V = (V11 x V21  V12 X V22)    (V11 x V22  V12 X V21).  

 Since the Cartesian product G =G1 X G2 is bipartite iff G1 and G2 are bipartite, the above theorem 

implies immediately. 

COROLLARY 3.1:  Let G be a Cartesian product of non-trivial graphs G1 and G2. Then G is strongly perfect 

iff G1 and G2 are bipartite. 

COROLLARY 3.2:  For a Cartesian product G of non trivial graphs, the following properties are equivalent. 

i) G is very strongly perfect. 

ii) G is strongly perfect. 

iii) G is  bipartite. 

iv) G is perfectly orderable.  

Proof : i)  ii)   (by definition) 

 ii)   iii)   (by Theorem 3.1) 

To prove iii)  iv), assume that G is a bipartite graph with bipartition V = U   W.  Define a linear order < on 

V by x < y iff x  and y  W. If abed is a P4 in G with a  U, then by the definition of <.a< b and c < d (since 

G is bipartite).  Thus V admits a linear order < such that no induced P4 has a < b, d < c and hence G is perfectly 

orderable.  Iv) ii) by the Fact 9.  Since iv)   ii), ii)   iii) and iii)   i) (as every bipartite graph is very 

strongly perfect), it immediately follows that iv)  i). 

THEOREM 3.2.  A tensor product graph is strongly perfect if and only if it is bipartite.  

Proof: Suppose G = G1 ^ G2 is strongly perfect graph.  If G1 or G2 is K1, then all the vetices of G are isolated 

vertices, in which case G is obviously bipartite.  Since K3 ^ K3 contains  6C  (1 2 3 4 5 6) as an induced 

subgraph (Fig. 4, 8), G1 or G2 is triangle free.  Let without loss of generality G1 be triangle free.  

 
Fig. 8 
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Fig. 9 

G1,  being a strongly perfect graph, does not contain an odd induced cycle of length at least 5.  Hence by Lemma 

3.2, G1 is bipartite.  Let V1 = V11 V12 be a bipartition of G1. By definition of tensor product of G1 and G2 

clearly V11 x V2 and V12 x V2 are independent sets and thus G is  bipartite graph. 

 Since every bipartite graph is strongly perfect, the other part of the theorem follows immediately.  

 Since the tensor product of any two odd cycles contains an odd cycle, it follows immediately that G = 

G1 ^ G2 is bipartite iff G1 or G2 is bipartite.  In view of this, the above theorem can be restated as follows: 

COROLLARY 3.3.  G = G1 ^ G2 is strongly perfect iff G1 or G2 is bipartite.  

COROLLARY 3.4.  For a tensor product graph, G the following are equivalent.  

i) G is very strongly perfect. 

ii) G is strongly perfect. 

iii) G is bipartite graph. 

iv) G is perfectly orderable.  

Proof of this Corollary is similar to that of Corollary  3.2.  
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