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Abstract

Reinforcement learning has gained a surge of interest over the past years, fueled mainly by practical

success and new applications in various domains. However, there is still a gap between our theoret-

ical understanding of these RL techniques and their empirical success. In this thesis, we advance

our understanding by studying reinforcement learning from a primarily theoretical point of view

and designing provably efficient algorithms for two challenging settings of 1) RL with constraints

and 2) RL with function approximation.

1) In standard RL, a learning agent seeks to optimize the overall reward. However, many key

aspects of the desired behavior are more naturally expressed as constraints. First, we propose an

algorithmic scheme that can handle RL tasks with general convex constraints improving upon prior

works that are either limited to linear constraints or lack theoretical guarantees. Second, focusing on

sample-efficient exploration, we develop the first provably efficient algorithm for tabular episodic

constrained RL with the ability to handle convex constraints as well as the knapsack setting.

Finally, motivated by recent advances in reward-free RL, we propose a simple meta-algorithm such

that given any reward-free RL oracle, the constrained RL problems can be directly solved with

negligible overheads in sample complexity.

2) Finding the minimal structural assumptions that empower sample-efficient learning is one of RL’s

most important research directions. This thesis advances our understanding of this fundamental

question by introducing a new complexity measure—Bellman Eluder (BE) dimension. We show

that the family of RL problems with low BE dimension is remarkably rich, which subsumes a

vast majority of existing tractable RL problems. We further design a new optimization-based

algorithm—GOLF, and provide regret and sample complexity results matching or improving the

best existing results for several well-known subclasses of low BE dimension problems. Furthermore,

moving towards a more challenging setting of partially observable RL, we study a new subclass of

Partially Observable Markov Decision Processes (POMDPs) whose latent states can be decoded by

the most recent history of a short length m. Our results show that a short-term memory suffices

for reinforcement learning in these environments.

iii





v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 RL with Constraints (Part I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 RL with Function Approximation (Part II) . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I Reinforcement Learning with Constraints 6

2 Reinforcement Learning with Convex Constraints 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Setup and preliminaries: Defining the feasibility problem . . . . . . . . . . . . . . . . 9

2.3 Approach, algorithm, and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Solving zero-sum games using online learning . . . . . . . . . . . . . . . . . . 12

2.3.2 Algorithm and main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Removing the cone assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Practical implementation of the positive response and estimation oracles . . . 19

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3 Constrained Episodic RL in Concave-Convex and Knapsack Settings 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Model and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Warm-up algorithm and analysis in the basic setting . . . . . . . . . . . . . . . . . . 30

3.4 Concave-convex setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Knapsack setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Empirical comparison to other concave-convex approaches . . . . . . . . . . . . . . . 37

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 A Simple Reward-free Approach to Constrained Reinforcement Learning 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Preliminaries and problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Reward-free exploration (RFE) for VMDPs . . . . . . . . . . . . . . . . . . . 48

4.2.2 Approachability for VMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Constrained MDP (CMDP) with general convex constraints . . . . . . . . . . 49

4.3 Meta-algorithm for VMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Tabular VMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Linear function approximation: Linear VMDPs . . . . . . . . . . . . . . . . . . . . . 53

4.6 Vector-valued Markov games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.1 Model and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6.2 Meta-algorithm for VMGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.3 Tabular VMGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

II Reinforcement Learning with Function Approximation 60

5 Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-

Efficient Algorithms 61

vii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Chapter organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Function approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Eluder dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Bellman Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Relations with known tractable classes of RL problems . . . . . . . . . . . . . 72

5.4 Algorithm Golf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Key ideas in proving Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Provable Reinforcement Learning with a Short-Term Memory 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Function approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Warmup: Tabular Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.1 Linear m-step Decodable POMDP . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Challenges and Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.1 Challenges: Bellman Rank is Prohibitively Large . . . . . . . . . . . . . . . . 93

6.5.2 Proof Overview & Moment Matching Policy . . . . . . . . . . . . . . . . . . . 95

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III Appendix 112

A Remaining Proofs of Chapter 2 113

viii



A.1 Online gradient descent (OGD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.4 ApproPO for feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4.1 Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.5 Proof of Lemma 2.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.6 Additional experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B Remaining Proofs of Chapter 3 124

B.1 Algorithm: Formal description and design choices . . . . . . . . . . . . . . . . . . . . 125

B.1.1 Basic setting - BasicConPlanner . . . . . . . . . . . . . . . . . . . . . . . 125

B.1.2 Concave-convex setting - ConvexConPlanner . . . . . . . . . . . . . . . . 126

B.1.3 Knapsack setting - KnapsackConPlanner . . . . . . . . . . . . . . . . . . 127

B.2 Analysis: Basic setting (Section 3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2.1 Validity of bonus (Lemma 3.3.2) . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2.2 Valid bonus implies optimism . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.2.3 Simulation lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2.4 Bellman-error regret decomposition (Proposition 3.3.3) . . . . . . . . . . . . . 131

B.2.5 Bounding the Bellman error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2.6 Final guaraantee for the basic setting (Theorem 3.3.4) . . . . . . . . . . . . . 133

B.3 Analysis: concave-convex setting (Section 3.4) . . . . . . . . . . . . . . . . . . . . . . 135

B.3.1 Feasibility of optimal policy in concave-convex setting (Lemma B.3.1) . . . . 135

B.3.2 Regret decomposition for concave-convex setting . . . . . . . . . . . . . . . . 136

B.3.3 Concave-convex theorem (Theorem 3.4.1) . . . . . . . . . . . . . . . . . . . . 138

B.4 Analysis: Knapsack setting (Section 3.5) . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.4.1 Theorem with hard constraints (Theorem 3.5.1) . . . . . . . . . . . . . . . . . 138

B.4.2 Dynamic policy benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.5 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



B.5.1 LagrConPlanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.5.2 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.6 Concentration tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C Remaining Proofs of Chapter 4 149

C.1 Proof for Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.1.1 Proof of Theorem 4.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 Proof for Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2.1 Fenchel duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2.2 Online Convex Optimization (OCO) . . . . . . . . . . . . . . . . . . . . . . . 153

C.2.3 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

C.3 Proof for Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.3.1 Reward-free Algorithm for Tabular VMDPs . . . . . . . . . . . . . . . . . . . 158

C.3.2 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.4 Proof for Section 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.4.1 Reward-free algorithm for linear VMDPs . . . . . . . . . . . . . . . . . . . . 169

C.4.2 Proof of Theorem 4.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.5 Proof for Section 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.5.1 Proof of Theorem 4.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.5.2 Proof of Theorem 4.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.6 Auxiliary tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

D Remaining Proofs of Chapter 5 188

D.1 Algorithm Olive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.1.1 Theoretical guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.1.2 Interpret Olive with BE dimension . . . . . . . . . . . . . . . . . . . . . . . 190

D.2 V-type BE Dimension and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 191

D.2.1 Algorithm V-type Golf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

D.2.2 Algorithm V-type Olive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

x



D.2.3 Discussions on Q-type versus V-type . . . . . . . . . . . . . . . . . . . . . . . 195

D.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.3.1 Linear models and their variants . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.3.2 Effective dimension and kernel MDPs . . . . . . . . . . . . . . . . . . . . . . 198

D.3.3 Effective Bellman rank and kernel reactive POMDPs . . . . . . . . . . . . . . 200

D.4 Proofs for BE Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.4.1 Proof of Proposition 5.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

D.4.2 Proof of Proposition 5.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D.4.3 Proof of Proposition 5.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D.5 Proofs for Golf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.5.1 Proof of Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.5.2 Proof of Corollary 5.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

D.5.3 Proofs of concentration lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 209

D.5.4 Proof of Lemma D.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

D.6 Proofs for Olive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.6.1 Full proof of Theorem D.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.6.2 Concentration arguments for Theorem D.1.1 . . . . . . . . . . . . . . . . . . 216

D.7 Proofs for V-type Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

D.7.1 Proof of Theorem D.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

D.7.2 Proof of Theorem D.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

D.8 Proofs for Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

D.8.1 Proof of Proposition D.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

D.8.2 Proof of Proposition D.3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.8.3 Proof of Proposition D.3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D.8.4 Proof of Proposition D.3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

D.9 Discussions on DF versus D∆ in BE Dimension . . . . . . . . . . . . . . . . . . . . . 228

E Remaining Proofs of Chapter 6 231

xi



E.1 Proofs for Section 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

E.2 Proof for Section 6.4 and 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

E.2.1 Properties of Moment Matching Policy . . . . . . . . . . . . . . . . . . . . . . 234

E.2.2 Concentration lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

E.2.3 Eluder Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

E.2.4 Proof of Theorem 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

E.2.5 Proof for Theorem 6.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

E.3 On H-Step Decodable POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

E.3.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

E.4 Proof for Proposition 6.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

xii



Chapter 1

Introduction

Reinforcement learning (RL) is a paradigm for sequential decision making, in which an agent learns

to make decisions in an environment to accumulate reward. Many real-world settings rely on an

agent’s ability to make optimal sequential decisions. As a result, RL applies to many domains,

including but not limited to education, healthcare, robotics, transportation, and robotics. Over the

past years, we have witnessed the vast practical success of RL algorithms in various domains, along

with much progress on the theoretical side. However, the theoretical understanding of challenges

that underlie reinforcement learning remains somewhat limited. In this thesis, we advance our

understanding by studying reinforcement learning from a primarily theoretical point of view and

designing provably efficient algorithms for two challenging settings of reinforcement learning with

constraints (Part I, Chapter 2-4) and reinforcement learning with function approximation (Part II,

Chapter 5-6). In what follows, we describe each setting separately.

1.1 RL with Constraints (Part I)

Standard reinforcement learning (RL) approaches seek to maximize a scalar reward (Sutton and

Barto, 1998, 2018; Schulman et al., 2015; Mnih et al., 2015), but in many settings this is insufficient,
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because the desired properties of the agent behavior are better described using constraints. For

example, an autonomous vehicle should not only get to the destination, but should also respect

safety, fuel efficiency, and human comfort constraints along the way (Le et al., 2019); a robot should

not only fulfill its task, but should also control its wear and tear, for example, by limiting the torque

exerted on its motors (Tessler et al., 2019). Moreover, in many settings, we wish to satisfy such

constraints already during training and not only during the deployment. For example, a power grid,

an autonomous vehicle, or a real robotic hardware should avoid costly failures, where the hardware

is damaged or humans are harmed, already during training (Leike et al., 2017; Ray et al., 2020).

Constraints are also key in additional sequential decision-making applications, such as dynamic

pricing with limited supply (e.g., Besbes and Zeevi, 2009; Babaioff et al., 2015), scheduling of

resources on a computer cluster (Mao et al., 2016), and imitation learning, where the goal is to stay

close to an expert behavior (Syed and Schapire, 2007; Ziebart et al., 2008; Sun et al., 2019b).

Most existsing work on constrained RL (Altman, 1999; Achiam et al., 2017; Tessler et al., 2019;

Miryoosefi et al., 2019; Ray et al., 2020), either assume full knowledge of the model, lack theoretical

guarantees, or are limited to orthant constraints. This naturally leads to the following question that

we want to address.

Can we design provably efficient algorithms for RL with general convex constraints?

Our Contributions

• In Chapter 2, we propose an algorithmic scheme that can handle a wide class of constraints in

RL tasks, specifically, any constraints that require expected values of some vector measurements

(such as the use of an action) to lie in a convex set. This captures previously studied constraints

(such as safety and proximity to an expert), but also enables new classes of constraints (such

as diversity). Our approach comes with rigorous theoretical guarantees and only relies on the

ability to approximately solve standard RL tasks. As a result, it can be easily adapted to

work with any model-free or model-based RL algorithm. In our experiments, we show that

it matches previous algorithms that enforce safety via constraints, but can also enforce new

2



properties that these algorithms cannot incorporate, such as diversity.

• in Chapter 3, We propose an algorithm for tabular episodic reinforcement learning (RL) with

constraints. We provide a modular analysis with strong theoretical guarantees for two general

settings. First is the convex-concave setting: maximization of a concave reward function

subject to constraints that expected values of some vector quantities (such as the use of

unsafe actions) lie in a convex set. Second is the knapsack setting: maximization of reward

subject to the constraint that the total consumption of any of the specified resources does

not exceed specified levels during the whole learning process. Previous work in constrained

RL is limited to linear expectation constraints (a special case of convex-concave setting), or

focuses on feasibility question, or on single-episode settings. Our experiments demonstrate

that the proposed algorithm significantly outperforms these approaches in constrained episodic

benchmarks.

• in Chapter 4, we bridge reward-free RL and constrained RL. Particularly, we propose a simple

meta-algorithm such that given any reward-free RL oracle, the approachability and constrained

RL problems can be directly solved with negligible overheads in sample complexity. Utilizing

the existing reward-free RL solvers, our framework provides sharp sample complexity results

for constrained RL in the tabular MDP setting, matching the best existing results up to a

factor of horizon dependence; our framework directly extends to a setting of tabular two-player

Markov games, and gives a new result for constrained RL with linear function approximation.

Our approach isolates the challenges of constraint satisfaction, and leaves the remaining RL

challenges such as learning dynamics and exploration to reward-free RL; therefore, it enables

direct translation of any progress in reward-free RL to constrained RL.

1.2 RL with Function Approximation (Part II)

Modern Reinforcement Learning (RL) commonly engages practical problems with an enormous

number of states, where function approximation must be deployed to approximate the true value

function using functions from a prespecified function class. Function approximation, especially based
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on deep neural networks, lies at the heart of the recent practical successes of RL in domains such

as Atari (Mnih et al., 2015), Go (Silver et al., 2016), robotics (Kober et al., 2013), and dialogue

systems (Li et al., 2016).

Despite its empirical success, RL with function approximation raises a new series of theoretical

challenges when comparing to the classic tabular RL: (1) generalization, to generalize knowledge from

the visited states to the unvisited states due to the enormous state space. (2) limited expressiveness,

to handle the complicated issues where true value functions or intermediate steps computed in the

algorithm can be functions outside the prespecified function class. (3) exploration, to address the

tradeoff between exploration and exploitation when above challenges are present.

Consequently, most existing theoretical results on efficient RL with function approximation rely

on relatively strong structural assumptions. For instance, many require that the MDP admits a

linear approximation (Wang et al., 2019; Jin et al., 2020c; Zanette et al., 2020a), or that the model

is precisely Linear Quadratic Regulator (LQR) (Anderson and Moore, 2007; Fazel et al., 2018;

Dean et al., 2019). Most of these structural assumptions rarely hold in practical applications. This

naturally leads to one of the most fundamental questions in RL.

What are the minimal structural assumptions that empower sample-efficient RL?

Our Contributions

• In Chapter 5, we advance our understanding of this fundamental question by introducing a

new complexity measure—Bellman Eluder (BE) dimension. We show that the family of RL

problems of low BE dimension is remarkably rich, which subsumes a vast majority of existing

tractable RL problems including but not limited to tabular MDPs, linear MDPs, reactive

POMDPs, low Bellman rank problems as well as low Eluder dimension problems. We further

design a new optimization-based algorithm—Golf, and reanalyzes a hypothesis elimination-

based algorithm—Olive (proposed in Jiang et al., 2017). We prove that both algorithms

learn the near-optimal policies of low BE dimension problems in a number of samples that is

polynomial in all relevant parameters, but independent of the size of state-action space. Our
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regret and sample complexity results match or improve the best existing results for several

well-known subclasses of low BE dimension problems.

• In Chapter 6, we move towards a more challenging setting of partially observable RL as

real-world sequential decision making commonly involves partial observability. Coping with

partial observability in general is extremely challenging, as a number of worst-case statistical

and computational barriers are known in learning Partially Observable Markov Decision

Processes (POMDPs). Motivated by the problem structure in several physical applications,

as well as a commonly used technique known as “frame stacking”, we proposes to study a

new subclass of POMDPs, whose latent states can be decoded by the most recent history of a

short length m. We establish a set of upper and lower bounds on the sample complexity for

learning near-optimal policies for this class of problems in both tabular and rich-observation

settings (where the number of observations is enormous). In particular, in the rich-observation

setting, we develop new algorithms using a novel “moment matching” approach with a sample

complexity that scales exponentially with the short length m rather than the problem horizon,

and is independent of the number of observations. Our results show that a short-term memory

suffices for reinforcement learning in these environments.
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Reinforcement Learning with

Constraints
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Chapter 2

Reinforcement Learning with

Convex Constraints

2.1 Introduction

Reinforcement learning (RL) typically considers the problem of learning to optimize the behavior of

an agent in an unknown environment against a single scalar reward function. For simple tasks, this

can be sufficient, but for complex tasks, boiling down the learning goal into a single scalar reward

can be challenging. Moreover, a scalar reward might not be a natural formalism for stating certain

learning objectives, such as safety desires (“avoid dangerous situations”) or exploration suggestions

(“maintain a distribution over visited states that is as close to uniform as possible”). In these

settings, it is much more natural to define the learning goal in terms of a vector of measurements

over the behavior of the agent, and to learn a policy whose measurement vector is inside a target set

(section 2.2).

We derive an algorithm, approachability-based policy optimization (ApproPO, pronounced like

“apropos”), for solving such problems (section 2.3). Given a Markov decision process with vector-
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valued measurements (section 2.2), and a target constraint set, ApproPO learns a stochastic policy

whose expected measurements fall in that target set (akin to Blackwell approachability in single-turn

games, Blackwell, 1956). We derive our algorithm from a game-theoretic perspective, leveraging

recent results in online convex optimization. ApproPO is implemented as a reduction to any

off-the-shelf reinforcement learning algorithm that can return an approximately optimal policy, and

so can be used in conjunction with the algorithms that are the most appropriate for any given

domain.

Our approach builds on prior work for reinforcement learning under constraints, such as the formalism

of constrained Markov decision processes (CMDPs) introduced by Altman (1999). In CMDPs, the

agent’s goal is to maximize reward while satisfying some linear constraints over auxiliary costs (akin to

our measurements). Altman (1999) gave an LP-based approach when the CMDP is fully known, and

more recently, model-free approaches have been developed for CMDPs in high-dimensional settings.

For instance, Achiam et al. (2017) constrained policy optimization (CPO) focuses on safe exploration

and seeks to ensure approximate constraint satisfaction during the learning process. Tessler et al.

(2019) reward constrained policy optimization (RCPO) follows a two-timescale primal-dual approach,

giving guarantees for the convergence to a fixed point. Le et al. (2019) describe a batch off-policy

algorithm with PAC-style guarantees for CMDPs using a similar game-theoretic formulation to ours.

While all of these works are only applicable to orthant constraints, our algorithm can work with

arbitrary convex constraints. This enables ApproPO to incorporate previously studied constraint

types, such as inequality constraints that represent safety or that keep the policy’s behavior close to

that of an expert (Syed and Schapire, 2007), as well as constraints like the aforementioned exploration

suggestion, implemented as an entropy constraint on the policy’s state visitation vector. The entropy

of the visitation vector was recently studied as the objective by Hazan et al. (2018), who gave an

algorithm capable of maximizing a concave function (e.g., entropy) over such vectors. However, it

is not clear whether their approach can be adapted to the convex constraints setting studied here.

Our main contributions are: (1) a new algorithm, ApproPO, for solving reinforcement learning

problems with arbitrary convex constraints; (2) a rigorous theoretical analysis that demonstrates
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that it can achieve sublinear regret under mild assumptions (section 2.3); and (3) a preliminary

experimental comparison with RCPO (Tessler et al., 2019), showing that our algorithm is competitive

with RCPO on orthant constraints, while also handling a diversity constraint (section 2.4).

2.2 Setup and preliminaries: Defining the feasibility prob-

lem

We begin with a description of our learning setting. A vector-valued Markov decision process is

a tuple M = (S,A, β, Ps, Pz), where S is the set of states, A is the set of actions and β is the

initial-state distribution. Each episode starts by drawing an initial state s0 from the distribution β.

Then in each step i = 1, 2, . . . , the agent observes its current state si and takes action ai ∈ A causing

the environment to move to the next state si+1 ∼ Ps(·|si, ai). The episode ends after a certain

number of steps (called the horizon) or when a terminal state is reached. However, in our setting,

instead of receiving a scalar reward, the agent observes a d-dimensional measurement vector zi ∈ Rd,

which, like si+1, is dependent on both the current state si and the action ai, that is, zi ∼ Pz(·|si, ai).

(Although not explicit in our setting, reward could be incorporated in the measurement vector.)

Typically, actions are selected according to a (stationary) policy π so that ai ∼ π(si), where π maps

states to distributions over actions. We assume we are working with policies from some candidate

space Π. For simplicity of presentation, we assume this space is finite, though possibly extremely

large. For instance, if S and A are finite, then Π might consist of all deterministic policies. (Our

results hold also when Π is infinite with minor technical adjustments.)

Our aim is to control the MDP so that measurements satisfy some constraints. For any policy π, we

define the long-term measurement z(π) as the expected sum of discounted measurements:

z(π) , E

[ ∞∑
i=0

γizi

∣∣∣ π] (2.1)

for some discount factor γ ∈ [0, 1), and where expectation is over the random process described
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above (including randomness inherent in π).

Later, we will also find it useful to consider mixed policies µ, which are distributions over finitely

many stationary policies. The space of all such mixed policies over Π is denoted ∆(Π). To execute

a mixed policy µ, before taking any actions, a single policy π is randomly selected according to µ;

then all actions henceforth are chosen from π, for the entire episode. The long-term measurement of

a mixed policy z(µ) is defined accordingly:

z(µ) , Eπ∼µ [z(π)] =
∑
π

µ(π)z(π). (2.2)

Our learning problem, called the feasibility problem, is specified by a convex target set C. The goal

is to find a mixed policy µ whose long-term measurements lie in the set C:

Feasibility Problem: Find µ ∈ ∆(Π) such that z(µ) ∈ C. (2.3)

For instance, in our experiments (section 2.4) we consider a grid-world environment where the

measurements include the distance traveled, an indicator of hitting a rock, and indicators of visiting

various locations on the grid. The feasibility goal is to achieve at most a certain trajectory length

while keeping the probability of hitting the rock below a threshold for safety reasons, and maintaining

a distribution over visited states close to the uniform distribution to enable exploration. We can

potentially also handle settings where the goal is to maximize one measurement (e.g., “reward”)

subject to others by performing a binary search over the maximum attainable value of the reward

(see subsection 2.3.4).

2.3 Approach, algorithm, and analysis

Before giving details of our approach, we overview the main ideas, which, to a large degree, follow

the work of Abernethy et al. (2011), who considered the problem of solving two-player games; we

extend these results to solve our feasibility problem (2.3).
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Although feasibility is our main focus, we actually solve the stronger problem of finding a mixed

policy µ that minimizes the Euclidean distance between z(µ) and C, meaning the Euclidean distance

between z(µ) and its closest point in C. That is, we want to solve

min
µ∈∆(Π)

dist(z(µ), C) (2.4)

where dist denotes the Euclidean distance between a point and a set.

Our main idea is to take a game-theoretic approach, formulating this problem as a game and solving

it. Specifically, suppose we can express the distance function in Eq. (2.4) as a maximization of the

form

dist(z(µ), C) = max
λ∈Λ

λ · z(µ) (2.5)

for some convex, compact set Λ.1 Then Eq. (2.4) becomes

min
µ∈∆(Π)

max
λ∈Λ

λ · z(µ). (2.6)

This min-max form immediately evokes interpretation as a two-person zero-sum game: the first

player chooses a mixed policy µ, the second player responds with a vector λ, and λ · z(µ) is the

amount that the first player is then required to pay to the second player. Assuming this game

satisfies certain conditions, the final payout under the optimal play, called the value of the game, is

the same even when the order of the players is reversed:

max
λ∈Λ

min
µ∈∆(Π)

λ · z(µ). (2.7)

Note that the policy µ we are seeking is the solution of this game, that is, the policy realizing the

minimum in Eq. (2.6). Therefore, to find that policy, we can apply general techniques for solving a

game, namely, to let a no-regret learning algorithm play the game repeatedly against a best-response

1Note that the distance between a point and a set is defined as a minimization of the distance function over all
points in the set C, but here we require that it be rewritten as a maximization of a linear function over some other set
Λ. We will show how to achieve this in subsection 2.3.2.
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player. When played in this way, it can be shown that the averages of their plays converge to the

solution of the game (details in subsection 2.3.1).

In our case, we can use a no-regret algorithm for the λ-player, and best response for the µ-player.

Importantly, in our context, computing best response turns out to be an especially convenient task.

Given λ, best response means finding the mixed policy µ minimizing λ · z(µ). As we show below,

this can be solved by treating the problem as a standard reinforcement learning task where in each

step i, the agent accrues a scalar reward ri = −λ · zi. We refer to any algorithm for solving the

problem of scalar reward maximization as the best-response oracle. During the run of our algorithm,

we invoke this oracle for different vectors λ corresponding to different definitions of a scalar reward.

Although the oracle is only capable of solving RL tasks with a scalar reward, our algorithm can

leverage this capability to solve the multi-dimensional feasibility (or distance minimization) problem.

In the remainder of this section, we provide the details of our approach, leading to our main algorithm

and its analysis, and conclude with a discussion of steps for making a practical implementation. We

begin by discussing game-playing techniques in general, which we then apply to our setting.

2.3.1 Solving zero-sum games using online learning

At the core of our approach, we use the general technique of Freund and Schapire (1999) for solving

a game by repeatedly playing a no-regret online learning algorithm against best response.

For this purpose, we first briefly review the framework of online convex optimization, which we

will soon use for one of the players: At time t = 1, . . . , T , the learner makes a decision λt ∈ Λ,

the environment reveals a convex loss function `t : Λ→ R, and the learner incurs loss `t(λt). The

learner seeks to achieve small regret, the gap between its loss and the best in hindsight:

RegretT ,

[
T∑
t=1

`t(λt)

]
−min

λ∈Λ

[
T∑
t=1

`t(λ)

]
. (2.8)

An online learning algorithm is no-regret if RegretT = o(T ), meaning its average loss approaches the

best in hindsight. An example of such an algorithm is online gradient descent (OGD) of Zinkevich
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(2003) (see Appendix A.1). If the Euclidean diameter of Λ is at most D, and ‖∇`t(λ)‖ ≤ G for any

t and λ ∈ Λ, then the regret of OGD is at most DG
√
T .

Now consider a two-player zero-sum game in which two players select, respectively, λ ∈ Λ and u ∈ U ,

resulting in a payout of g(λ,u) from the u-player to the λ-player. The λ-player wants to maximize

this quantity and the u-player wants to minimize it. Assuming g is concave in λ and convex in u, if

both spaces Λ and U are convex and compact, then the minimax theorem (von Neumann, 1928;

Sion, 1958) implies that

max
λ∈Λ

min
u∈U

g(λ,u) = min
u∈U

max
λ∈Λ

g(λ,u). (2.9)

This means that the λ-player has an “optimal” strategy which realizes the maximum on the left

and guarantees payoff of at least the value of the game, i.e., the value given by this expression; a

similar statement holds for the u-player.

We can solve this game (find these optimal strategies) by playing it repeatedly. We use a no-regret

online learner as the λ-player. At each time t = 1, . . . , T , the learner chooses λt ∈ Λ. In response,

the u-player, who in this setting is permitted knowledge of λt, selects ut to minimize the payout,

that is, ut = argminu∈U g(λt,u). This is called best response. The online learning algorithm is

then updated by setting its loss function to be `t(λ) = −g(λ,ut). (See Algorithm 1.) As stated

in Theorem 2.3.1, λ and u, the averages of the players’ decisions, converge to the solution of the

game (see Appendix A.2 for the proof).

Algorithm 1 Solving a game with repeated play

1: input concave-convex function g : Λ× U → R, online learning algorithm Learner
2: for t = 1 to T do
3: Learner makes a decision λt ∈ Λ
4: ut ← argminu∈U g(λt,u)
5: Learner observes loss function `t(λ) = −g(λ,ut)

6: return λ = 1
T

∑T
t=1 λt and u = 1

T

∑T
t=1 ut

Theorem 2.3.1. Let v be the value of the game in Eq. (2.9) and let RegretT be the regret of the
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λ-player. Then for λ and u we have

min
u∈U

g(λ,u) ≥ v − δ and max
λ∈Λ

g(λ,u) ≤ v + δ, where δ = 1
T RegretT . (2.10)

2.3.2 Algorithm and main result

We can now apply this game-playing framework to the approach outlined at the beginning of this

section. First, we show how to write distance as a maximization, as in Eq. (2.5). For now, we assume

that our target set C is a convex cone, that is, closed under summation and also multiplication by

non-negative scalars (we will remove this assumption in subsection 2.3.3). With this assumption, we

can apply the following lemma (Lemma 13 of Abernethy et al., 2011), in which distance to a convex

cone C ⊆ Rd is written as a maximization over a dual convex cone C◦ called the polar cone:

C◦ , {λ : λ · x ≤ 0 for all x ∈ C}. (2.11)

Lemma 2.3.2. For a convex cone C ⊆ Rd and any point x ∈ Rd

dist(x, C) = max
λ∈C◦∩B

λ · x, (2.12)

where B , {x : ‖x‖ ≤ 1} is the Euclidean ball of radius 1 at the origin.

Thus, Eq. (2.5) is immediately achieved by setting Λ = C◦ ∩ B, so the distance minimization

problem (2.4) can be cast as the min-max problem (2.6). This is a special case of the zero-sum

game (2.9), with U = {z(µ) : µ ∈ ∆(Π)} and g(λ,u) = λ · u, which can be solved with Algorithm 1.

Note that the set U is convex and compact, because it is a linear transformation of a convex and

compact set ∆(Π).

We will see below that the best responses ut in Algorithm 1 can be expressed as z(πt) for some
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πt ∈ Π, and so Algorithm 1 returns

u =
1

T

T∑
t=1

z(πt) = z

(
1

T

T∑
t=1

πt

)
,

which is exactly the long-term measurement vector of the mixed policy µ̄ = 1
T

∑T
t=1 πt. For this

mixed policy, Theorem 2.3.1 immediately implies

dist(z(µ̄), C) ≤ min
µ∈∆(Π)

dist(z(µ), C) + 1
T RegretT . (2.13)

If the problem is feasible, then minµ∈∆(Π) dist(z(µ), C) = 0, and since RegretT = o(T ), our long-term

measurement z(µ̄) converges to the target set and solves the feasibility problem (2.3). It remains to

specify how to implement the no-regret learner for the λ-player and best response for the u-player.

We discuss these next, beginning with the latter.

The best-response player, for a given λ, aims to minimize λ · z(µ) over mixed policies µ, but since

this objective is linear in the mixture weights µ(π) (see Eq. 2.2), it suffices to minimize λ · z(π) over

stationary policies π ∈ Π. The key point, as already mentioned, is that this is the same as finding a

policy that maximizes long-term reward in a standard reinforcement learning task if we define the

scalar reward to be ri = −λ · zi. This is because the reward of a policy π is given by

R(π) , E

[ ∞∑
i=0

γiri

∣∣∣ π] = E

[ ∞∑
i=0

γi(−λ · zi)
∣∣∣ π] = −λ · E

[ ∞∑
i=0

γizi

∣∣∣ π] = −λ · z(π). (2.14)

Therefore, maximizing R(π), as in standard RL, is equivalent to minimizing λ · z(π).

Thus, best response can be implemented using any one of the many well-studied RL algorithms

that maximize a scalar reward. We refer to such an RL algorithm as the best-response oracle. For

robustness, we allow this oracle to return an approximately optimal policy.

Best-response oracle: BestResponse(λ).

Given λ ∈ Rd, return a policy π ∈ Π that satisfies R(π) ≥ maxπ′∈ΠR(π′)− ε0, where R(π) is

the long-term reward of policy π with scalar reward defined as r = −λ · z.
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For the λ-player, we do our analysis using online gradient descent (Zinkevich, 2003), an effective

no-regret learner. For its update, OGD needs the gradient of the loss functions `t(λ) = −λ · z(πt),

which is just −z(πt). With access to the MDP, z(π) can be estimated simply by generating multiple

trajectories using π and averaging the observed measurements. We formalize this by assuming access

to an estimation oracle for estimating z(π).

Estimation oracle: Est(π).

Given policy π, return ẑ satisfying ‖ẑ− z(π)‖ ≤ ε1.

OGD also requires projection to the set Λ = C◦ ∩ B. In fact, if we can simply project onto

the target set C, which is more natural, then it is possible to also project onto Λ. Consider an

arbitrary x and denote its projection onto C as ΓC(x). Then the projection of x onto the polar

cone C◦ is ΓC◦(x) = x − ΓC(x) (Ingram and Marsh, 1991). Given the projection ΓC◦(x) and

further projecting onto B, we obtain ΓΛ(x) = (x− ΓC(x))/max{1, ‖x− ΓC(x)‖} (because Dykstra’s

projection algorithm converges to this point after two steps, Boyle and Dykstra, 1986). Therefore, it

suffices to require access to a projection oracle for C:

Projection oracle: ΓC(x) = argminx′∈C ‖x− x′‖.

Algorithm 2 ApproPO

1: input projection oracle ΓC(·) for target set C which is a convex cone,
best-response oracle BestResponse(·), estimation oracle Est(·),
step size η, number of iterations T

2: define Λ , C◦ ∩ B, and its projection operator ΓΛ(x) , (x− ΓC(x))/max{1, ‖x− ΓC(x)‖}
3: initialize λ1 arbitrarily in Λ
4: for t = 1 to T do
5: Compute an approximately optimal policy for standard RL with scalar reward r = −λt · z:

πt ← BestResponse(λt)
6: Call the estimation oracle to approximate long-term measurement for πt:

ẑt ← Est(πt)
7: Update λt using online gradient descent with the loss function `t(λ) = −λ · ẑt:

λt+1 ← ΓΛ

(
λt + ηẑt

)
8: return µ̄, a uniform mixture over π1, . . . , πT

Pulling these ideas together and plugging into Algorithm 1, we obtain our main algorithm, called

ApproPO (Algorithm 2), for approachability-based policy optimization. The algorithm provably
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yields a mixed policy that approximately minimizes distance to the set C, as shown in Theorem 2.3.3

(proved in Appendix A.3).

Theorem 2.3.3. Assume that C is a convex cone and for all measurements we have ‖z‖ ≤ B.

Suppose we run Algorithm 2 for T rounds with η =
(
B

1−γ + ε1
)−1

T−1/2. Then

dist(z(µ̄), C) ≤ min
µ∈∆(Π)

dist(z(µ), C) +
(
B

1−γ + ε1
)
T−1/2 + ε0 + 2ε1, (2.15)

where µ̄ is the mixed policy returned by the algorithm.

When the goal is to solve the feasibility problem (2.3) rather than the stronger distance minimiza-

tion (2.4), we can make use of a weaker reinforcement learning oracle, which only needs to find a

policy that is “good enough” in the sense of providing long-term reward above some threshold:

Positive-response oracle: PosResponse(λ).

Given λ ∈ Rd, return π ∈ Π that satisfies R(π) ≥ −ε0 if maxπ′∈ΠR(π′) ≥ 0 (and arbitrary π

otherwise), where R(π) is the long-term reward of π with scalar reward r = −λ · z.

When the problem is feasible, it can be shown that there must exist π ∈ Π with R(π) ≥ 0, and

furthermore, that `t(λt) ≥ −(ε0 + ε1) (from Lemma A.3.1 in Appendix A.3). This means, if the goal

is feasibility, we can modify Algorithm 2, replacing BestResponse with PosResponse, and adding

a test at the end of each iteration to report infeasibility if `t(λt) < −(ε0 + ε1). The pseudocode is

provided in Algorithm 8 in Appendix A.4 along with the proof of the following convergence bound:

Theorem 2.3.4. Assume that C is a convex cone and for all measurements we have ‖z‖ ≤ B.

Suppose we run Algorithm 8 for T rounds with η =
(
B

1−γ + ε1
)−1

T−1/2. Then either the algorithm

reports infeasibility or returns µ̄ such that

dist(z(µ̄), C) ≤
(
B

1−γ + ε1
)
T−1/2 + ε0 + 2ε1. (2.16)
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2.3.3 Removing the cone assumption

Our results so far have assumed the target set C is a convex cone. If instead C is an arbitrary convex,

compact set, we can use the technique of Abernethy et al. (2011) and apply our algorithm to a

specific convex cone C̃ constructed from C to obtain a solution with provable guarantees.

In more detail, given a compact, convex target set C ⊆ Rd, we augment every vector in C with a

new coordinate held fixed to some value κ > 0, and then let C̃ be its conic hull. Thus,

C̃ = cone(C × {κ}), where cone(X ) = {αx | x ∈ X , α ≥ 0}. (2.17)

Given our original vector-valued MDP M = (S,A, β, Ps, Pz), we define a new MDP M ′ =

(S,A, β, Ps, P ′z′) with (d+ 1)-dimensional measurement z′ ∈ Rd+1, defined (and generated) by

z′i = zi ⊕ 〈(1− γ)κ〉, zi ∼ Pz(· | si, ai) (2.18)

where ⊕ denotes vector concatenation. Writing long-term measurement for M and M ′ as z and z′

respectively, z′(π) = z(π)⊕ 〈κ〉, for any policy π ∈ Π, and similarly for any mixed policy µ.

The main idea is to apply the algorithms described above to the modified MDP M ′ using the

cone C̃ as target set. For an appropriate choice of κ > 0, we show that the resulting mixed policy

will approximately minimize distance to C for the original MDP M . This is a consequence of the

following lemma, an extension of Lemma 14 of Abernethy et al. (2011), which shows that distances

are largely preserved in a controllable way under this construction. The proof is in Appendix A.5.

Lemma 2.3.5. Consider a compact, convex set C in Rd and x ∈ Rd. For any δ > 0, let C̃ =

cone(C × {κ}), where κ = maxx∈C ‖x‖√
2δ

. Then dist(x, C) ≤ (1 + δ)dist(x⊕ 〈κ〉, C̃).

Corollary 2.3.6. Assume that C is a convex, compact set and for all measurements we have

‖z‖ ≤ B. Then by putting η =
(
B+κ
1−γ + ε1

)−1
T−1/2 and running Algorithm 2 for T rounds with M ′
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as the MDP and C̃ as the target set, the mixed policy µ̄ returned by the algorithm satisfies

dist(z(µ̄), C) ≤ (1 + δ)

(
min

µ∈∆(Π)
dist(z(µ), C) +

(
B+κ
1−γ + ε1

)
T−1/2 + ε0 + 2ε1

)
, (2.19)

where κ = maxx∈C ‖x‖√
2δ

for an arbitrary δ > 0. Similarly for Algorithm 8, we either have

dist(z(µ̄), C) ≤ (1 + δ)
((

B+κ
1−γ + ε1

)
T−1/2 + ε0 + 2ε1

)
(2.20)

or the algorithm reports infeasibility.

2.3.4 Practical implementation of the positive response and estimation

oracles

We next briefly describe a few techniques for the practical implementation of our algorithm.

As discussed in subsection 2.3.2, when our aim is to solve a feasibility problem, we only need access

to a positive response oracle. In episodic environments, it is straightforward to use any standard

iterative RL approach as a positive response oracle: As the RL algorithm runs, we track its accrued

rewards, and when the trailing average of the last n trajectory-level rewards goes above some level

−ε, we return the current policy (possibly specified implicitly as a Q-function).2 Furthermore, the

average of the measurement vectors z collected over the last n trajectories can serve as the estimate

ẑt of the long-term measurement required by the algorithm, side-stepping the need for an additional

estimation oracle.

The hyperparameters ε and n influence the oracle quality; specifically, assuming that the rewards are

bounded and the overall number of trajectories until the oracle terminates is at most polynomial in n,

we have ε0 = ε−O(
√

(log n)/n) and ε1 = O(
√

(log n)/n). In principle, we could use Theorem 2.3.4 to

select a value T at which to stop; in practice, we run until the running average of the measurements ẑt

gets within a small distance of the target set C. If the RL algorithm runs for too long without achieving

2This assumes that the last n trajectories accurately estimate the performance of the final iterate. If that is not
the case, the oracle can instead return the mixture of the policies corresponding to the last n iterates.
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non-negative rewards, we stop and declare that the underlying problem is “empirically infeasible.”

(Actual infeasibility would hold if it is truly not possible to reach non-negative expected reward.)

An important mechanism to further speed up our algorithm is to maintain a “cache” of all the

policies returned by the positive response oracle so far. Each of the cached policies π is stored with

the estimate of its expected measurement vector ẑ(π) ≈ z̄(π), based on its last n iterations (as

above). In each outer-loop iteration of our algorithm, we first check if the cache contains a policy

that already achieves a reward at least −ε under the new λ; this can be determined from the cached

ẑ(π) since the reward is just a linear function of the measurement vector. If such a policy is found,

we return it, alongside ẑ(π), instead of calling the oracle. Otherwise, we pick the policy from the

cache with the largest reward (below −ε by assumption) and use it to warm-start the RL algorithm

implementing the oracle. The cache can be initialized with a few random policies (as we do in our

experiments), effectively implementing randomized weight initialization.

The cache interacts well with a straightforward binary-search scheme that can be used when the goal is

to maximize some reward (possibly subject to additional constraints), rather than only satisfy a set of

constraints. The feasibility problems corresponding to iterates of binary search only differ in the con-

straint values, but use the same measurements, so the same cache can be reused across all iterations.

Running time. Note that ApproPO spends the bulk of its running time executing the best-

response oracle. It additionally performs updates of λ, but these tend to be orders of magnitude

cheaper than any per-episode (or per-transition) updates within the oracle. For example, in our

experiments (section 2.4), the dimension of λ is either 2 or 66 (without or with the diversity constraint,

respectively), whereas the policies π trained by the oracle are two-layer networks described by 8,704

floating-point numbers.

2.4 Experiments

We next evaluate the performance of ApproPO and demonstrate its ability to handle a variety

of constraints. For simplicity, we focus on the feasibility version (Algorithm 8 in Appendix A.4).
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Figure 2.1: Left: The Mars rover environment. The agent starts in top-left and needs to reach the goal
in bottom-right while avoiding rocks. Middle, Right: Visitation probabilities of ApproPO (middle)
and ApproPO with a diversity constraints (right) at 12k samples. Both plots based on a single run.

We compare ApproPO with the RCPO approach of Tessler et al. (2019), which adapts policy

gradient, specifically, asynchronous actor-critic (A2C) (Mnih et al., 2016), to find a fixed point of the

Lagrangian of the constrained policy optimization problem. RCPO maintains and updates a vector

of Lagrange multipliers, which is then used to derive a reward for A2C. The vector of Lagrange

multipliers serves a similar role as our λ, and the overall structure of RCPO is similar to ApproPO,

so RCPO is a natural baseline for a comparison. Unlike ApproPO, RCPO only allows orthant

constraints and it seeks to maximize reward, whereas ApproPO solves the feasibility problem.

For a fair comparison, ApproPO uses A2C as a positive-response oracle, with the same hyperpa-

rameters as used in RCPO. Online learning in the outer loop of ApproPO was implemented via

online gradient descent with momentum. Both RCPO and ApproPO have an outer-loop learning

rate parameter, which we tuned over a grid of values 10−i with integer i (see Appendix A.6 for the

details). Here, we report the results with the best learning rate for each method.

We ran our experiments on a small version of the Mars rover grid-world environment, used previously

for the evaluation of RCPO (Tessler et al., 2019). In this environment, depicted in Figure 2.1 (left),

the agent must move from the starting position to the goal without crashing into rocks. The episode

terminates when a rock or the goal is reached, or after 300 steps. The environment is stochastic:

with probability δ = 0.05 the agent’s action is perturbed to a random action. The agent receives

small negative reward each time step and zero for terminating, with γ = 0.99. We used the same

safety constraint as Tessler et al. (2019): ensure that the (discounted) probability of hitting a rock

is at most a fixed threshold (set to 0.2). RCPO seeks to maximize reward subject to this constraint.
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Figure 2.2: Left: The performance of the algorithms as a function of the number of samples (steps
in the environment); showing average and standard deviation over 25 runs. The vertical axes
correspond to the three constraints, with thresholds shown as a dashed line; for reward (middle)
this is a lower bound; for the others it is an upper bound. Right: Each point in the scatter plot
represents the reward and the probability of failure obtained by the policy learnt by the algorithm
at the specified number of samples. The grey region is the target set. Different points represent
different random runs.
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ApproPO solves a feasibility problem with the same safety constraint, and an additional constraint

requiring that the reward be at least −0.17 (this is slightly lower than the final reward achieved by

RCPO). We also experimented with including the exploration suggestion as a “diversity constraint,”

requiring that the Euclidean distance between our visitation probability vector (across the cells

of the grid) and the uniform distribution over the upper-right triangle cells of the grid (excluding

rocks) be at most 0.12.3

In Figure 2.2 (left), we show how the probability of failure, the average reward, and the distance

to the uniform distribution over upper triangle vary as a function of the number of samples seen

by each algorithm. Both variants of our algorithm are able to satisfy the safety constraints and

reach similar reward as RCPO with a similar number of samples (around 8k samples). Furthermore,

including the diversity constraint, which RCPO is not capable of enforcing, allowed our method to

reach a more diverse policy as depicted in both Figure 2.2 (bottom-left) and Figure 2.1 (right).

2.5 Conclusion

In this paper, we introduced ApproPO, an algorithm for solving reinforcement learning problems

with arbitrary convex constraints. ApproPO can combine any no-regret online learner with any

standard RL algorithm that optimizes a scalar reward. Theoretically, we showed that for the specific

case of online gradient descent, ApproPO learns to approach the constraint set at a rate of 1/
√
T ,

with an additive non-vanishing term that measures the optimality gap of the reinforcement learner.

Experimentally, we demonstrated that ApproPO can be applied with well-known RL algorithms

for discrete domains (like actor-critic), and achieves similar performance as RCPO (Tessler et al.,

2019), while being able to satisfy additional types of constraints. In sum, this yields a theoretically

justified, practical algorithm for solving the approachability problem in reinforcement learning.

3This number ensures that ApproPO without the diversity constraint does not satisfy it automatically.
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Chapter 3

Constrained Episodic RL in

Concave-Convex and Knapsack

Settings

3.1 Introduction

Standard reinforcement learning (RL) approaches seek to maximize a scalar reward (Sutton and

Barto, 1998, 2018; Schulman et al., 2015; Mnih et al., 2015), but in many settings this is insufficient,

because the desired properties of the agent behavior are better described using constraints. For

example, an autonomous vehicle should not only get to the destination, but should also respect

safety, fuel efficiency, and human comfort constraints along the way (Le et al., 2019); a robot should

not only fulfill its task, but should also control its wear and tear, for example, by limiting the torque

exerted on its motors (Tessler et al., 2019). Moreover, in many settings, we wish to satisfy such

constraints already during training and not only during the deployment. For example, a power grid,

an autonomous vehicle, or a real robotic hardware should avoid costly failures, where the hardware
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is damaged or humans are harmed, already during training (Leike et al., 2017; Ray et al., 2020).

Constraints are also key in additional sequential decision-making applications, such as dynamic

pricing with limited supply (e.g., Besbes and Zeevi, 2009; Babaioff et al., 2015), scheduling of

resources on a computer cluster (Mao et al., 2016), and imitation learning, where the goal is to stay

close to an expert behavior (Syed and Schapire, 2007; Ziebart et al., 2008; Sun et al., 2019b).

In this chapter we study constrained episodic reinforcement learning, which encompasses all of these

applications. An important characteristic of our approach, distinguishing it from previous work (e.g.,

Altman, 1999; Achiam et al., 2017; Tessler et al., 2019; Miryoosefi et al., 2019; Ray et al., 2020), is

our focus on efficient exploration, leading to reduced sample complexity. Notably, the modularity of

our approach enables extensions to more complex settings such as (i) maximizing concave objectives

under convex constraints, and (ii) reinforcement learning under hard constraints, where the learner

has to stop when some constraint is violated (e.g., a car runs out of gas). For these extensions, which

we refer to as concave-convex setting and knapsack setting, we provide the first regret guarantees in

the episodic setting (see related work below for a detailed comparison). Moreover, our guarantees

are anytime, meaning that the constraint violations are bounded at any point during learning, even

if the learning process is interrupted. This is important for those applications where the system

continues to learn after it is deployed.

Our approach relies on the principle of optimism under uncertainty to efficiently explore. Our

learning algorithms optimize their actions with respect to a model based on the empirical statistics,

while optimistically overestimating rewards and underestimating the resource consumption (i.e.,

overestimating the distance from the constraint). This idea was previously introduced in multi-

armed bandits (Agrawal and Devanur, 2014); extending it to episodic reinforcement learning poses

additional challenges since the policy space is exponential in the episode horizon. Circumventing

these challenges, we provide a modular way to analyze this approach in the basic setting where both

rewards and constraints are linear (Section 3.3) and then transfer this result to the more complicated

concave-convex and knapsack settings (Sections 3.4 and 3.5). We empirically compare our approach

with the only previous works that can handle convex constraints and show that our algorithmic
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innovations lead to significant empirical improvements (Section 3.6).

Related work. Sample-efficient exploration in constrained episodic reinforcement learning has

only recently started to receive attention. Most previous works on episodic reinforcement learning

focus on unconstrained settings (Jaksch et al., 2010; Azar et al., 2017; Dann et al., 2017). A notable

exception is the work of Cheung (2019) and Tarbouriech and Lazaric (2019). Both of these works

consider vectorial feedback and aggregate reward functions, and provide theoretical guarantees

for the reinforcement learning setting with a single episode, but require a strong reachability or

communication assumption, which is not needed in the episodic setting studied here. Also, compared

to Cheung (2019), our results for the knapsack setting allow for a significantly smaller budget, as

we illustrate in Section 3.5. Moreover, our approach is based on a tighter bonus, which leads to a

superior empirical performance (see Section 3.6). Recently, there have also been several concurrent

and independent works on sample-efficient exploration for reinforcement learning with constraints

(Singh et al., 2020; Efroni et al., 2020; Qiu et al., 2020; Ding et al., 2021; Zheng and Ratliff, 2020).

Unlike our work, all of these approaches focus on linear reward objective and linear constraints and

do not handle the concave-convex and knapsack settings that we consider.

Constrained reinforcement learning has also been studied in settings that do not focus on sample-

efficient exploration (Achiam et al., 2017; Tessler et al., 2019; Miryoosefi et al., 2019). Among these,

only Miryoosefi et al. (2019) handle convex constraints, albeit without a reward objective (they

solve the feasibility problem). Since these works do not focus on sample-efficient exploration, their

performance drastically deteriorates when the task requires exploration (as we show in Section 3.6).

Sample-efficient exploration under constraints has been studied in multi-armed bandits, starting

with a line of work on dynamic pricing with limited supply (Besbes and Zeevi, 2009, 2011; Babaioff

et al., 2015; Wang et al., 2014). A general setting for bandits with global knapsack constraints

(bandits with knapsacks) was defined and solved by Badanidiyuru et al. (2018) (see also Ch. 10

of Slivkins, 2019). Within this literature, the closest to ours is the work of Agrawal and Devanur

(2014), who study bandits with concave objectives and convex constraints. Our work is directly

inspired by theirs and lifts their techniques to the more general episodic reinforcement learning
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setting.

3.2 Model and preliminaries

In episodic reinforcement learning, a learner repeatedly interacts with an environment across K

episodes. The environment includes the state space S, the action space A, the episode horizon H,

and the initial state s0.1 To capture constrained settings, the environment includes a set D of d

resources where each i ∈ D has a capacity constraint ξ(i) ∈ R+. The above are fixed and known to

the learner.

Constrained Markov decision process. We work with MDPs that have resource consumption in

addition to rewards. Formally, a constrained MDP (cMDP) is a triple M = (p, r, c) that describes

transition probabilities p : S × A → ∆(S), rewards r : S × A → [0, 1], and resource consumption

c : S × A → [0, 1]d. For convenience, we denote c(s, a, i) = ci(s, a). We allow stochastic rewards

and consumptions, in which case r and c refer to the conditional expectations, conditioned on s

and a (our definitions and algorithms are based on this conditional expectation rather than the full

conditional distribution).

We use the above definition to describe two kinds of cMDPs. The true cMDPM? = (p?, r?, c?) is

fixed but unknown to the learner. Selecting action a at state s results in rewards and consumptions

drawn from (possibly correlated) distributions with means r?(s, a) and c?(s, a) and supports in [0, 1]

and [0, 1]d respectively. Next states are generated from transition probabilities p?(s, a). The second

kind of cMDP arises in our algorithm, which is model-based and at episode k uses a cMDPM(k).

Episodic reinforcement learning protocol. At episode k ∈ [K], the learner commits to a policy

πk = (πk,h)Hh=1 where πk,h : S → ∆(A) specifies how to select actions at step h for every state. The

learner starts from state sk,1 = s0. At step h = 1, . . . ,H, she selects an action ak,h ∼ πk,h(sk,h).

The learner earns reward rk,h and suffers consumption ck,h, both drawn from the true cMDPM?

1A fixed and known initial state is without loss of generality. In general, there is a fixed but unknown distribution
ρ from which the initial state is drawn before each episode. We modify the MDP by adding a new state s0 as
initial state, such that the next state is sampled from ρ for any action. Then ρ is “included” within the transition
probabilities. The extra state s0 does not contribute any reward and does not consume any resources.
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on state-action pair (sk,h, ak,h) as described above, and transitions to state sk,h+1 ∼ p?(sk,h, ak,h).

Objectives. In the basic setting (Section 3.3), the learner wishes to maximize reward while

respecting the consumption constraints in expectation by competing favorably against the following

benchmark:

max
π

Eπ,p
?
[ H∑
h=1

r?
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

?
[ H∑
h=1

c?
(
sh, ah, i

)]
≤ ξ(i), (3.1)

where Eπ,p denotes the expectation over the run of policy π according to transitions p, and sh, ah are

the induced random state-action pairs. We denote by π? the policy that maximizes this objective.

For the basic setting, we track two performance measures: reward regret compares the learner’s

total reward to the benchmark and consumption regret bounds excess in resource consumption:

RewReg(k) := Eπ
?,p?
[ H∑
h=1

r?
(
sh, ah

)]
− 1

k

k∑
t=1

Eπt,p
?
[ H∑
h=1

r?
(
sh, ah

)]
,

ConsReg(k) := max
i∈D

(1

k

k∑
t=1

Eπt,p
?
[ H∑
h=1

c?
(
sh, ah, i

)]
− ξ(i)

)
.

(3.2)

Our guarantees are anytime, i.e., they hold at any episode k and not only after the last episode.

We also consider two extensions. In Section 3.4, we consider a concave reward objective and convex

consumption constraints. In Section 3.5, we require consumption constraints to be satisfied with

high probability under a cumulative budget across all K episodes, rather than in expectation in

a single episode.

Tabular MDPs. We assume that the state space S and the action space A are finite (tabular

setting). We construct standard empirical estimates separately for each state-action pair (s, a),

using the learner’s observations up to and not including a given episode k. Eqs. (3.3) define sample
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counts, empirical transition probabilities, empirical rewards, and empirical resource consumption.2

Nk(s, a) = max

{
1,

∑
t∈[k−1], h∈[H]

1{st,h = s, at,h = a}
}
,

p̂k(s′|s, a) =
1

Nk(s, a)

∑
t∈[k−1], h∈[H]

1{st,h = s, at,h = a, st,h+1 = s′},

r̂k(s, a) =
1

Nk(s, a)

∑
t∈[k−1], h∈[H]

rt,h · 1{st,h = s, at,h = a},

ĉk(s, a, i) =
1

Nk(s, a)

∑
t∈[k−1], h∈[H]

ct,h,i · 1{st,h = s, at,h = a} ∀i ∈ D.

(3.3)

Preliminaries for theoretical analysis. The Q-function is a standard object in RL that tracks

the learner’s expected performance if she starts from state s ∈ S at step h, selects action a ∈ A,

and then follows a policy π under a model with transitions p for the remainder of the episode.

We parameterize it by the objective function m : S × A → [0, 1], which can be either a reward,

i.e., m(s, a) = r(s, a), or consumption of some resource i ∈ D, i.e., m(s, a) = c(s, a, i). (For the

unconstrained setting, the objective is the reward.) The performance of the policy in a particular

step h is evaluated by the value function V which corresponds to the expected Q-function of the

selected action (where the expectation is taken over the possibly randomized action selection of π).

The Q and value functions can be both recursively defined by dynamic programming:

Qπ,pm (s, a, h) = m(s, a) +
∑
s′∈S

p(s′|s, a)V π,pm (s′, h+ 1),

V π,pm (s, h) = Ea∼π(·|s)

[
Qπ,pm (s, a, h)

]
and V π,pm (s,H + 1) = 0.

By slight abuse of notation, for m ∈ {r} ∪ {ci}i∈D, we denote by m? ∈ {r?} ∪ {c?i }i∈D the

corresponding objectives with respect to the rewards and consumptions of the true cMDP M?.

For objectives m? and transitions p?, the above are the Bellman equations of the system (Bellman,

1957).

2The max operator in Eq. Eq. (3.3) is to avoid dividing by 0.
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Estimating the Q-function based on the model parameters p and m rather than the ground truth

parameters p? and m? introduces errors. These errors are localized across stages by the notion of

Bellman error which contrasts the performance of policy π starting from stage h under the model

parameters to a benchmark that behaves according to the model parameters starting from the next

stage h+ 1 but uses the true parameters of the system in stage h. More formally, for objective m:

Bellπ,pm (s, a, h) = Qπ,pm (s, a, h)−
(
m?(s, a) +

∑
s′∈S

p?(s′|s, a)V π,pm (s′, h+ 1)
)
. (3.4)

Note that when the cMDP is M? (m = m?, p = p?), there is no mismatch and Bellπ,p
?

m? = 0.

3.3 Warm-up algorithm and analysis in the basic setting

In this section, we introduce a simple algorithm that allows to simultaneously bound reward and

consumption regrets for the basic setting introduced in the previous section. Even in this basic setting,

we provide the first sample-efficient guarantees in constrained episodic reinforcement learning.3 The

modular analysis of the guarantees also allows us to subsequently extend (in Sections 3.4 and 3.5)

the algorithm and guarantees to the more general concave-convex and knapsack settings.

Our algorithm. At episode k, we construct an estimated cMDPM(k) =
(
p(k), r(k), c(k)

)
based on

the observations collected so far. The estimates are bonus-enhanced (formalized below) to encourage

more targeted exploration. Our algorithm ConRL selects a policy πk by solving the following

constrained optimization problem which we refer to as BasicConPlanner(p(k), r(k), c(k)):

max
π

Eπ,p
(k)
[ H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah, i

)]
≤ ξ(i).

The above optimization problem is similar to the objective Eq. (3.1) but uses the estimated model

instead of the (unknown to the learner) true model. We also note that this optimization problem

can be optimally solved as it is a linear program on the occupation measures (Puterman, 2014),

3We refer the reader to the related work (in Section 3.1) for discussion on concurrent and independent papers.
Unlike our results, these papers do not extend to either concave-convex or knapsack settings.

30



i.e., setting as variables the probability of each state-action pair and imposing flow conservation

constraints with respect to the transitions. This program is described in Appendix B.1.1.

Bonus-enhanced model. A standard approach to implement the principle of optimism under

uncertainty is to introduce, at each episode k, a bonus term b̂k(s, a) that favors under-explored

actions. Specifically, we add this bonus to the empirical rewards Eq. (3.3), and subtract it from

the consumptions Eq. (3.3): r(k)(s, a) = r̂k(s, a) + b̂k(s, a) and c(k)(s, a, i) = ĉk(s, a, i)− b̂k(s, a) for

each resource i.

Similar to unconstrained analogues (Azar et al., 2017; Dann et al., 2017), we define the bonus as:

b̂k(s, a) = min

2H, H

√
2 ln
(
8SAH(d+ 1)k2/δ

)
Nk(s, a)

 , (3.5)

where δ > 0 is the desired failure probability of the algorithm and Nk(s, a) is the number of times

(s, a) pair is visited, c.f. Eq. (3.3), S = |S|, and A = |A|. Thus, under-explored actions have a larger

bonus, and therefore appear more appealing to the planner. For estimated transition probabilities,

we just use the empirical averages Eq. (3.3): p(k)(s′|s, a) = p̂(s′|s, a).

Valid bonus and Bellman-error decomposition. For a bonus-enhanced model to achieve

effective exploration, the resulting bonuses need to be valid, i.e., they should ensure that the

estimated rewards overestimate the true rewards and the estimated consumptions underestimate

the true consumptions.

Definition 3.3.1. A bonus bk : S ×A → R is valid if, ∀s ∈ S, a ∈ A, h ∈ [H],m ∈ {r} ∪ {ci}i∈D:

∣∣∣(m̂k(s, a)−m?(s, a)
)

+
∑
s′∈S

(
p̂k(s′|s, a)− p?(s′|s, a)

)
V π

?,p?

m? (s′, h+ 1)
∣∣∣ ≤ bk(s, a).

By classical concentration bounds (Appendix B.2.1), the bonus b̂k of Eq. Eq. (3.5) satisfies this

condition:

Lemma 3.3.2. With probability 1− δ, the bonus b̂k(s, a) is valid for all episodes k simultaneously.

31



Our algorithm solves the BasicConPlanner optimization problem based on a bonus-enhanced

model. When the bonuses are valid, we can upper bound the per-episode regret by the expected

sum of Bellman errors across steps. This is the first part in classical unconstrained analyses

and the following proposition extends this decomposition to constrained episodic reinforcement

learning. The proof uses the so-called simulation lemma (Kearns and Singh, 2002) and is provided

in Appendix B.2.3.

Proposition 3.3.3. If b̂k(s, a) is valid for all episodes k simultaneously then the per-episode reward

and consumption regrets can be upper bounded by the expected sum of Bellman errors Eq. (3.4):

Eπ
?,p?
[ H∑
h=1

r?
(
sh, ah

)]
− Eπk,p

?
[ H∑
h=1

r?
(
sh, ah

)]
≤ Eπk

[ H∑
h=1

∣∣∣Bellπk,p
(k)

r(k)

(
sh, ah, h

)∣∣∣]
∀i ∈ D : Eπk,p

?
[ H∑
h=1

c?
(
sh, ah, i

)]
− ξ(i) ≤ Eπk

[ H∑
h=1

∣∣∣Bellπk,p
(k)

c
(k)
i

(
sh, ah, h

)∣∣∣]. (3.6)

Final guarantee. One difficulty with directly bounding the Bellman error is that the value function

is not independent of the draws forming r(k)(s, a), c(k)(s, a), and p(k)(s′|s, a). Hence we cannot apply

Hoeffding inequality directly. While Azar et al. (2017) propose a trick to get an O(
√
S) bound on

Bellman error in unconstrained settings, the trick relies on the crucial property of Bellman optimality:

for an unconstrained MDP, its optimal policy π? satisfies the condition, V π
?

r? (s, h) ≥ V πr?(s, h) for all

s, h, π (i.e., π? is optimal at any state). However, when constraints exist, the optimal policy does not

satisfy the Bellman optimality property. Indeed, we can only guarantee optimality with respect to the

initial state distribution, i.e., V π
?

r? (s0, 1) ≥ V πr?(s0, 1) for any π, but not everywhere else. This illus-

trates a fundamental difference between constrained MDPs and unconstrained MDPs. Thus we cannot

directly apply the trick from Azar et al. (2017). Instead we follow an alternative approach of bound-

ing the value function via an ε-net over the possible values. This analysis leads to a guarantee that is

weaker by a factor of
√
S than the unconstrained results. The proof is provided in Appendix B.2.6.

Theorem 3.3.4. There exists an absolute constant c ∈ R+ such that, with probability at least 1−3δ,
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reward and consumption regrets are both upper bounded by:

c√
k
·H2.5S

√
A ·
√

ln(k) ln
(
SAH(d+ 1)k/δ

)
+ c

k · S
3/2AH3

√
ln
(
2SAH(d+ 1)k/δ

)
.

Comparison to single-episode results. In single-episode setting, Cheung (2019) achieves
√
S

dependency under the further assumption that the transitions are sparse, i.e., ‖p?(s, a)‖0 � S for

all (s, a). We do not make such assumptions on the sparsity of the MDP and we note that the regret

bound of Cheung (2019) scales linearly in S when ‖p?(s, a)‖0 = Θ(S). Also, the single-episode

setting requires a strong reachability assumption, not present in the episodic setting.

Remark 3.3.5. The aforementioned regret bound can be turned into a PAC bound of Õ
(
S2AH5

ε2

)
by

taking the uniform mixture of policies π1, π2, . . . , πk.

3.4 Concave-convex setting

We now extend the algorithm and guarantees derived for the basic setting to when the objective is

concave function of the accumulated reward and the constraints are expressed as a convex function

of the cumulative consumptions. Our approach is modular, seamlessly building on the basic setting.

Setting and objective. Formally, there is a concave reward-objective function f : R → R

and a convex consumption-objective function g : Rd → R; the only assumption is that these

functions are L-Lipschitz for some constant L, i.e., |f(x)− f(y)| ≤ L|x− y| for any x, y ∈ R, and

|g(x)− g(y)| ≤ L‖x− y‖1 for any x, y ∈ Rd. Analogous to Eq. (3.1), the learner wishes to compete

against the following benchmark which can be viewed as a reinforcement learning variant of the

benchmark used by Agrawal and Devanur (2014) in multi-armed bandits:

max
π

f
(
Eπ,p

?
[ H∑
h=1

r?
(
sh, ah

)])
s.t. g

(
Eπ,p

?
[ H∑
h=1

c?
(
sh, ah

)])
≤ 0. (3.7)
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The reward and consumption regrets are therefore adapted to:

ConvexRewReg(k) := f
(
Eπ

?,p?
[ H∑
h=1

r?
(
sh, ah

)])
− f

(1

k

k∑
t=1

Eπt,p
?
[ H∑
h=1

r?
(
sh, ah

)])
,

ConvexConsReg(k) := g
(1

k

k∑
t=1

Eπt,p
?
[ H∑
h=1

c?
(
sh, ah

)])
.

Our algorithm. As in the basic setting, we wish to create a bonus-enhanced model and optimize

over it. To model the transition probabilites, we use empirical estimates p(k) = p̂k of Eq. Eq. (3.3)

as before. However, since reward and consumption objectives are no longer monotone in the

accumulated rewards and consumption respectively, it does not make sense to simply add or subtract

b̂k (defined in Eq. 3.5) as we did before. Instead we compute the policy πk of episode k together

with the model by solving the following optimization problem which we call ConvexConPlanner:

max
π

max
r(k)∈[r̂k±b̂k]

f
(
Eπ,p

(k)
[ H∑
h=1

r(k)
(
sh, ah

)])
s.t. min
c(k)∈[ĉk±b̂k·1]

g
(
Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah

)])
≤ 0.

The above problem is convex in the occupation measures,4 i.e., the probability ρ(s, a, h) that the

learner is at state-action-step (s, a, h) — c.f. Appendix B.1.2 for further discussion.

max
ρ

max
r∈[r̂k±b̂k]

f
( ∑
s,a,h

ρ(s, a, h)r(s, a)
)

s.t. min
c∈[ĉk±b̂k·1]

g
( ∑
s,a,h

ρ(s, a, h)c(s, a)
)
≤ 0

∀s′, h :
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p̂k(s′|s, a)

∀s, a, h : 0 ≤ ρ(s, a, h) ≤ 1 and
∑
s,a

ρ(s, a, h) = 1.

Guarantee for concave-convex setting. To extend the guarantee of the basic setting to the

concave-convex setting, we face an additional challenge: it is not immediately clear that the optimal

policy π? is feasible for the ConvexConPlanner program because ConvexConPlanner is

4Under mild assumptions, this program can be solved in polynomial time similar to its bandit analogue of Lemma
4.3 in (Agrawal and Devanur, 2014). We note that in the basic setting, it reduces to just a linear program.
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defined with respect to the empirical transition probabilities p(k).5 Moreover, when H > 1, it is not

straightforward to show that objective in the used model is always greater than the one in the true

model as the used model transitions p(k)(s, a) can lead to different states than the ones encountered

in the true model.6 We deal with both of these issues by introducing a novel application of the

mean-value theorem to show that π? is indeed a feasible solution of that program and create a

similar regret decomposition to Proposition 3.3.3 (see Proposition B.3.1 and more discussion in

Appendix B.3.1); this allows us to plug in the results developed for the basic setting. The full proof

is provided in Appendix B.3.

Theorem 3.4.1. Let L be the Lipschitz constant for f and g and let RewReg and ConsReg be

the reward and consumption regrets for the basic setting (Theorem 3.3.4) with the failure probability

δ. With probability 1− δ, our algorithm in the concave-convex setting has reward and consumption

regret upper bounded by L ·RewReg and Ld ·ConsReg respectively.

The linear dependence on d in the consumption regret above comes from the fact that we assume g

is Lipschitz under `1 norm.

3.5 Knapsack setting

Our last technical section extends the algorithm and guarantee of the basic setting to scenarios

where the constraints are hard which is in accordance with most of the literature on bandits with

knapsacks. The goal here is to achieve aggregate reward regret that is sublinear in the time horizon

(in our case, the number of episodes K), while also respecting budget constraints for as small budgets

as possible. We derive guarantees in terms of reward regret, as defined previously, and then argue

that our guarantee extends to the seemingly stronger benchmark of the best dynamic policy.

Setting and objective. Each resource i ∈ D has an aggregate budget Bi that the learner should

not exceed over K episodes. Unlike the basic setting, where we track the consumption regret, here we

5Note that in multi-armed bandit concave-convex setting (Agrawal and Devanur, 2014), proving feasibility of the
best arm is straightforward as there are no transitions.

6Again, this is not an issue in multi-armed bandits.
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view this as a hard constraint. As in most works on bandits with knapsacks, the algorithm is allowed

to use a “null action” for an episode, i.e., an action that yields a zero reward and consumption

when selected at the beginning of an episode. The learner wishes to maximize her aggregate reward

while respecting these hard constraints. We reduce this problem to a specific variant of the basic

problem Eq. (3.1) with ξ(i) = Bi
K . We modify the solution to Eq. (3.1) to take the null action if

any constraint is violated and call the resulting benchmark π?. Note that π? satisfies constraints

in expectation. At the end of this section, we explain how our algorithm also competes against a

benchmark that is required to respect constraints deterministically (i.e., with probability one across

all episodes).

Our algorithm. In the basic setting of Section 3.3, we showed a reward regret guarantee and a

consumption regret guarantee, proving that the average constraint violation is O(1/
√
K). Now

we seek a stronger guarantee: the learned policy needs to satisfy budget constraints with high

probability. Our algorithm optimizes a mathematical program KnapsackConPlanner Eq. (3.8)

that strengthens the consumption constraints:

max
π

Eπ,p
(k)
[ H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah, i

)]
≤ (1− ε)Bi

K
. (3.8)

In the above, p(k), r(k), c(k) are exactly as in the basic setting and ε > 0 is instantiated in the

theorem below. Note that the program Eq. (3.8) is feasible thanks to the existence of the null action.

The following mixture policy induces a feasible solution: with probability 1− ε, we play the optimal

policy π? for the entire episode; with probability ε, we play the null action for the entire episode.

Note that the above program can again be cast as a linear program in the occupancy measure space

— c.f. Appendix B.1.3 for further discussion.

Guarantee for knapsack setting. The guarantee of the basic setting on this tighter mathematical

program seamlessly transfers to a reward guarantee that does not violate the hard constraints.

Theorem 3.5.1. Assume that miniBi ≤ KH, i.e., constraints are non-vacuous. Let AggReg(δ)

be a bound on the aggregate (across episodes) reward or consumption regret for the soft-constraint
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setting (Theorem 3.3.4) with the failure probability δ. Let ε = AggReg(δ)
mini Bi

. If miniBi > AggReg(δ)

then, with probability 1− δ, the reward regret in the hard-constraint setting is at most 2HAggReg(δ)
mini Bi

and constraints are not violated.

The above theorem implies that the aggregate reward regret is sublinear in K as long as miniBi �

HAggReg(δ). The analysis in the above main theorem (provided in Appendix B.4) is modular

in the sense that it leverages the ConRL’s performance to solve Eq. (3.8) in a black-box manner.

Smaller AggReg(δ) from the basic soft-constraint setting immediately translates to smaller reward

regret and smaller budget regime (i.e., miniBi can be smaller). In particular, using the AggReg(δ)

bound of Theorem 3.3.4, the reward regret is sublinear as long as miniBi = Ω(
√
K).

In contrast, previous work of Cheung (2019) can only deal with larger budget regime, i.e., miniBi =

Ω(K2/3). Although the guarantees are not directly comparable as the latter is for the single-episode

setting, which requires further reachability assumptions, the budget we can handle is significantly

smaller and in the next section we show that our algorithm has superior empirical performance in

episodic settings even when such assumptions are granted.

Dynamic policy benchmark. The common benchmark used in bandits with knapsacks is not

the best stationary policy π? that respects constraints in expectation but rather the best dynamic

policy (i.e., a policy that makes decisions based on the history) that never violates hard constraints

deterministically. In Appendix B.4, we show that the optimal dynamic policy (formally defined there)

has reward less than policy π? (informally, this is because π? respects constraints in expectation

while the dynamic policy has to satisfy constraints deterministically) and therefore the guarantee of

Theorem 3.5.1 also applies against the optimal dynamic policy.

3.6 Empirical comparison to other concave-convex approaches

In this section, we evaluate the performance of ConRL against previous approaches.7 Although

our ConPlanner (see Appendix B.1) can be solved exactly using linear programming (?), in our

7Code is available at https://github.com/miryoosefi/ConRL
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Figure 3.1: The performance of the algorithms as a function of the number of sample trajectories
(trajectory = 30 samples); showing average and standard deviation over 10 runs. Dashed line in the
second row is the upper bound on the consumption (for all algorithms), the dashed line in the first
row is a lower bound on the reward (only required by ApproPO).
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experiments, it suffices to use Lagrangian heuristic, denoted as LagrConPlanner (see Appendix

B.5.1). This Lagrangian heuristic only needs a planner for the unconstrained RL task. We consider

two unconstrained RL algorithms as planners: value iteration and a model-based Advantage Actor-

Critic (A2C) (Mnih et al., 2016) (based on fictitious samples drawn from the model provided as an

input). The resulting variants of LagrConPlanner are denoted ConRL-Value Iteration and

ConRL-A2C. We run our experiments on two grid-world environments Mars rover (Tessler et al.,

2019) and Box (Leike et al., 2017).8

Mars rover. The agent must move from the initial position to the goal without crashing into rocks.

If the agent reaches the goal or crashes into a rock it will stay in that cell for the remainder of the

episode. Reward is 1 when the agent reaches the goal and 1/H afterwards. Consumption is 1 when

the agent crashes into a rock and 1/H afterwards. The episode horizon H is 30 and the agent’s

action is perturbed with probability 0.1 to a random action.

Box. The agent must move a box from the initial position to the goal while avoiding corners (cells

adjacent to at least two walls). If the agent reaches the goal it stays in that cell for the remainder

of the episode. Reward is 1 when agent reaches the goal for the first time and 1/H afterwards;

consumption is 1/H whenever the box is in a corner. Horizon H is 30 and the agent’s action is

perturbed with probability 0.1 to a random action.

We compare ConRL to previous constrained approaches (derived for either episodic or single-episode

settings) in Figure 3.1. We keep track of three metrics: episode-level reward and consumption

(the first two rows) and cumulative consumption (the third row). Episode-level metrics are based

on the most recent episode in the first two columns, i.e., we plot Eπk [
∑H
h=1 r

?
h] and Eπk [

∑H
h=1 c

?
h].

In the third column, we plot the average across episodes so far, i.e., 1
k

∑k
t=1 Eπt [

∑H
h=1 r

?
h] and

1
k

∑k
t=1 Eπt [

∑H
h=1 c

?
h], and we use the log scale for the x-axis. The cumulative consumption is∑k

t=1

∑H
h=1 ct,h in all columns. See Appendix B.5 for further details about experiments.

Episodic setting. We first compare our algorithms to two episodic RL approaches: ApproPO

8We are not aware of any benchmarks for convex/knapsack constraints. For transparency, we compare against
prior works handling concave-convex or knapsack settings on established benchmarks for the linear case.
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(Miryoosefi et al., 2019) and RCPO (Tessler et al., 2019). We note that none of the previous

approaches in this setting address sample-efficient exploration. In addition, most of them are

limited to linear constraints, with the exception of ApproPO (Miryoosefi et al., 2019), which can

handle general convex constraints.9 Both ApproPO and RCPO (used as a baseline by Miryoosefi

et al., 2019) maintain and update a weight vector λ, used to derive reward for an unconstrained

RL algorithm, which we instantiate as A2C. ApproPO focuses on the feasibility problem, so it

requires to specify a lower bound on the reward, which we set to 0.3 for Mars rover and 0.1 for Box.

In the first two columns of Figure 3.1 we see that both versions of ConRL are able to solve the

constrained RL task with a much smaller number of trajectories (see top two rows), and their overall

consumption levels are substantially lower (the final row) than those of the previous approaches.

Single-episode setting. Closest to our work is TFW-UCRL2 (Cheung, 2019), which is based

on UCRL (Jaksch et al., 2010). However, that approach focuses on the single-episode setting and

requires a strong reachability assumption. By connecting terminal states of our MDP to the intial

state, we reduce our episodic setting to single-episode setting in which we can compare ConRL

against TFW-UCRL2. Results for Mars rover are depicted in last column of Figure 3.1.10 Again,

both versions of ConRL find the solution with a much smaller number of trajectories (note the log

scale on the x-axis) and their overall consumption levels are much lower than those of TFW-UCRL2.

This suggests that TFW-UCRL2 might be impractical in (at least some) episodic settings.

3.7 Conclusions

In this chapter we study two types of constraints in the framework of constrained tabular episodic

reinforcement learning: concave rewards and convex constraints, and knapsacks constraints. Our

algorithms achieve near-optimal regret in both settings, and experimentally we show that our

approach outperforms prior works on constrained reinforcement learning.

Regarding future work, it would be interesting to extend our framework to continuous state and

9In addition to that, trust region methods like CPO (Achiam et al., 2017) address a more restrictive setting and
require constraint satisfaction at each iteration; for this reason, they are not included in the experiments.

10Due to a larger state space, it was computationally infeasible to run TFW-UCRL2 in the Box environment.
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action spaces. Potential directions include extensions to Lipschitz MDPs (Song and Sun, 2019) and

MDPs with linear parameterization (Jin et al., 2020c) where optimism-based exploration algorithms

exist under the classic reinforcement learning setting without constraints.
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Chapter 4

A Simple Reward-free Approach to

Constrained Reinforcement

Learning

4.1 Introduction

In a wide range of modern reinforcement learning (RL) applications, it is not sufficient for the

learning agents to only maximize a scalar reward. More importantly, they must satisfy various

constraints. For instance, such constraints can be the physical limit of power consumption or torque

in motors for robotics tasks (Tessler et al., 2019); the budget for computation and the frequency

of actions for real-time strategy games (Vinyals et al., 2019); and the requirement for safety, fuel

efficiency and human comfort for autonomous drive (Le et al., 2019). In addition, constraints are also

crucial in tasks such as dynamic pricing with limited supply (Besbes and Zeevi, 2009; Babaioff et al.,

2015), scheduling of resources on a computer cluster (Mao et al., 2016), imitation learning (Syed

and Schapire, 2007; Ziebart et al., 2008; Sun et al., 2019b), as well as RL with fairness (Jabbari
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et al., 2017).

These huge demand in practice gives rise to a subfield—constrained RL, which focuses on designing

efficient algorithms to find near-optimal policies for RL problems under linear or general convex

constraints. Most constrained RL works directly combine the existing techniques such as value

iteration and optimism from unconstrained literature, with new techniques specifically designed

to deal with linear constraints (Efroni et al., 2020; Ding et al., 2021; Qiu et al., 2020) or general

convex constraints (Brantley et al., 2020; Yu et al., 2021). The end product is a single new complex

algorithm which is tasked to solve all the challenges of learning dynamics, exploration, planning

as well as constraints satisfaction simultaneously. Thus, these algorithms need to be re-analyzed

from scratch, and it is highly nontrivial to translate the progress in the unconstrained RL to the

constrained setting.

On the other hand, reward-free RL—proposed in Jin et al. (2020b)—is a framework for the

unconstrained setting, which learns the transition dynamics without using the reward. The framework

has two phases: in the exploration phase, the agent first collects trajectories from a Markov decision

process (MDP) and learns the dynamics without a pre-specified reward function. After exploration,

the agent is tasked with computing near-optimal policies under the MDP for a collection of given

reward functions. This framework is particularly suitable when there are multiple reward functions

of interest, and has been developed recently to attack various settings including tabular MDPs (Jin

et al., 2020b; Zhang et al., 2020a), linear MDPs (Wang et al., 2020a; Zanette et al., 2020b), and

tabular Markov games (Liu et al., 2020).

Contribution. In this chapter, we propose a simple approach to solve constrained RL problems

by bridging the reward-free RL literature and constrained RL literature. Our approach isolates

the challenges of constraint satisfaction, and leaves the remaining RL challenges such as learning

dynamics and exploration to reward-free RL. This allows us to design a new algorithm which purely

focuses on addressing the constraints. Formally, we design a meta-algorithm for RL problems with

general convex constraints. Our meta-algorithm takes a reward-free RL solver, and can be used to

directly solve the approachability problem, as well as the constrained MDP problems using very
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Table 4.1: Sample complexity for algorithms to solve reward-free RL for VMDP (Definition 4.2.1),
approachability (Definition 4.2.3) and CMDP with general convex constraints (Definition 4.2.4).1

Algorithm Reward-free Approachability CMDP

Tabular

Wu et al. (2020) Õ(min{d, S}H4SA/ε2) - -

Brantley et al. (2020) - - Õ(d2H3S2A/ε2)

Yu et al. (2021) - Õ(min{d, S}H3SA/ε2) Õ(min{d, S}H3SA/ε2)

This work Õ(min{d, S}H4SA/ε2) Õ(min{d, S}H4SA/ε2) Õ(min{d, S}H4SA/ε2)

Linear This work Õ(d3linH
6/ε2) Õ(d3linH

6/ε2) Õ(d3linH
6/ε2)

small amount of samples in addition to what is required for reward-free RL.

Our framework enables direct translation of any progress in reward-free RL to constrained RL.

Leveraging recent advances in reward-free RL, our meta-algorithm directly implies sample-efficient

guarantees of constrained RL in the settings of tabular MDP, linear MDP, as well as tabular

two-player Markov games. In particular,

• Tabular setting : Our work achieves sample complexity of Õ(min{d, S}H4SA/ε2) for all three

tasks of reward-free RL for Vector-valued MDPs (VMDP), approachability, and RL with

general convex constraints. Here d is the dimension of VMDP or the number of constraints,

S,A are the number of states and actions, H is the horizon, and ε is the error tolerance. It

matches the best existing results up to a factor of H.

• Linear setting : Our work provides new sample complexity of Õ(d3
linH

6/ε2) for all three tasks

above for linear MDPs. To our best knowledge, this result is the first sample-efficient result for

approachability and also constrained RL with general convex constraints in the linear function

approximation setting.

• Two-player setting : Our work extends to the setting of tabular two-player vector-valued

Markov games and achieves low regret of α(T ) = O(ε/2 +
√
H2ι/T ) at the cost of this O(ε)

bias in regret as well as additional samples for preprocessing.
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4.1.1 Related work

In this section, we review the related works on three tasks studied in this chapter—reward-free RL,

approachability, and constrained RL.

Reward-free RL. Reward-free exploration has been formalized by Jin et al. (2020b) for the

tabular setting. Furthermore, Jin et al. (2020b) proposed an algorithm which has sample complexity

Õ(poly(H)S2A/ε2) outputting ε-optimal policy for arbitrary number of reward functions. More

recently, Zhang et al. (2020a); Liu et al. (2020) propose algorithm VI-Zero with sharp sample

complexity of Õ(poly(H) log(N)SA/ε2) capable of handling N fixed reward functions. Wang et al.

(2020a); Zanette et al. (2020b) further provide reward-free learning results in the setting of linear

function approximation, in particular, Wang et al. (2020a) guarantees to find the near-optimal policies

for an arbitrary number of (linear) reward functions within a sample complexity of Õ(poly(H)d3
lin/ε

2).

All results mentioned above are for scalar-valued MDPs. For the vector-valued MDPs (VMDPs), very

recent work of Wu et al. (2020) designs a reward-free algorithm with sample complexity guarantee

Õ(poly(H) min{d, S}SA/ε2) in the tabular setting. Compared to Wu et al. (2020), our reward-free

algorithms for VMDP is adapted from the VI-Zero algorithm presented in Liu et al. (2020); While

achieving the same sample complexity, it allows arbitrary planning algorithms in the planning phase.

Approachability and Constrained RL Approachability and Constrained RL are two related

tasks involving constraints. Inspired by Blackwell approachability (Blackwell, 1956), recent work of

Miryoosefi et al. (2019) introduces approachability task for VMDPs. However, the proposed algorithm

does not have polynomial sample complexity guarantees. More recently, Yu et al. (2021) gave a new

algorithm for approachability for both VMDPs and vector-valued Markov games (VMGs). Yu et al.

(2021) provides regret bounds for the proposed algorithm resulting in sample complexity guarantees

of Õ(poly(H) min{d, S}SA/ε2) for approachability in VMDPs and Õ(poly(H) min{d, S}SAB/ε2)

1The presented sample complexities are all under the L2 normalization conditions as studied in this work. We
comment that the results of (Wu et al., 2020; Brantley et al., 2020; Yu et al., 2021) are originally presented under
L1/L∞ normalization conditions. While the results in Wu et al. (2020) can be directly adapted to our setting as
stated in the table, the other two results Brantley et al. (2020); Yu et al. (2021) will be no better than the displayed
results after adaptation.
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for approachability in VMGs.

Sample-efficient exploration in constrained reinforcement learning has been recently studied in a

recent line of work by Brantley et al. (2020); Qiu et al. (2020); Efroni et al. (2020); Ding et al.

(2021); Singh et al. (2020). All these works are also limited to linear constraints except Brantley

et al. (2020) which extends their approach to general convex constraints achieving sample complexity

of Õ(poly(H)d2S2A/ε2) . However, Brantley et al. (2020) requires solving a large-scale convex

optimization sub-problem. The best result for constrained RL with general convex constraints can

be achieved by the approachability-based algorithm in Yu et al. (2021) obtaining sample complexity

of Õ(poly(H) min{d, S}SA/ε2). Technically, our meta-algorithm is based on the Fenchel’s duality,

which is similar to Yu et al. (2021). In contrast, Yu et al. (2021) does not use reward-free RL, and

is thus different from our results in terms of algorithmic approaches. Consequently, Yu et al. (2021)

does not reveal the deep connections between reward-free RL and constrained RL, which is one

of the main contribution of this work. In addition, Yu et al. (2021) does not address the function

approximation setting.

Finally, we note that among all results mentioned above, only Ding et al. (2021) has considered

models beyond tabular setting in the context of constrained RL. The model studied in Ding et al.

(2021) is known as linear mixture MDPs which is different and incomparable to the linear MDP

models considered in this work. We further comment that Ding et al. (2021) can only handle

linear constraints for CMDP, while our results is capable of solving CMDPs with general convex

constraints.

4.2 Preliminaries and problem setup

We consider an episodic vector-valued Markov decision process (VMDP) specified by a tuple

M = (S,A, H,P, r), where S is the state space, A is the action space, H is the length of each

episode, P = {Ph}Hh=1 is the collection of unknown transition probabilities with Ph(s′ | s, a)

equal to the probability of transiting to s′ after taking action a in state s at the hth step, and

r = {rh : S ×A → B(1)}Hh=1 is a collection of unknown d-dimensional return functions, where B(r)
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is the d-dimensional Euclidean ball of radius r centered at the origin.

Interaction protocol. In each episode, agent starts at a fixed initial state s1. Then, at each

step h ∈ [H], the agent observes the current state sh, takes action ah, receives stochastic sample of

the return vector rh(sh, ah), and it causes the environment to transit to sh+1 ∼ Ph(· | sh, ah). We

assume that stochastic samples of the return function are also in B(1), almost surely.

Policy and value function. A policy π of an agent is a collection of H functions {πh : S →

∆(A)}Hh=1 that map states to distribution over actions. The agent following policy π, picks action

ah ∼ πh(sh) at the hth step. We denote Vπ
h : S → B(H) as the value function at step h for policy π,

defined as

Vπ
h(s) := Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s

]
.

Similarly, we denote Qπ
h : S ×A → B(H) as the Q-value function at step h for policy π, where

Qπ
h(s, a) := Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s, ah = a

]
.

Scalarized MDP. For a VMDPM and θ ∈ B(1), we define scalar-valued MDPMθ = (S,A, H,P, rθ),

where rθ = {〈θ, rh〉 : S × A → [−1, 1]}Hh=1. We denote V πh (·; θ) : S → [−H,H] as the scalarized

value function at step h for policy π, defined as

V πh (s; θ) := Eπ

[
H∑

h′=h

〈θ, rh′(sh′ , ah′)〉 | sh = s

]
= 〈θ,Vπ

h(s)〉.

Similarly, we denote Qπh(·; θ) : S × A → [−H,H] as the scalarized Q-value function at step h for

policy π, where

Qπh(s, a; θ) := Eπ
[∑H

h′=h〈θ, rh′(sh′ , ah′)〉 | sh, ah = s, a
]

= 〈θ,Qπ
h(s, a)〉.

For a fixed θ ∈ Rd, there exists an optimal policy π?θ , maximizing value for all states (Puterman,

2014); i.e., V
π?θ
h (s; θ) = supπ V

π
h (s; θ) for all s ∈ S and h ∈ [H]. We abbreviate V π

?
θ (·; θ) and Qπ

?
θ (·; θ)
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as V ?(·; θ) and Q?(·; θ) respectively.

4.2.1 Reward-free exploration (RFE) for VMDPs

The task of reward-free exploration (formalized by Jin et al. (2020b) for tabular MDPs) considers the

scenario in which the agents interacts with the environment without guidance of reward information.

Later, the reward information is revealed and the agents is required to compute the near-optimal

policy. In this section, we describe its counterpart for VMDPs 1. Formally, it consists of two phases:

Exploration phase. In the exploration phase, agent explores the unknown environment without

observing any information regarding the return function. Namely, at each episode the agent executes

policies to collect samples. The policies can depend on dynamic observations {skh, akh}(k,h)∈[K]×[H]

in the past episodes, but not the return vectors.

Planning phase. In the planning phase, the agent no longer interacts with the environment;

however, stochastic samples of the d-dimensional return function for the collected episodes is revealed

to the agent, i.e. {rkh}(k,h)∈[K]×[H]. Based on the episodes collected during the exploration phase,

the agent outputs the near-optimal policies of Mθ given an arbitrary number of vectors θ ∈ B(1).

Definition 4.2.1 (Reward-free algorithm for VMDPs). For any ε, δ > 0, after collecting mRFE(ε, δ)

episodes during the exploration phase, with probability at least 1− δ, the algorithm satisfies

∀θ ∈ B(1) : V ?1 (s1; θ)− V πθ1 (s1; θ) ≤ ε, (4.1)

where πθ is the output of the planning phase for vector θ as input. The function mRFE determines

the sample complexity of the RFE algorithm.

Remark 4.2.2. Standard reward-free setup concerns MDPs with scalar reward, and requires the

algorithm to find the near-optimal policies for N different prespecified reward functions in the

planning phase, where the sample complexity typically scales with logN . This type of results can

1RFE for VMDPs is also called preference-free exploration problem in Wu et al. (2020)
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be adapted into a guarantee in the form of Eq. (4.1) for VMDP by ε-covering of θ over B(1) and a

modified concentration arguments (see the proofs of Theorem 4.4.1 and Theorem 4.6.4 for more

details).

4.2.2 Approachability for VMDPs

In this section we provide the description for the approachability task for VMPDs introduced by

Miryoosefi et al. (2019). Given a vector-valued Markov decision process and a convex target set C,

the goal is to learn a policy whose expected cumulative return vector lies in the target set (akin to

Blackwell approachability in single-turn games, Blackwell 1956). We consider the agnostic version

of this task which is more general since it doesn’t need to assume that such policy exists; instead,

the agent learns to minimize the Euclidean distance between expected return of the learned policy

and the target set.

Definition 4.2.3 (Approachability algorithm for VMDPs). For any ε, δ > 0, after collecting

mAPP(ε, δ) episodes, with probability at least 1− δ, the algorithm satisfies

dist(Vπout

1 (s1), C) ≤ min
π

dist(Vπ
1 (s1), C) + ε, (4.2)

where πout is the output of the algorithm and dist(x, C) is the Euclidean distance between point x

and set C. The function mAPP determines the sample complexity of the algorithm.

4.2.3 Constrained MDP (CMDP) with general convex constraints

In this section we describe constrained Markov decision processes (CMDPs) introduced by Altman

(1999). The goal of this setting is to minimize cost while satisfying some linear constraints over

consumption of d resources (resources are akin to r in our case). Although, the original definition

only allows for linear constraints, we consider the more general case of arbitrary convex constraints.

More formally, consider a VMDP M, a cost function c = {ch : S ×A → [−1, 1]}Hh=1, and a convex
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constraint set C. The agent goal is to compete against the following benchmark:

min
π
Cπ1 (s1) s.t. Vπ

1 (s1) ∈ C,

where Cπh = Eπ
[∑H

h′=h ch′(sh′ , ah′) | sh = s
]
.

Definition 4.2.4 (Algorithm for CMDP). For any ε, δ > 0, after collecting mCMDP(ε, δ) episodes,

with probability at least 1− δ, the algorithm satisfies


Cπ

out

1 (s1)− min
π:Vπ

1 (s1)∈C
Cπ1 (s1) ≤ ε

dist
(
Vπout

1 (s1), C
)
≤ ε,

(4.3)

where πout is the output of the algorithm. The function mCMDP determines the sample complexity

of the algorithm.

As also mentioned in the prior works (Miryoosefi et al., 2019; Yu et al., 2021), we formally show in

the following theorem that approachability task (Definition 4.2.3) can be considered more general

compared to CMDP (Definition 4.2.4); Namely, given any algorithm for the former we can obtain an

algorithm for the latter by incurring only extra logarithmic factor and a negligible overhead. The

idea is to incorporate cost into the constraint set C and perform an (approximate) binary search

over the minimum attainable cost. The reduction and the proof can be found in Appendix C.1.

Theorem 4.2.5. Given any approachability algorithm (Definition 4.2.3) with sample complexity

mAPP, we can design an algorithm for CMDP (Definition 4.2.4) with sample complexity mCMDP,

satisfying

mCMDP(ε, δ) ≤ Õ
(
mAPP

(
ε
6 ,

εδ
12H

)
+ H2 log[dH/εδ]

ε2

)
.

4.3 Meta-algorithm for VMDPs

In this section, equipped with preliminaries discussed in Section 4.2, we are ready to introduce our

main algorithmic framework for VMDPs bridging reward-free RL and approachability.
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Before introducing the algorithm, we explain the intuition behind it. By Fenchel’s duality (similar

to Yu et al. 2021), one can show that

min
π

dist(Vπ
1 (s1, C))

= min
π

max
θ∈B(1)

[
〈θ,Vπ

1 (s1, C)〉 −max
x′∈C
〈θ,x′〉

]
.

It satisfies the minimax conditions since it’s concave in θ and convex in π (by allowing mixture

policies); therefore, minimax theorem Neumann (1928) implies that we can equivalently solve

max
θ∈B(1)

min
π

[
〈θ,Vπ

1 (s1, C)〉 −max
x′∈C
〈θ,x′〉

]
.

This max-min form allows us to use general technique of Freund and Schapire (1999) for solving

a max-min by repeatedly playing a no-regret online learning algorithm as the max-player against

best-response for the min-player. In particular, for a fixed θ, minimizing over π is equivalent to

finding optimal policy for scalarized MDP M−θ. To achieve this, we can utilize a reward-free oracle

as in Definition 4.2.1. On the other hand for θ-player we are able to use online gradient descent

(Zinkevich, 2003). By combining ideas above, we obtain Algorithm 3.

Theorem 4.3.1. There exists an absolute constant c, such that for any choice of RFE algorithm

(Definition 4.2.1) and for any ε ∈ (0, H] and δ ∈ (0, 1], if we choose

T ≥ c
(
H2ι/ε2),

K ≥ mRFE(ε/2, δ/2),

ηt =
√

1/(H2t),

where ι = log(d/δ); then, with probability at least 1− δ, Algorithm 3 outputs an ε-optimal policy for

the approachability (Equation 4.2). Therefore, we have mAPP(ε, δ) ≤ O(mRFE(ε/2, δ/2) +H2ι/ε2).

Theorem 4.3.1 shows that given any reward-free algorithm, Algorithm 3 can solve the approachability

task with negligible overhead. The proof for Theorem 4.3.1 is provided in Appendix C.2. Equipped
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Algorithm 3 Meta-algorithm for VMDPs

1: Input: Reward-Free Algorithm Rfe for VMDPs (as in Definiton 4.2.1), Target Set C
2: Hyperparameters: learning rate ηt

3: Initialize: run exploration phase of Rfe for K episodes
4: Set: θ1 ∈ B(1)
5: for t = 1, 2, . . . , T do
6: Obtain near optimal policy for M−θt :

πt ← output of planning phase of Rfe for preference vector −θt

7: Estimate Vπt

1 (s1) using one episode:

Run πt for one episode and let v̂t be the sum of vectorial returns

8: Apply online gradient ascent update for utility function ut(θ) = 〈θ, v̂t〉 −maxx∈C〈θ,x〉:

θt+1 ← ΓB(1)[θ
t + ηt(v̂t − argmaxx∈C〈θt,x〉)]

where ΓB(1) is the projection into Euclidean unit ball
9: Let πout be uniform mixture of {π1, . . . , πT }

10: Return πout

with this theorem, since we have already shown the connection between approachability and

constrained RL in Theorem 4.2.5, any results for RFE can be directly translated to results for

constrained RL.

4.4 Tabular VMDPs

In this section, we consider tabular VMDPs; namely, we assume that |S| ≤ S and |A| ≤ A. Utilizing

prior work on tabular setting, we describe our choice of reward-free algorithm.

In the exploration phase, we use VI-Zero proposed by Liu et al. (2020). It can be seen as UCB-VI

(Azar et al., 2017) with zero reward. Intuitively, the value function computed in the algorithm

measures the level of uncertainty and incentivizes the greedy policy to visit underexplored states.

The output of VI-Zero is P̂out, which is an estimation of the transition dynamics.

In the planning phase, given θ ∈ B(1) we can use any planning algorithm (e.g., value iteration) for

M̂θ = (S,A, H, P̂out, 〈θ, r̂〉) where r̂ is empirical estimate of r using collected samples {rkh}.

The following theorem state theoretical guarantees for tabular VMDPs. Proof of Theorem 4.4.1 and
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more details can be found in Appendix C.3.

Theorem 4.4.1. For tabular VMDP, we have a reward-free algorithm (Definiton 4.2.1) with

mRFE(ε, δ) ≤ O(min{d, S}H4SAι/ε2 + H3S2Aι2/ε), an algorithm for approachability (Defini-

tion 4.2.3) with mAPP(ε, δ) ≤ O(min{d, S}H4SAι/ε2 +H3S2Aι2/ε) , and an algorithm for CMDP

(Definition 4.2.4) with mCMDP(ε, δ) ≤ O(min{d, S}H4SAι2/ε2 +H3S2Aι3/ε).

The reward-free algorithm with stated sample complexity in Theorem 4.4.1 is the VI-Zero algorithm

(Algorithm 14 in Appendix C.3). Its sample complexity result is obtained by adapting the results in

Liu et al. (2020) for scalar-valued MDPs to the settings of VMDPs. The algorithms for approachability

and CMDP is based on pluging in VI-Zero into our meta algorithms, and the corresponding sample

complexity results are obtained by applying Theorem 4.2.5 and our main result—Theorem 4.3.1.

Theorem 4.4.1 shows that the sample complexity of all three tasks are connected—the leading terms

are all Õ(min{d, S}H4SA/ε2) which differ by only logarithmic factors. In particular, our sample

complexity for the reward-free exploration (Definition 4.2.1) in the tabular setting matches the

best result in Wu et al. (2020). It further shows that we can easily design an sample-efficient for

approachability (Definition 4.2.3) and CMDP with general convex constraints (Definition 4.2.4) in

the tabular setting, with sample complexity matching the best result in Yu et al. (2021) up to a

single factor of H. 2 Therefore, our framework while being modular and enabling direct translation

of reward-free RL to constrained RL, achieves sharp sample complexity guarantees. We comment

that due to reward-free nature of our approach unlike Yu et al. (2021), we can no longer provide

regret guarantees.

4.5 Linear function approximation: Linear VMDPs

In this section we consider the setting of linear function approximation and allow S and A to be

infinitely large. We assume that agent has access to a feature map φ : S × A → Rdlin and the

return function and transitions are linear functions of the feature map. We formally define the

2This H factor difference is due the Bernstein-type bonus used in Yu et al. (2021), which can not be adapted to
the reward-free setting.
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linear VMDPs in Assumption 4.5.1 which adapts the definition of linear MDPs (Jin et al., 2020c)

for VMDPS; namely, they coincide for the case of d = 1.

Assumption 4.5.1 (Linear VMDP). A VMDP M = (S,A, H,P, r) is said to be a linear with a

feature map φ : S ×A → Rdlin , if for any h ∈ [H]:

1. There exists dlin unknown (signed) measures µh = {µ(1)
h , . . . , µ

(dlin)
h } over S such that for any

(s, a) ∈ S ×A we have Ph(· | s, a) = 〈µ(·),φ(s, a)〉.

2. There exists an unknown matrix Wh ∈ Rd×dlin such that for any (s, a) ∈ S × A we have

rh(s, a) = Whφ(s, a).

Similar to Jin et al. (2020c), we assume that ‖φ(s, a)‖ ≤ 1 for all (s, a) ∈ S ×A, ‖µh(S)‖ ≤
√
dlin

for all h ∈ [H], and ‖Wh‖ ≤
√
dlin for all h ∈ [H].

Wang et al. (2020a) has recently proposed a sample-efficient algorithm for reward-free exploration in

linear MDPs. Utilizing that algorithm and tailoring it for our setting, we can obtain the following

theoretical guarantee. The algorithm and the proof can be found in Appendix C.4.

Theorem 4.5.2. For linear VMDPs (Assumption 4.5.1), we have a reward-free algorithm (Defini-

ton 4.2.1) with mRFE(ε, δ) ≤ O(d3
linH

6ι2/ε2), an approachability algorithm (Definition 4.2.3) with

mAPP(ε, δ) ≤ O(d3
linH

6ι2/ε2) and an algorithm for CMDP (Definition 4.2.4) with mCMDP(ε, δ) ≤

O(d3
linH

6ι3/ε2).

The reward-free algorithm with stated sample complexity in Theorem 4.5.2 is the Algorithm 15

in Appendix C.4. it is a modified version of the reward-free algorithm introduced by Wang et al.

(2020a). Its sample complexity result is again obtained by adapting the results in Wang et al. (2020a)

for scalar-valued MDPs to the settings of VMDPs. The algorithms for approachability and CMDP

is based on plugging in this reward-free algorithm into our meta algorithms, and the corresponding

sample complexity results are obtained by applying Theorem 4.2.5 and our main result—Theorem

4.3.1.

Theorem 4.5.2 provides a new sample complexity result of Õ(d3
linH

6/ε2) for the reward-free ex-
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ploration (Definition 4.2.1) in the linear setting (Assumption 4.5.1). It further provides a new

sample complexity result of Õ(d3
linH

6/ε2) for both approachability (Definition 4.2.3) and CMDP

(Definition 4.2.4) in the linear setting (Assumption 4.5.1). To best our knowledge, this is the first

sample-efficient result for constrained RL problems with linear function approximation and general

convex constraints.

4.6 Vector-valued Markov games

4.6.1 Model and preliminaries

Similar to Section 4.2, we consider an episodic vector-valued Markov game (VMG) specified by a

tuple G = (S,A,B, H,P, r), where A and B are the action spaces for the min-player and max-player,

respectively. The d-dimensional return function r and the transition probabilities P, now depend on

the current state and the action of both players.

Interaction protocol. In each episode, we start at a fixed initial state s1. Then, at each

step h ∈ [H], both players observe the current state sh, take their own actions ah ∈ A and

bh ∈ B simultaneously, observe stochastic sample of the return vector rh(sh, ah, bh) along with their

opponent’s action, and it causes the environment to transit to sh+1 ∼ Ph(· | sh, ah, bh). We assume

that stochastic samples of the return function are also in B(1), almost surely.

Policy and value function. A policy µ of the min-player is a collection of H functions {µh : S →

∆(A)}Hh=1. Similarly, a policy ν of the max-player is a collection of H functions {νh : S → ∆(B)}Hh=1.

If the players are following µ and ν, we have ah ∼ µ(·|s) and bh ∼ ν(·|s) at the hth step. We use

Vµ,ν
h : S → B(H) and Qµ,ν

h : S ×A× B → B(H) to denote the value function and Q-value function

at step h under policies µ and ν.

Scalarized markov game and Nash equilibrium. For a VMG G and θ ∈ B(1), we define

scalar-valued Markov game Gθ = (S,A, H,P, rθ), where rθ = {〈θ, rh〉 : S × A × B → [−1, 1]}Hh=1.
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We use V µ,νh (·; θ) and Qµ,νh (·, ·, ·; θ) to denote value function and Q-value function of Gθ, respectively.

Note that we have V µ,νh (s; θ) = 〈θ,Vµ,ν
h (s)〉 and Qµ,νh (s, a, b; θ) = 〈θ,Qµ,ν

h (s, a, b)〉.

For any policy of the min-player µ, there exists a best-response policy ν†(µ) of the max-player; i.e.

V
µ,ν†(µ)
h (s; θ) = maxν V

µ,ν
h (s; θ) for all (s, h) ∈ S × [H]. We use V µ,† to denote V µ,ν†(µ). Similarly,

we can define µ†(ν) and V †,ν . We further know (Filar and Vrieze, 2012) that there exist policies

(µ?, ν?), known as Nash equilibrium, satisfying the following equation for all (s, h) ∈ S × [H]:

min
µ

max
ν

V µ,νh (s; θ)

= V µ
?,†

h (s; θ) = V µ
?,ν?

h (s; θ) = V †,ν
?

h (s; θ)

= max
ν

min
µ
V µ,ν(s; θ)

In words, it means that no player can gain anything by changing her own policy. We abbreviate

V µ
?,ν?

h and Qµ
?,ν?

h as V ?h and Q?h.

Reward-free exploration (RFE) for VMGs

Similar to Section 4.2.1, we can define RFE algorithm for VMGs. Similarly, it consists of two phases.

In the exploration phase, it explores the environment without guidance of return function. Later, in

the planning phase, given any θ ∈ B(1), it requires to output near optimal Nash equilibrium for Gθ.

Definition 4.6.1 (RFE algorithm for VMGs). For any ε, δ > 0, after collecting mRFE(ε, δ) episodes

during the exploration phase, with probability at least 1− δ, the algorithm for all θ ∈ B(1), satisfies

V µθ,†1 (s1; θ)− V †,νθ1 (s1; θ) ≤ ε

where (µθ, νθ) is the output of the planning phase for vector θ as input. The function mRFE

determines the sample complexity of the RFE algorithm.
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Blackwell approachability for VMGs

We assume we are given a VMG G and a target set C. The goal of the min-player is for the return

vector to lie in the set C while max-player wants the opposite. For the two-player vector-valued

games it can be easily shown that the minimax theorem does no longer hold (see Section 2.1 of

Abernethy et al. 2011). Namely, if for every policy of the max-player we have a response such that

the return is in the set, we cannot hope to find a single policy for the min-player so that for every

policy of the max-player the return vector lie in the set. However, approaching the set on average is

possible.

Definition 4.6.2 (Blackwell approachability). We say the min-player is approaching the target C

with rate α(T ), if for arbitrary sequence of max-player polices ν1, . . . , νT , we have

dist( 1
T

∑T
t=1 Vµt,νt

1 (s1), C) ≤ β + α(T ),

where β = maxν minµ dist(Vµ,ν
1 (s1), C).

4.6.2 Meta-algorithm for VMGs

Similar to Section 4.3, we introduce our main algorithmic framework for VMGs bridging reward-free

algorithm and Blackwell approachability in VMGs. The pseudo-code is displayed in Algorithm 4 and

the theoretical guarantees are provided in Theorem 4.6.3. The proof can be found in Appendix C.5.

Theorem 4.6.3. For any choice of RFE algorithm (Definition 4.6.1) and for any ε ∈ (0, H] and

δ ∈ (0, 1], if we choose K = mRFE(ε/2, δ/2) and ηt =
√

1/H2t ; then, with probability at least

1− δ, the min-player in Algorithm 4, satisfies Definition 4.6.2 with rate α(T ) = O(ε/2 +
√
H2ι/T )

where ι = log(d/δ). Therefore to obtain ε-optimality, the total sample complexity scales with

O(mRFE(ε/2, δ/2) +H2ι/ε2).
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Algorithm 4 Meta-algorithm for VMGs

1: Input: Reward-Free Algorithm Rfe for VMG (as in Definition 4.6.1), Target Set C
2: Hyperparameters: learning rate ηt

3: Initialize: run exploration phase of Rfe for K episodes
4: Set: θ1 ∈ B(1)
5: for t = 1, 2, . . . , T do
6: Obtain near optimal Nash equilibrium for Gθt :

(µt, ωt)← output of planning phase of RFE for the vector θt as input

7: Play µt for one episode:

Play µt against max-player playing arbitrary policy νt for one episode
and let v̂t be the sum of vectorial returns

8: Apply online gradient ascent update for utility function ut(θ) = 〈θ, v̂t〉 −maxx∈C〈θ,x〉:

θt+1 ← ΓB(1)[θ
t + ηt(v̂t − argmaxx∈C〈θt,x〉)]

where ΓB(1) is the projection into Euclidean unit ball

4.6.3 Tabular VMGs

In this section, we consider tabular VMDPs; namely, we assume that |S| ≤ S, |A| ≤ A, and |B| ≤ B.

Similar to Section 4.4, by utilizing VI-Zero (Liu et al., 2020) we can have the following theoretical

guarantees. The algorithm and the proof can be found in Appendix C.5.

Theorem 4.6.4. There exists a reward-free algorithm for tabular VMGs and a right choice of hyper-

parameters that satisfies Definition 4.6.1 with sample complexity mRFE(ε, δ) ≤ O(min{d, S}H4SABι/ε2+

H3S2ABι2/ε), where ι = log[dSABH/(εδ)].

The theorem provides a new sample complexity result of Õ(min{d, S}H4SABι/ε2) for reward-

free exploration in VMGs (Definition 4.6.1). It immediately follows from Theorem 4.6.4 and

Theorem 4.6.3 that we can achieve total sample complexity of Õ(min{d, S}H4SABι/ε2) for Blackwell

approachability in VMGs (Definition 4.6.2). Our rate for α(T ) scales with Õ(
√

poly(H)/T ) while

the results in Yu et al. (2021) has the rate of α(T ) scaling with Õ(
√

poly(H) min{d, S}SA/T ).

However, we require initial phase of self-play for K = O(mRFE) episodes which is not needed by Yu

et al. (2021).
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4.7 Conclusion

This chapter provides a meta algorithm that takes a reward-free RL solver, and convert it to an

algorithm for solving constrained RL problems. Our framework enables the direct translation of

any progress in reward-free RL to constrained RL setting. Utilizing existing reward-free solvers,

our framework provides sharp sample complexity results for constrained RL in tabular setting

(matching best existing results up to factor of horizon dependence), new results for the linear

function approximation setting. Our framework further extends to tabular two-player vector-valued

Markov games for solving Blackwell approachability problem.
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Part II

Reinforcement Learning with

Function Approximation
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Chapter 5

Bellman Eluder Dimension: New

Rich Classes of RL Problems, and

Sample-Efficient Algorithms

5.1 Introduction

Modern Reinforcement Learning (RL) commonly engages practical problems with an enormous

number of states, where function approximation must be deployed to approximate the true value

function using functions from a prespecified function class. Function approximation, especially based

on deep neural networks, lies at the heart of the recent practical successes of RL in domains such

as Atari (Mnih et al., 2015), Go (Silver et al., 2016), robotics (Kober et al., 2013), and dialogue

systems (Li et al., 2016).

Despite its empirical success, RL with function approximation raises a new series of theoretical

challenges when comparing to the classic tabular RL: (1) generalization, to generalize knowledge from

the visited states to the unvisited states due to the enormous state space. (2) limited expressiveness,
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to handle the complicated issues where true value functions or intermediate steps computed in the

algorithm can be functions outside the prespecified function class. (3) exploration, to address the

tradeoff between exploration and exploitation when above challenges are present.

Consequently, most existing theoretical results on efficient RL with function approximation rely

on relatively strong structural assumptions. For instance, many require that the MDP admits a

linear approximation (Wang et al., 2019; Jin et al., 2020c; Zanette et al., 2020a), or that the model

is precisely Linear Quadratic Regulator (LQR) (Anderson and Moore, 2007; Fazel et al., 2018;

Dean et al., 2019). Most of these structural assumptions rarely hold in practical applications. This

naturally leads to one of the most fundamental questions in RL.

What are the minimal structural assumptions that empower sample-efficient RL?

We advance our understanding of this grand question via the following two steps: (1) identify a rich

class of RL problems (with weak structural assumptions) that cover many practical applications of

interests; (2) design sample-efficient algorithms that provably learn any RL problem in this class.

The attempts to find weak or minimal structural assumptions that allow statistical learning can

be traced in supervised learning where VC dimension (Vapnik, 2013) or Rademacher complexity

(Bartlett and Mendelson, 2002) is proposed, or in online learning where Littlestone dimension

(Littlestone, 1988) or sequential Rademacher complexity (Rakhlin et al., 2010) is developed.

In the area of reinforcement learning, there are two intriguing lines of recent works that have

made significant progress in this direction. To begin with, Jiang et al. (2017) introduces a generic

complexity notion—Bellman rank, which can be proved small for many RL problems including linear

MDPs (Jin et al., 2020c), reactive POMDPs (Krishnamurthy et al., 2016), etc. Jiang et al. (2017)

further propose an hypothesis elimination-based algorithm—Olive for sample-efficient learning of

problems with low Bellman rank. On the other hand, recent work by Wang et al. (2020b) considers

general function approximation with low Eluder dimension (Russo and Van Roy, 2013), and designs

a UCB-style algorithm with regret guarantee. Noticeably, generalized linear MDPs (Wang et al.,

2019) and kernel MDPs (see Appendix D.3) are subclasses of low Eluder dimension problems, but
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reactive PSRs

reactive POMDPs

low Bellman rank

tabular MDPs
linear MDPs

low Eluder dimension
generalized
linear MDPs

low Bellman Eluder dimension

LQRs

kernel MDPs

kernel reactive POMDPs

Figure 5.1: A schematic summarizing relations among families of RL problems1

not low Bellman rank.

In this paper, we make the following three contributions.

• We introduce a new complexity measure for RL—Bellman Eluder (BE) dimension. We prove

that the family of RL problems of low BE dimension is remarkably rich, which subsumes

both low Bellman rank problems and low Eluder dimension problems—two arguably most

generic tractable function classes so far in the literature (see Figure 5.1). The family of low

BE dimension further includes new problems such as kernel reactive POMDPs (see Appendix

D.3) which were not known to be sample-efficiently learnable.

• We design a new optimization-based algorithm—Golf, which provably learns near-optimal

policies of low BE dimension problems in a number of samples that is polynomial in all relevant

parameters, but independent of the size of state-action space. Our regret or sample complexity

guarantees match Zanette et al. (2020a) which is minimax optimal when specified to the

linear setting. Our rates further improve upon Jiang et al. (2017); Wang et al. (2020b) in low

Bellman rank and low Eluder dimension settings, respectively.

• We reanalyze the hypothesis elimination based algorithm—Olive proposed in Jiang et al.

(2017). We show it can also learn RL problems with low BE dimension sample-efficiently,

1The family of low Bellman rank problems and low Bellman Eluder dimension problems include both Q-type and
V-type variants. Please refer to Section 5.3.1 and Appendix D.2 for more details.
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under slightly weaker assumptions but with worse sample complexity comparing to Golf.

5.1.1 Related works

This section reviews prior theoretical works on RL, under Markov Decision Process (MDP) models.

We remark that there has been a long line of research on function approximation in the batch RL

setting (see, e.g., Szepesvári and Munos, 2005; Munos and Szepesvári, 2008; Chen and Jiang, 2019;

Xie and Jiang, 2020). In this setting, agents are provided with exploratory data or simulator, so that

they do not need to explicitly address the challenge of exploration. In this paper, we do not make

such assumption, and attack the exploration problem directly. In the following we focus exclusively

on the RL results in the general setting where exploration is required.

Tabular RL. Tabular RL concerns MDPs with a small number of states and actions, which has

been thoroughly studied in recent years (see, e.g., Brafman and Tennenholtz, 2002; Jaksch et al.,

2010; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Azar et al., 2017; Zanette and Brunskill,

2019; Jin et al., 2018; Zhang et al., 2020b). In the episodic setting with non-stationary dynamics,

the best regret bound Õ(
√
H2|S||A|T ) is achieved by both model-based (Azar et al., 2017) and

model-free (Zhang et al., 2020b) algorithms. Moreover, the bound is proved to be minimax-optimal

(Jin et al., 2018; Domingues et al., 2021). This minimax bound suggests that when the state-action

space is enormous, RL is information-theoretically hard without further structural assumptions.

RL with linear function approximation. A recent line of work studies RL with linear function

approximation (see, e.g., Jin et al., 2020c; Wang et al., 2019; Cai et al., 2019; Zanette et al., 2020a,b;

Agarwal et al., 2020; Neu and Pike-Burke, 2020; Sun et al., 2019a) These papers assume certain

completeness conditions, as well as the optimal value function can be well approximated by linear

functions. Under one formulation of linear approximation, the minimax regret bound Õ(d
√
T ) is

achieved by algorithm Eleanor (Zanette et al., 2020a), where d is the ambient dimension of the

feature space.
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RL with general function approximation. Beyond the linear setting, there is a flurry line of

research studying RL with general function approximation (see, e.g., Osband and Van Roy, 2014;

Jiang et al., 2017; Sun et al., 2019a; Dong et al., 2020; Wang et al., 2020b; Yang et al., 2020; Foster

et al., 2020). Among them, Jiang et al. (2017) and Wang et al. (2020b) are the closest to our work.

Jiang et al. (2017) propose a complexity measure named Bellman rank and design an algorithm

Olive with PAC guarantees for problems with low Bellman rank. We note that low Bellman rank

is a special case of low BE dimension. When specialized to the low Bellman rank setting, our result

for Olive exactly matches the guarantee in Jiang et al. (2017). Our result for Golf requires an

additional completeness assumption, but provides sharper sample complexity guarantee.

Wang et al. (2020b) propose a UCB-type algorithm with a regret guarantee under the assumption

that the function class has a low eluder dimension. Again, we will show that low Eluder dimension

is a special case of low BE dimension. Comparing to Wang et al. (2020b), our algorithm Golf

works under a weaker completeness assumption, with a better regret guarantee.

Finally, we remark that the algorithms proposed in (Jiang et al., 2017; Zanette et al., 2020b; Du

et al., 2021) and this paper are all computationally inefficient in general. We notice several existing

works (e.g., Jin et al., 2020c; Wang et al., 2020b) can be computationally efficient given suitable

regression oracles but they require stronger representation conditions and also achieve worse regret

guarantees.

Relation to bilinear classes Concurrent to this work, Du et al. (2021) propose a new general

tractable class of RL problems—bilinear class with low effective dimension (also known as low critical

information gain in Du et al. (2021)). We comment on the similarities and differences between two

works as follows.

In terms of algorithms, both Algorithm 18 in this paper and the algorithm proposed in Du et al.

(2021) are based on Olive originally proposed in Jiang et al. (2017). The two algorithms share

similar guarantees in terms of assumptions and complexity results. More importantly, our work

further develops a new type of algorithm for general function approximation—Golf, a natural
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and clean algorithm which can be viewed as an optimistic version of classical algorithm—Fitted

Q-Iteration (Szepesvári, 2010). Golf gives much sharper sample complexity guarantees compared

to Du et al. (2021) for various settings, and is minimax-optimal when applied to the linear setting

(Zanette et al., 2020a).

In terms of richness of new classes identified, it depends on (a) what structure of MDP the complexity

measures are applied to, and (b) what complexity measures are used. For (a), BE dimension applies

to the Bellman error, while the bilinear class allows general surrogate losses of the Bellman error.

For (b), this paper uses Eluder dimension while Du et al. (2021) uses effective dimension. It can be

shown that low effective dimension always implies low Eluder dimension (see Appendix D.3.2). In

short, Du et al. (2021) is more general in (a), while our work is more general in (b). As a result,

neither work fully captures the other.

In particular, our BE framework covers a majority of the examples identified in Du et al. (2021)

including low occupancy complexity, linear Q?/V ?, Q? state aggregation, feature selection/FLAMBE.

Nevertheless, our work can not address examples with model-based function approximation (e.g.,

low witness rank Sun et al. (2019a)) while Du et al. (2021) can. On the other hand, Du et al. (2021)

can not address the class of RL problems with low Eluder dimension (Wang et al., 2020b) while

our work can. Moreover, for several classes of RL problems that both works cover, our complexity

measure is sharper. For example, in the setting of function approximation with generalized linear

functions, the BE dimension is Õ(d) where d is the ambient dimension of the feature vectors, while

the effective dimension under the generalized bilinear framework of Du et al. (2021) is at least Ω̃(d2).

5.1.2 Chapter organization

We present preliminaries in Section 5.2, the definition of Bellman-Eluder dimension as well as its

relations to existing complexity notions in Section 5.3. We present the results for algorithm Golf in

Section 5.4, and conclude in Section 5.5. Due to space limit, we postpone the results for algorithm

Olive to Appendix D.1. Further discussions on Q-type versus V-type variants of BE dimension,

as well as the practical examples will be provided in Appendix D.2 and D.3. All the proofs are
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postponed to the appendix.

5.2 Preliminaries

We consider episodic Markov Decision Process (MDP), denoted by M = (S,A, H,P, r), where S is

the state space, A is the action space, H is the number of steps in each episode, P = {Ph}h∈[H] is the

collection of transition measures with Ph(s′ | s, a) equal to the probability of transiting to s′ after

taking action a at state s at the hth step, and r = {rh}h∈[H] is the collection of reward functions

with rh(s, a) equal to the deterministic reward received after taking action a at state s at the hth

step. 2 Throughout this chapter, we assume reward is non-negative, and
∑H
h=1 rh(sh, ah) ≤ 1 for

all possible sequence (s1, a1, . . . , sH , aH).

In each episode, the agent starts at a fixed initial state s1. Then, at each step h ∈ [H], the agent

observes its current state sh, takes action ah, receives reward rh(sh, ah), and causes the environment

to transit to sh+1 ∼ Ph(· | sh, ah). Without loss of generality, we assume there is a terminating

state send which the environment will always transit to at step H + 1, and the episode terminates

when send is reached.

Policy and value functions A (deterministic) policy π is a collection of H functions {πh : S →

A}Hh=1. We denote V πh : S → R as the value function at step h for policy π, so that V πh (s) gives the

expected sum of the remaining rewards received under policy π, starting from sh = s, till the end of

the episode. In symbol,

V πh (s) := Eπ[

H∑
h′=h

rh′(sh′ , ah′) | sh = s].

Similarly, we denote Qπh : S ×A → R as the Q-value function at step h for policy π, where

Qπh(s, a) := Eπ[

H∑
h′=h

rh′(sh′ , ah′) | sh = s, ah = a].

There exists an optimal policy π?, which gives the optimal value function for all states (Puterman,

2We study deterministic reward for notational simplicity. Our results readily generalize to random rewards.
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2014), in the sense, V π
?

h (s) = supπ V
π
h (s) for all h ∈ [H] and s ∈ S. For notational simplicity, we

abbreviate V π
?

as V ?. We similarly define the optimal Q-value function as Q?. Recall that Q?

satisfies the Bellman optimality equation:

Q?h(s, a) = (ThQ?h+1)(s, a) := rh(s, a) + Es′∼Ph(·|s,a) max
a′∈A

Q?h+1(s′, a′). (5.1)

for all (s, a, h) ∈ S ×A× [H]. We also call Th the Bellman operator at step h.

ε-optimality and regret We say a policy π is ε-optimal if V π1 (s1) ≥ V ?1 (s1) − ε. Suppose an

agent interacts with the environment for K episodes. Denote by πk the policy the agent follows in

episode k ∈ [K]. The (accumulative) regret is defined as

Reg(K) :=

K∑
k=1

[V ?1 (s1)− V π
k

1 (s1)].

The objective of reinforcement learning is to find an ε-optimal policy within a small number of

interactions or to achieve sublinear regret.

5.2.1 Function approximation

In this work, we consider reinforcement learning with value function approximation. Formally, the

learner is given a function class F = F1 × · · · × FH , where Fh ⊆ (S × A → [0, 1]) offers a set of

candidate functions to approximate Q?h—the optimal Q-value function at step h. Since no reward is

collected in the (H + 1)th steps, we always set fH+1 = 0.

Reinforcement learning with function approximation in general is extremely challenging without

further assumptions (see, e.g., hardness results in Krishnamurthy et al. (2016); Weisz et al. (2021)).

Below, we present two assumptions about function approximation that are commonly adopted in

the literature.

Assumption 5.2.1 (Realizability). Q?h ∈ Fh for all h ∈ [H].

Realizability requires the function class is well-specified, i.e., function class F in fact contains the
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optimal Q-value function Q? with no approximation error.

Assumption 5.2.2 (Completeness). ThFh+1 ⊆ Fh for all h ∈ [H].

Note ThFh+1 is defined as {Thfh+1 : fh+1 ∈ Fh+1}. Completeness requires the function class F to

be closed under the Bellman operator.

When function class F has finite elements, we can use its cardinality |F| to measure the “size” of

function class F . When addressing function classes with infinite elements, we need a notion similar

to cardinality. We use the standard ε-covering number.

Definition 5.2.3 (ε-covering number). The ε-covering number of a set V under metric ρ, denoted

as N (V, ε, ρ), is the minimum integer n such that there exists a subset Vo ⊂ V with |Vo| = n, and

for any x ∈ V, there exists y ∈ Vo such that ρ(x, y) ≤ ε.

We refer readers to standard textbooks (see, e.g., Wainwright, 2019) for further properties of

covering number. In this chapter, we will always apply the covering number on function class

F = F1 × · · · × FH , and use metric ρ(f, g) = maxh ‖fh − gh‖∞. For notational simplicity, we omit

the metric dependence and denote the covering number as NF (ε).

5.2.2 Eluder dimension

One class of functions highly related to this work is the function class of low Eluder dimension

(Russo and Van Roy, 2013).

Definition 5.2.4 (ε-independence between points). Let G be a function class defined on X , and

z,x1, x2,. . .,xn∈ X . We say z is ε-independent of {x1, x2, . . . , xn} with respect to G if there exist

g1, g2 ∈ G such that
√∑n

i=1(g1(xi)− g2(xi))2 ≤ ε, but g1(z)− g2(z) > ε.

Intuitively, z is independent of {x1, x2, . . . , xn} means if that there exist two “certifying” functions

g1 and g2, so that their function values are similar at all points {xi}ni=1, but the values are rather

different at z. This independence relation naturally induces the following complexity measure.

Definition 5.2.5 (Eluder dimension). Let G be a function class defined on X . The Eluder dimension
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dimE(G, ε) is the length of the longest sequence {x1, . . . , xn} ⊂ X such that there exists ε′ ≥ ε where

xi is ε′-independent of {x1, . . . , xi−1} for all i ∈ [n].

Recall that a vector space has dimension d if and only if d is the length of the longest sequence of

elements {x1, . . . , xd} such that xi is linearly independent of {x1, . . . , xi−1} for all i ∈ [n]. Eluder

dimension generalizes the linear independence relation in standard vector space to capture both

nonlinear independence and approximate independence, and thus is more general.

5.3 Bellman Eluder Dimension

In this section, we introduce our new complexity measure—Bellman Eluder (BE) dimension. As one

of its most important properties, we will show that the family of problems with low BE dimension

contains the two existing most general tractable problem classes in RL—problems with low Bellman

rank, and problems with low Eluder dimension (see Figure 5.1).

We start by developing a new distributional version of the original Eluder dimension proposed by

Russo and Van Roy (2013) (see Section 5.2.2 for more details).

Definition 5.3.1 (ε-independence between distributions). Let G be a function class defined on X ,

and ν, µ1, . . . , µn be probability measures over X . We say ν is ε-independent of {µ1, µ2, . . . , µn}

with respect to G if there exists g ∈ G such that
√∑n

i=1(Eµi [g])2 ≤ ε, but |Eν [g]| > ε.

Definition 5.3.2 (Distributional Eluder (DE) dimension). Let G be a function class defined on

X , and Π be a family of probability measures over X . The distributional Eluder dimension

dimDE(G,Π, ε) is the length of the longest sequence {ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε

where ρi is ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].

Definition 5.3.1 and Definition 5.3.2 generalize Definition 5.2.4 and Definition 5.2.5 to their distri-

butional versions, by inspecting the expected values of functions instead of the function values at

points, and by restricting the candidate distributions to a certain family Π. The main advantage

of this generalization is exactly in the statistical setting, where estimating the expected values of

functions with respect to a certain distribution family can be easier than estimating function values
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at each point (which is the case for RL in large state spaces).

It is clear that the standard Eluder dimension is a special case of the distributional Eluder dimension,

because if we choose Π = {δx(·) | x ∈ X} where δx(·) is the dirac measure centered at x, then

dimE(G, ε) = dimDE(G − G,Π, ε) where G − G = {g1 − g2 : g1, g2 ∈ G}.

Now we are ready to introduce the key notion in this chapter—Bellman Eluder dimension.

Definition 5.3.3 (Bellman Eluder (BE) dimension). Let (I − Th)F := {fh − Thfh+1 : f ∈ F}

be the set of Bellman residuals induced by F at step h, and Π = {Πh}Hh=1 be a collection of H

probability measure families over S ×A. The ε-Bellman Eluder of F with respect to Π is defined as

dimBE(F ,Π, ε) := max
h∈[H]

dimDE

(
(I − Th)F ,Πh, ε

)
.

Remark 5.3.4 (Q-type v.s. V-type). Definition 5.3.3 is based on the Bellman residuals functions

that take a state-action pair as input, thus referred to as Q-type BE dimension. Alternatively, one

can define V-type BE dimension using a different set of Bellman residual functions that depend on

states only (see Appendix D.2). We focus on Q-type in the main here, and present the results for

V-type in Appendix D.2. Both variants are important, and they include different sets of examples

(see Appendix D.2, D.3).

In short, Bellman Eluder dimension is simply the distributional Eluder dimension on the function

class of Bellman residuals, maximizing over all steps. In addition to function class F and error ε,

Bellman Eluder dimension also depends on the choice of distribution family Π. For the purpose of

this chapter, we focus on the following two specific choices.

1. DF := {DF,h}h∈[H], where DF,h denotes the collection of all probability measures over S ×A

at the hth step, which can be generated by executing the greedy policy πf induced by any

f ∈ F , i.e., πf,h(·) = argmaxa∈Afh(·, a) for all h ∈ [H].

2. D∆ := {D∆,h}h∈[H], where D∆,h = {δ(s,a)(·)|s ∈ S, a ∈ A}, i.e., the collections of probability

measures that put measure 1 on a single state-action pair.
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We say a RL problem has low BE dimension if minΠ∈{DF ,D∆} dimBE(F ,Π, ε) is small.

5.3.1 Relations with known tractable classes of RL problems

Known tractable problem classes in RL include but not limited to tabular MDPs, linear MDPs (Jin

et al., 2020c), linear quadratic regulators (Anderson and Moore, 2007), generalized linear MDPs

(Wang et al., 2019), kernel MDPs (Appendix D.3), reactive POMDPs (Krishnamurthy et al., 2016),

reactive PSRs (Singh et al., 2012; Jiang et al., 2017). There are two existing generic tractable

problem classes that jointly contain all the examples mentioned above: the set of RL problems with

low Bellman rank, and the set of RL problems with low Eluder dimension. However, for these two

generic sets, one does not contain the other.

In this section, we will show that our new class of RL problems with low BE dimension in fact

contains both low Bellman rank problems and low Eluder dimension problems (see Figure 5.1).

That is, our new problem class covers almost all existing tractable RL problems, and to our best

knowledge, is the most generic tractable function class so far.

Relation with low Bellman rank The seminal paper by Jiang et al. (2017) proposes the

complexity measure—Bellman rank, and shows that a majority of RL examples mentioned above

have low Bellman rank. They also propose a hypothesis elimination based algorithm—OLIVE, that

learns any low Bellman rank problem within polynomial samples. Formally,

Definition 5.3.5 (Bellman rank). The Bellman rank is the minimum integer d so that there exists

φh : F → Rd and ψh : F → Rd for each h ∈ [H], such that for any f, f ′ ∈ F , the average Bellman

error.

E(f, πf ′ , h) := Eπf′ [(fh − Thfh+1)(sh, ah)] = 〈φh(f), ψh(f ′)〉,

where ‖φh(f)‖2 · ‖ψh(f ′)‖2 ≤ ζ, and ζ is the normalization parameter.

We remark that similar to Bellman Eluder dimension, Bellman rank also has two variants—Q-type

(Definition 5.3.5) and V-type (see Appendix D.2). Recall that we use πf to denote the greedy policy

induced by value function f . Intuitively, a problem with Bellman rank says its average Bellman error
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can be decomposed as the inner product of two d-dimensional vectors, where one vector depends on

the roll-in policy πf ′ , while the other vector depends on the value function f . At a high level, it

claims that the average Bellman error has a linear inner product structure.

Proposition 5.3.6 (low Bellman rank ⊂ low BE dimension). If an MDP with function class F

has Bellman rank d with normalization parameter ζ, then

dimBE(F ,DF , ε) ≤ O(1 + d log(1 + ζ/ε)).

Proposition 5.3.6 claims that problems with low Bellman rank also have low BE dimension, with a

small multiplicative factor that is only logarithmic in ζ and ε−1.

Relation with low Eluder dimension Wang et al. (2020b) study the setting where the function

class F has low Eluder dimension, which includes generalized linear functions. They prove that,

when the completeness assumption is satisfied,3 low Eluder dimension problems can be efficiently

learned in polynomial samples.

Proposition 5.3.7 (low Eluder dimension ⊂ low BE dimension). Assume F satisfies completeness

(Assumption 5.2.2). Then for all ε > 0,

dimBE

(
F ,D∆, ε

)
≤ max
h∈[H]

dimE(Fh, ε).

Proposition 5.3.7 asserts that problems with low Eluder dimension also have low BE dimension,

which is a natural consequence of completeness and the fact that Eluder dimension is a special case

of distributional Eluder dimension.

Finally, we show that the set of low BE dimension problems is strictly larger than the union of low

Eluder dimension problems and low Bellman rank problems.

Proposition 5.3.8 (low BE dimension 6⊂ low Eluder dimension ∪ low Bellman rank). For any m ∈
3Wang et al. (2020b) assume for any function g (not necessarily in F), T g ∈ F , which is stronger than the

completeness assumption presented in this work (Assumption 5.2.2).
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Algorithm 5 Golf(F ,G,K, β) — Global Optimism based on Local Fitting

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for episode k from 1 to K do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1f(s1, πf (s1)).

4: Collect a trajectory (s1, a1, r1, . . . , sH , aH , rH , sH+1) by following πk.
5: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
6: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Gh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s′, a′)]2. (5.2)

7: Output πout sampled uniformly at random from {πk}Kk=1.

N+, there exists an MDP and a function class F so that for all ε ∈ (0, 1], we have dimBE(F ,DF , ε) =

dimBE(F ,D∆, ε) ≤ 5, but min{minh∈[H] dimE(Fh, ε),Bellman rank} ≥ m.

In particular, the family of low BE dimension includes new examples such as kernel reactive POMDPs

(Appendix D.3), which can not be addressed by the framework of either Bellman rank or Eluder

dimension.

5.4 Algorithm Golf

Section 5.3 defines a new class of RL problems with low BE dimension, and shows that the new

class is rich, containing almost all the existing known tractable RL problems so far. In this section,

we propose a new simple optimization-based algorithm—Global Optimism based on Local Fitting

(Golf). We prove that, low BE dimension problems are indeed tractable, i.e., Golf can find

near-optimal policies for these problems within a polynomial number of samples.

At a high level, Golf can be viewed as an optimistic version of the classic algorithm—Fitted

Q-Iteration (FQI) (Szepesvári, 2010). Golf generalizes the Eleanor algorithm (Zanette et al.,

2020a) from the special linear setting to the general setting with arbitrary function classes.

The pseudocode of Golf is given in Algorithm 5. Golf initializes datasets {Dh}Hh=1 to be empty

sets, and confidence set B0 to be F . Then, in each episode, Golf performs two main steps:
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• Line 3 (Optimistic planning): compute the most optimistic value function fk from the

confidence set Bk−1 constructed in the last episode , and choose πk to be its greedy policy.

• Line 4-6 (Execute the policy and update the confidence set): execute policy πk for one episode,

collect data, and update the confidence set using the new data.

At the heart of Golf is the way we construct the confidence set Bk. For each h ∈ [H], Golf

maintains a local regression constraint using the collected transition data Dh at this step

LDh(fh, fh+1) ≤ inf
g∈Gh

LDh(g, fh+1) + β, (5.3)

where β is a confidence parameter, and LDh is the squared loss defined in Eq. (5.2), which can

be viewed as a proxy to the squared Bellman error at step h. We remark that FQI algorithm

(Szepesvári, 2010) simply updates fh ← argminφ∈FhLDh(φ, fh+1). Our constraint Eq. (5.3) can be

viewed as a relaxed version of this update, which allows fh to be not only the minimizer of the loss

LDh(·, fh+1), but also any function whose loss is only slightly larger than the optimal loss over the

auxiliary function class Gh.

We remark that in general, the optimization problem in Line 3 of Golf can not be solved computa-

tionally efficiently.

5.4.1 Theoretical guarantees

In this subsection, we present the theoretical guarantees for Golf, which hold under Assumption

5.2.1 (realizability) and the following generalized completeness assumption introduced in Antos et al.

(2008); Chen and Jiang (2019). Let G = G1 × · · · × GH be an auxiliary function class provided to the

learner where each Gh ⊆ (S ×A → [0, 1]). Generalized completeness requires the auxiliary function

class G to be rich enough so that applying Bellman operator to any function in the primary function

class F will end up in G.

Assumption 5.4.1 (Generalized completeness). ThFh+1 ⊆ Gh for all h ∈ [H].

If we choose G = F , then Assumption 5.4.1 is equivalent to the standard completeness assumption
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(Assumption 5.2.2). Now, we are ready to present the main theorem for Golf.

Theorem 5.4.2 (Regret of Golf). Under Assumption 5.2.1, 5.4.1, there exists an absolute constant

c such that for any δ ∈ (0, 1], K ∈ N, if we choose parameter β = c log[NF∪G(1/K) · KH/δ] in

Golf, then with probability at least 1− δ, for all k ∈ [K], we have

Reg(k) =

k∑
t=1

[
V ?1 (s1)− V π

t

1 (s1)
]
≤ O(H

√
dkβ),

where d = minΠ∈{D∆,DF} dimBE

(
F ,Π, 1/

√
K
)

is the BE dimension.

Theorem 5.4.2 asserts that, under the realizability and completeness assumptions, the general class of

RL problems with low BE dimension is indeed tractable: there exists an algorithm (Golf) that can

achieve
√
K regret, whose multiplicative factor depends only polynomially on the horizon of MDP

H, the BE dimension d, and the log covering number of the two function classes. Most importantly,

the regret is independent of the number of the states, which is crucial for dealing with practical RL

problems with function approximation, where the state spaces are typically exponentially large.

We remark that when function class F ∪ G has finite number of elements, its covering number is

upper bounded by its cardinality |F ∪ G|. For a wide range of function classes in practice, the log

ε′-covering number has only logarithmic dependence on ε′. Informally, we denote the log covering

number as logNF∪G and omit its ε′ dependency for clean presentation. Theorem 5.4.2 claims that

the regret scales as Õ(H
√
dK logNF∪G), where Õ(·) omits absolute constants and logarithmic

terms.4

By the standard online-to-batch argument, we also derive the sample complexity of Golf.

Corollary 5.4.3 (Sample Complexity of Golf). Under Assumption 5.2.1, 5.2.2, there exists an

absolute constant c such that for any ε ∈ (0, 1], if we choose β = c log[NF∪G(ε2/(dH2)) ·HK] in

4We will not omit logNF∪G in Õ(·) notation since for many function classes, logNF∪G is not small. For instance,
for a d̃-dimensional linear function class, logNF∪G = Õ(d̃).
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Golf, then the output policy πout is O(ε)-optimal with probability at least 1/2, if

K ≥ Ω

(
H2d

ε2
· log

[
NF∪G

(
ε2

H2d

)
· Hd
ε

])
,

where d = minΠ∈{D∆,DF} dimBE

(
F ,Π, ε/H

)
is the BE dimension.

Corollary 5.4.3 claims that Õ(H2d log(NF∪G)/ε2) samples are enough for Golf to learn a near-

optimal policy of any low BE dimension problem. Our sample complexity scales linear in both the

BE dimension d, and the log covering number log(NF∪G).

To showcase the sharpness of our results, we compare them to the previous results when restricted

to the corresponding settings. (1) For linear function class with ambient dimension dlin, we have BE

dimension d = Õ(dlin) and log(NF∪G) = Õ(dlin). Our regret bound becomes Õ(Hdlin

√
K) which

matches the best known result (Zanette et al., 2020a) up to logarithmic factors; (2) For function

class with low Eluder dimension (Wang et al., 2020b), our results hold under weaker completeness

assumptions. Our regret scales with
√
dE in terms of dependency on Eluder dimension dE, which

improves the linear dE scaling in the regret of Wang et al. (2020b); (3) Finally, for low Bellman

rank problems, our sample complexity scales linearly with Bellman rank, which improves upon the

quadratic dependence in Jiang et al. (2017). We remark that all results mentioned above assume

(approximate) realizability. All except Jiang et al. (2017) assume (approximate) completeness.

5.4.2 Key ideas in proving Theorem 5.4.2

In this subsection, we present a brief proof sketch for the regret bound of Golf. We defer all the

details to Appendix D.5. For simplicity, we only discuss the case of choosing DF as the distribution

family Π in the definition of Bellman Eluder dimension (Definition 5.3.3). The proof for using D∆

as the distribution family follows from similar arguments.

Our proof strategy consists of three main steps.
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Step 1: Prove optimism. We firstly show that, with high probability, the optimal value function

Q? indeed lies in the confidence set Bk for all k ∈ [K] (Lemma D.5.2 in Appendix D.5.1), which

is a natural consequence of martingale concentration and the properties of the confidence set we

designed. Because of Q? ∈ Bk, the optimistic planning step (Line 3) in Golf guarantees that

V ?1 (s1) ≤ maxa f
k
1 (s1, a) for every episode k. This optimism allows the following upper bound on

regret

Reg(K) ≤
K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

=

H∑
h=1

K∑
k=1

Eπk
[
(fkh − T fkh+1)(sh, ah)

]
, (5.4)

where the right equality follows from the standard policy loss decomposition (see, e.g., Lemma 1 in

Jiang et al. (2017)), and Eπ denotes the expectation taken over sequence (s1, a1, . . . , sH , aH) when

executing policy π.

Step 2: Utilize the sharpness of our confidence set. Recall that our construction of the

confidence set in Line 6 of Golf forces fk computed in episode k to have a small loss LDh , which

is a proxy for empirical squared Bellman error under data Dh. Since data Dh in episode k are

collected by executing each πi for one episode for all i < k, by standard martingale concentration

arguments and the completeness assumption, we can show that with high probability (Lemma D.5.1

in Appendix D.5.1)

k−1∑
i=1

Eπi
[
(fkh − T fkh+1)(sh, ah)

]2≤O(β), for all (k, h) ∈ [K]× [H]. (5.5)

Step 3: Establish relations between Eq. (5.4) and Eq. (5.5). So far, we want to upper-

bound Eq. (5.4), while we know Eq. (5.5). We note that the RHS of Eq. (5.4) is very similar to the

LHS of Eq. (5.5), except that the latter is the squared Bellman error, and the expectation is taken

under previous policy πi for i < k. To establish the connection between these two, it turns out that

we need the Bellman Eluder dimension to be small. Concretely, we have the following lemma.

Lemma 5.4.4. Given a function class Φ defined on X with |φ(x)| ≤ 1 for all (φ, x) ∈ Φ × X ,
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and a family of probability measures Π over X . Suppose sequence {φk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂

Π satisfy that for all k ∈ [K],
∑k−1
i=1 (Eµi [φk])2 ≤ β. Then for all k ∈ [K],

∑k
i=1 |Eµi [φi]| ≤

O(
√

dimDE(Φ,Π, 1/k)βk).

Lemma 5.4.4 is a simplification of Lemma D.5.3 in Appendix D.5, which is a modification of Lemma

2 in Russo and Van Roy (2013). Intuitively, Lemma 5.4.4 can be viewed as an analogue of the

pigeon-hole principle for DE dimension. Choose Φ to be the function class of Bellman residuals, and

µk to be the distribution under policy πk, we finish the proof.

5.5 Conclusion

In this chapter, we propose a new complexity measure—Bellman Eluder (BE) dimension for

reinforcement learning with function approximation. Our new complexity measure identifies a new

rich class of RL problems that subsumes a majority of existing tractable problem classes in RL. We

design a new optimization-based algorithm—Golf, and provide a new analysis for algorithm Olive.

Both algorithms show that the new rich class of RL problems we identified in fact can be learned

within a polynomial number of samples. We hope our results shed light on the future research in

finding the minimal structural assumptions that allow sample-efficient reinforcement learning.
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Chapter 6

Provable Reinforcement Learning

with a Short-Term Memory

6.1 Introduction

Reinforcement learning is a well-studied paradigm for sequential decision making, in which an

agent learns to make decisions in a stateful environment to accumulate reward. The most common

framework for reinforcement learning—particularly for theoretical analysis—is the Markov Decision

Process (MDP), in which the environment is summarized by a state that is observable to the agent.

One notable feature of the MDP is that the agent can be memoryless, meaning that it need not

remember past states to make decisions in the present. However, many real world problems exhibit

partial observability and require the agent to maintain a memory of the past to infer the latent

states, plan, and make good decisions. These problems are best modeled via the framework of

Partially Observable MDPs (POMDPs).

As a motivating example, consider a control task of navigating a robot that perceives the environment

through a visual system like a first-person camera. Here, a single image may identify the agent’s

80



location, but it would not identify the agent’s velocity, which is necessary for deciding how much

force should be applied in order to accelerate or brake. For optimal control, the agent would have

to maintain a memory of past images and infer its velocity from this historical information. This

problem can be modeled as a POMDP where the system state is the position and velocity of the

agent. However, the state cannot be inferred using a single image, hence it is partially observable.

Maintaining a memory and reasoning over histories in POMDPs is notoriously challenging, as

evidenced by a number of complexity-theoretic barriers: computing the optimal policy (or planning)

is computationally intractable (Papadimitriou and Tsitsiklis, 1987) and learning an unknown POMDP

incurs a sample complexity that scales exponentially with the horizon (Mossel and Roch, 2005; Jin

et al., 2020a). These lower bounds often involve constructions that require the agent to reason over

very long histories. However, they are worst-case in nature, so they leave open the possibility of

obtaining positive results for subclasses of POMDPs with special structure of practical interest.

One such structure concerns applications of POMDPs where the agent only needs a short-term

memory. This structure holds in our motivating example, since the velocity can be recovered from

just the most recent images. Short-term memory is also frequently used in the design of practical

algorithms, which concatenate observations from the most recent time steps and use them to make

decisions—a technique called “frame-stacking” (Mnih et al., 2013, 2015; Hessel et al., 2018). This

gives rise to a natural question: Can we develop a theoretical framework and design provably efficient

algorithms for reinforcement learning with a short-term memory?

Our contributions. In this chapter, we address the question above by proposing a new class of

models—m-step decodable POMDPs. This class is a subclass of general POMDPs where the latent

state can be determined by the observations and actions of the m most recent time steps via an

unknown decoding function φ? (see Assumption 6.2.2).

As a warm-up example, we first consider the tabular setting, where the number of states, observations,

and actions, are all relatively small. Here a simple technique which stacks the observations and

actions in the m most recent steps into a new “mega”-states yields an algorithm with sample
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complexity O(H(OA)m) where O,A are the number of observations and actions respectively and

H is the episode length. We also show an Ω(Am) lower bound, establishing that an exponential

dependence on m is indeed necessary.

Our main result concerns the rich-observation setting where the observation space can be arbitrarily

complex (O is arbitrarily large) and one must use function approximation for generalization.

We present a clean solution to this problem with a simple variant of the Golf algorithm (Jin

et al., 2021), which was originally proposed for RL with general function approximation in the

observable/Markovian setting. We show that our algorithm finds a near-optimal policy within

O(poly(H)AmS · log |F|) samples, where S is the number of latent states and |F| is cardinality of

the function class. Most importantly, our sample complexity does not depend on the number of

observations O. We further extend our result to the setting where the latent dynamics correspond

to a linear MDP, with S in the sample complexity replaced by latent dimension d.

Our results in the rich observation setting crucially rely on a novel concept that we call the “moment

matching policy,” which breaks historical dependencies while matching the joint distribution of

states, observations, and actions for a short time interval (See Section 6.5.2). These policies enable a

low-rank or bilinear decomposition of the Bellman error of any value function in the POMDP, which

is essential for obtaining sample efficient results in the rich observation setting (Jiang et al., 2017;

Jin et al., 2021; Du et al., 2021). As such, the moment matching policies might be of independent

interest for future research in partial observability.

6.1.1 Related Work

Partial observability is a central challenge in practical reinforcement learning settings and, as such, it

has been the focus of a large body of empirical work. The two most popular high-level approaches are

to use recurrent or other “temporally extended” neural architectures (Hausknecht and Stone, 2015;

Zhu et al., 2017; Igl et al., 2018; Hafner et al., 2019), or to employ feature engineering (McCallum,

1993), for example by providing the most recent observations as input to the agent (Mnih et al.,

2013, 2015; Hessel et al., 2018). However, we are not aware of any theoretical treatment of these
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methods in the RL context.

Turning to theoretical results, two lines of work are related to our own. The first addresses RL with

partial observability. Kearns et al. (1999, 2002); Even-Dar et al. (2005) provide sparse sampling

techniques that attain AH -type sample complexity for various POMDP tasks, including without

resets. These bounds have an undesirable exponential dependence on the horizon, which we show

can be removed in some special cases. A more recent line of work (Azizzadenesheli et al., 2016; Guo

et al., 2016; Jin et al., 2020a) use method of moment estimators (based on spectral methods for

learning latent variable models (c.f., Anandkumar et al., 2014) to obtain guarantees in undercomplete

tabular POMDPs. However, undercompleteness, which means that the emission matrix is robustly

rank |O|, need not hold in our setting, so these results are orthogonal to ours.

The second line of work concerns rich observation RL, where the observation space can be infinite

and arbitrarily complex, in (for the most part) Markovian environments. These works provide

structural conditions that permit sample efficient RL with function approximation Jiang et al. (2017);

Sun et al. (2019a); Jin et al. (2021); Du et al. (2021); Foster et al. (2021) as well as algorithms that

are provably efficient in some special cases (Du et al., 2019; Misra et al., 2020; Agarwal et al., 2020;

Uehara et al., 2021). However, as we will see, these structural conditions are not satisfied in our

POMDP model so these results do not directly apply.

Outside of RL settings, the use of memory is prevalent in controls and time series prediction (Ljung,

1998; Box et al., 2015; Hamilton, 1994), dating back to the seminal work of Kalman (1960). Short-

term memory is explicit in several autoregressive models, such as the AR and ARMA models. It

is also classical to leverage memory in many control-theoretic settings. More recently, short-term

memory has been employed in control settings, where one can use stability arguments to show that

a short memory window suffices to approximate the optimal policy (Verhaegen, 1993; Arora et al.,

2018; Agarwal et al., 2019; Oymak and Ozay, 2019; Simchowitz et al., 2019). These ideas provide

further motivation for our study but the techniques developed in these continuous settings do not

seem useful for discrete RL problems where exploration is challenging.
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Figure 6.1: A schematic of a 2-step decodable POMDP. The latent state sh can be recovered using
only oh−1, ah−1, oh, so a short-term memory suffices for decision making.

6.2 Preliminaries

Notation. We use [H] to denote the set {1, . . . ,H}. For any indexed sequence a1, a2, . . ., we use

ai:j to denote the subsequence (amax{1,i}, . . . , amax{1,j}) for any i, j ∈ Z with i ≤ j. We adopt the

standard big-oh notation and write f = Õ(g) to denote that f = O(g ·max{1,polylog(g)}).

POMDPs. We consider an episodic Partially Observable Markov Decision Process (POMDP),

which can be specified by M = (S,O,A, H,P,O, r). Here S is the unobservable state space, O is

the observation space, A is the action space, and H is the horizon. P = {Ph}Hh=1 is a collection

of unknown transition probabilities with Ph(s′ | s, a) equal to the probability of transitioning to

s′ after taking action a in state s at the hth step. O = {Oh}Hh=1 are the unknown emissions with

Oh(o | s) equal to probability that the environment emits observation o when in state s at the hth

step. r = {rh : O → [0, 1]}Hh=1 are the deterministic reward functions.1 Throughout the chapter, we

assume that
∑H
h=1 rh(oh) ≤ 1 almost surely. We assume our action space is finite, |A| ≤ A, and in

all sections except Section 6.4.1, we assume our state space is also finite, |S| ≤ S.

Interaction protocol. In a POMDP, the states are hidden and unobservable; i.e., the agent is

only able to see the observations and its own actions. Each episode starts with initial state s1 which

is sampled from some unknown initial distribution. Then, at each step h ∈ [H], the environment

emits observation oh ∼ Oh(· | sh), the agent observes oh ∈ O, receives reward rh(oh), and takes

action ah ∈ A causing the environment to transition to sh+1 ∼ P(· | sh, ah).

1We study deterministic reward for simplicity. Our results readily generalize to random rewards.
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Multi-step decodability. We first define the notion of reachable trajectories.

Definition 6.2.1 (Reachable trajectories). We say a trajectory τ = (s1, o1, a1, r1, s2, . . . , sH , oH , aH , rH)

is reachable if the probability P ((s, o)1:H |a1:H) = (
∏H
h=1 O(oh|sh)) · (

∏H−1
h=1 P(sh+1|sh, ah)) is strictly

positive.

Now we present the key structural assumption of this work, which assumes that a suffix of length m

of the history suffices to decode the latent state. We use Zh to denote the set of suffixes at step h,

given by Zh = (O×A)min{h−1,m−1}×O.2 Additionally, since it will appear frequently in subscripts

in the sequel, let m(h) = min{h−m+ 1, 1}.

Assumption 6.2.2 (m-step decodability). There exists an unknown decoder φ? = {φ?h : Zh →

S}Hh=1 such that for every reachable trajectory τ = (s, o, a)1:H , we have sh = φ?h(zh) for all h ∈ [H],

where zh = ((o, a)m(h):h−1, oh).

We call a POMDP satisfying Assumption 6.2.2 an m-step decodable POMDP. An example

with m = 2 is illustrated in Fig. 6.1. Note that restricting decodability to only hold on reachable

sequences results in a weaker assumption, which can include more practical settings.

Our model is a generalization of the block Markov decision process (BMDP) (Jiang et al., 2017; Du

et al., 2019), which corresponds to the case where m = 1. However, we emphasize that when m = 1

there is no partial observability since the current observation suffices for decoding the hidden state.

Thus the BMDP model does not require memory while, for m > 1, our model does.

Policies and value functions. For m-step decodable POMDPs, we consider the class of m-step

policies. An m-step policy π is a collection π = {πh : Zh → A} that maps suffixes of length m of the

history to actions. The agent follows policy π by choosing action ah = πh(zh) at the hth step, where

zh = ((o, a)m(h):h−1, oh) ∈ Zh. We denote V π as the value for policy π, defined as the expected

total reward obtained when following policy π, that is V π = Eπ[
∑H
h=1 rh(oh)].

We can similarly define the value at step h to be the expected future reward when starting from

step h. While this value may depend on the entire history in general, it is not hard to show that

2When h ≤ m, this suffix includes the entire history starting from time step 1.
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in m-step decodable POMDPs with an m-step policy π, this value only depends on the suffix of

length m. Mathematically, we can define V πh : Zh → [0, 1] to be the value function at step h for (the

m-step) policy π as

V πh (z) := Eπ
[ H∑
h′=h+1

rh′(oh′) | zh = z
]
.

Similarly we define Qπh : Zh×A → [0, 1] to be the Q-value function at step h for (the m-step) policy

π as

Qπh(z, a) := Eπ
[ H∑
h′=h+1

rh′(oh′) | zh = z, ah = a
]
.

Furthermore, Assumption 6.2.2 guarantees that there exists an m-step policy π? which is optimal in

the sense V π
?

= maxπ∈Π V
π where Π is the class of all policies, which may depend on the entire

history. We use V ?, V ?h , and Q?h to denote V π
?

, V π
?

h , and Qπ
?

h respectively.

We define the Bellman operator Th at step h as

(Thg)(z, a) := E
[
rh+1(oh+1) + max

ah+1∈A
g(zh+1, ah+1)

| zh = z, ah = a
]
,

for any function g : Zh+1 × A → [0, 1] that depends on m-step suffix. It is not hard to check

that Q? satisfies the Bellman optimality equation Q?h(z, a) = (ThQ?h+1)(z, a) for all h ∈ [H] and

(z, a) ∈ Zh ×A.

Finally, for two non-stationary policies π1, π2 we use the notation π1 ◦t π2 be a non-stationary policy

that executes π1 for t− 1 time steps and then, starting from the tth time step, executes π2.

Learning objective. Our objective is to learn an ε-optimal policy π̂, which satisfies V π̂ ≥ V ?− ε.

6.2.1 Function approximation

In the function approximation setting, the learner is given a function class F = F1 × · · · × FH ,

where Fh ⊆ (Zh × A → [0, 1]) consists of candidate functions to approximate Q?h—the optimal
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Q-value function at step h. Without loss of generality we assume that fH+1 ≡ 0. We present

two assumptions that are commonly adopted in the literature to avoid challenges associated with

reinforcement learning with function approximation (e.g., the hardness results in Krishnamurthy

et al. 2016; Weisz et al. 2021).

Assumption 6.2.3 (Realizability). Q?h ∈ Fh for all h ∈ [H].

This assumption requires that our function class F in fact contains the the optimal Q-value function,

Q?.

Assumption 6.2.4 (Generalized Completeness). Thfh+1 ∈ Gh for all h ∈ [H] and fh+1 ∈ Fh+1,

where G = G1×· · ·×GH is an auxiliary function class provided to the learner, with Gh ⊆ (Zh×A →

[0, 1]).

The generalized completeness (Antos et al., 2008; Chen and Jiang, 2019) assumption requires the

auxiliary function class G to be rich enough so that applying the Bellman operator on any function

in the original class F results in a function in G. If we choose G = F , Assumption 6.2.4 reduces to

the standard completeness assumption, but separating the two classes provides more flexibility.

We use covering numbers to capture the statistical complexity, or effective size, of the classes F and

G.

Definition 6.2.5 (ε-cover). The ε-covering of a set X under a metric ρ, denoted by N (X , ε, ρ) is

the minimum integer n such that there exists a subset X0 ⊆ X with |X0| = n and for any x ∈ X

there exists y ∈ X0 such that ρ(x, y) ≤ ε.

In this work, for the function class F = F1 × · · · × FH , we use the metric ρ(f (1) − f (2)) =

maxh∈H‖f (1)
h − f (2)

h ‖∞ where f (1), f (2) ∈ F . Since this metric is fixed throughout the chapter, we

use a simpler notation of NF (ε) to denote the ε-covering number of F .

Finally, let πf = {zh 7→ arg maxa∈A fh(zh, a)}Hh=1 denote the greedy policy with respect to f ∈ F ,

where ties are broken in a canonical fashion.
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6.3 Warmup: Tabular Case

We start by considering a basic setting where the numbers of states, actions, and observations are

all finite and small, so we additionally have |O| ≤ O. In this setting, we describe a simple reduction

from an m-step decodable POMDP to a new MDP with augmented states. With this reduction at

hand, we can to apply any RL algorithms designed for the fully observable setting to learn a near

optimal policy.

In the reduction to an MDP, instead of using only the current observation oh as the state at time h,

we use the m-length suffix of observations and actions zh. We refer to such a suffix as a megastate.

Formally, the reduction uses a time-dependent extended state space Sm,h = Zh, and the next result

establishes that Sm,h induces Markovian dynamics. Additionally, an optimal policy of this MDP is

also an optimal policy of the original m-step decodable POMDP.3

Proposition 6.3.1 (Megastate MDP). The state space Sm,h induces Markovian dynamics Pm and

reward rm. Let this MDP be Mm =
(
Sm,h,A, H,P, r

)
. An optimal policy of Mm is an optimal

policy of the m-step decodable POMDP.

We refer toMm as the megastate MDP. With this proposition, we can apply any RL algorithm (e.g.,

UCB-VI by Azar et al. 2017) to the megastate MDP to learn a near optimal policy for the original

POMDP. Since the cardinality of the state space ofMm at each step is maxh∈[H]

∣∣Sm,h∣∣ ≤ OmAm−1.

We immediately obtain the following result.

Corollary 6.3.2 (Upper bound, tabular setting). For any ε, δ ∈ (0, 1), UCB-VI applied on to the

megastate-MDP Mm learns an ε-optimal policy for the original m-step decodable POMDP with

probability greater than 1− δ given O
(
OmAmpoly(H) log (1/δ) /ε2

)
samples.

We remark that the sample complexity scales exponentially with the decoding length m. The next

lower-bound verifies the necessity of the O(Am) term in the upper bound, so some exponential

dependence is required. It follows by a reduction to the lower bound of Krishnamurthy et al. (2016);

we show that their construction is, in fact, an m-step decodable POMDP. This yields the following

3All proofs are deferred to the appendices.
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result.

Proposition 6.3.3 (Lower bound, tabular setting). There exists an m-step decodable MDP that

requires at least Ω(Am/ε2) samples to find an ε-optimal policy.

Thus the Am dependence in the megastate reduction is optimal, although it is not clear whether

the Om dependence is necessary, which we discuss in more detail in Section 6.6. Regardless, the

megastate reduction is a reasonable approach for m-step decodable POMDPs when the observation

space is small, but, in many applications, the observations represent complex objects (like images or

high-dimensional data) so that even linear in O dependence is unsatisfactory. Such problems lie

outside the scope of tabular methods, and a fundamentally different approach is required.

6.4 Main results

In this section we present our main results which address the rich observation setting, where the

number of observation O is extremely large or infinite. The standard approach to tackle such

problems is via value function approximation: we assume access to a function class F of candidate Q-

value functions. Given such a class, the goal is to learn a near-optimal policy with sample complexity

scaling with the statistical complexity of F—in our case the log covering number logNF—but

independent of the size of the observation space. In this section, we develop an algorithm for rich

observation m-step decodable POMDPs and analyze its sample complexity.

Our algorithm, which we call m-Golf, is displayed in Algorithm 6. It is an adaptation of the

Golf algorithm, developed by Jin et al. (2021), for the rich observation MDP setting. m-Golf itself

differs from Golf only in one seemingly minor way, although this is quite critical for our analysis.

Before turning to this difference, let us review the high-level algorithmic approach.

Golf, and m-Golf, are optimistic algorithms that maintain a confidence-set of plausible Q-value

functions, and act optimistically with respect to this set. Given a function class F , we first collect a

few observations o1 and estimate the predicted initial value, i.e., E [f(o1, πf (o1))], for each f ∈ F .

Then, we initialize the confidence set B0 ← F and empty datasets {Dh}Hh=1, one for each time step.
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Algorithm 6 m-Golf: Golf for m-step decodable POMDP

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: Estimate value of initial state by collecting Kest episodes and only keeping their first observa-

tions, denoted by ô1
1, . . . , ô

Kest
1 . For f ∈ F , define

f̂1 = (1/Kest)

Kest∑
i=1

f(ôi1, πf (ôi1))

3: for epoch k from 1 to K do
4: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f̂1.
5: for step h from 1 to H do
6: Collect zh = (oh−m+1, ah−m+1, . . . , oh), ah, rh, and oh+1 by executing πk at step 1, . . . , h−

m and taking action uniformly at random at step h−m+ 1, . . . , h.
7: Augment Dh = Dh ∪ (zh, ah, rh, oh+1) for all h ∈ [H].
8: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Gh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(zh,ah,rh,oh+1)∈Dh

[ξh(zh, ah)− rh −max
a′∈A

ζh+1(zh+1, a
′)]2.

9: Output πout uniform mixture policy over {πk}Kk=1.

Then for each epoch k ∈ [K] we follow three steps:

1. Optimistic planning. Compute the function f ∈ Bk−1 with largest predicted initial value.

2. Data collection. Collect one trajectory by following πfk ◦m(h) Uniform(A) for each h ∈ [H].

That is we collect h trajectories total, rolling in with the greedy policy πfk until time h−m

and rolling out randomly.

3. Refine the confidence set. Update the confidence set to Bk using the newly collected trajectories.

The confidence set is designed so that Q? ∈ Bk for all k ∈ [K] and that all functions in Bk

have low squared Bellman error on the data collected in the previous episodes.

After iterating through these steps for several epochs, m-Golf outputs uniform mixture over all

previous policies {πk}Kk=1.

The main difference between Golf and m-Golf is in the data collection procedure. Instead of
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collecting H trajectories per epoch, Golf collets a single trajectory where all actions are taken by

the greedy policy πfk . On the other hand, in m-Golf, we interrupt the greedy policy and execute

random actions so that the tuple zh that is added to Dh is collected from πfk ◦m(h) Uniform. At

face value, this modification is relatively benign, but we will see how interrupting the greedy policy

is critical to establishing sample complexity guarantees in the m-step decodable POMDP.

We analyze m-Golf in two settings. The first is where the underlying/latent MDP is tabular,

meaning that S and A are small. The second setting is where the latent MDP has a linear or low

rank structure. Our first theorem provides a sample complexity guarantee for m-Golf when the

latent dynamics are tabular.

Theorem 6.4.1. Under Assumptions 6.2.2, 6.2.3, and 6.2.4, there exists an absolute constant c

such that for any δ ∈ (0, 1] and ε > 0, if we choose

Kest = c ·
(

log[NF (ε)/δ]/ε2
)

β = c ·
(

log
[
NG(ρ)KH/δ

]
+Kρ

)
ρ = ε2 ·

[
H2AmS log[S/ε]

]−1

in m-Golf (Algorithm 6), then the output policy πout is O(ε)-optimal with probability at least 1− δ

if

K ≥ Ω̃

(
H2AmS

ε2
· log

[
NG(ρ)

δ

])
.

Theorem 6.4.1 establishes a sample complexity bound form-Golf scaling as poly(S,Am, H, comp(F ,G), 1/ε)

where comp(·) is our measure of statistical complexity. Unlike the megastate reduction, there is

no explicit dependence on the size of the observation space O; instead the bound scales with the

complexity of the function class, which allows us to exploit domain knowledge and inductive biases

when deploying the algorithm. We emphasize that these previous results (Jiang et al., 2017; Jin

et al., 2021; Du et al., 2021) do not yield guarantees when m ≥ 2, as we will see in Section 6.5.
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6.4.1 Linear m-step Decodable POMDP

In this subsection, we show that m-Golf extends to the setting where the number of state S

is also large. Specifically, we consider the case where the latent MDP is a linear MDP Jin et al.

(2020c)—there exists known feature map ψ : S ×A → Rdlin such that the transition dynamics are

linear in ψ. Interestingly, we show that m-Golf is still applicable without change. It retains a

similar sample complexity guarantee where we replace the dependence on S with a dependence on

the latent dimensionality dlin.

Formally, a linear MDP is defined as follows:

Definition 6.4.2 (Linear MDP). An MDP M = (S,A, H,P, r) is said to be a linear with a

feature map ψ : S × A → Rdlin , if for any h ∈ [H]: There exists dlin unknown (signed) measures

µh = {µ(1)
h , . . . , µ

(dlin)
h } over S such that for any (s, a) ∈ S ×A we have

Ph(· | s, a) = 〈µh(·), ψ(s, a)〉

We assume the standard normalization: ‖ψ(s, a)‖ ≤ 1 for all (s, a) ∈ S ×A, ‖
∫
v(s)µh(s)‖2 ≤

√
dlin

for all h ∈ [H] and v with ‖v‖∞ ≤ 1.

The following result gives a sample complexity guarantee for m-Golf in the more general linear

m-step decodable POMDP model.

Theorem 6.4.3. Under Assumptions 6.2.2, 6.2.3, and 6.2.4 and assuming linear latent MDP; there

exists an absolute constant c such that for any δ ∈ (0, 1] and ε > 0, if we choose

Kest = c ·
(

log[NF (ε)/δ]/ε2
)

β = c ·
(

log
[
NG(ρ)KH/δ

]
+Kρ

)
ρ = ε2 ·

[
H2Amdlin log[dlin/ε]

]−1

in m-Golf (Algorithm 6), then the output policy πout is O(ε)-optimal with probability at least 1− δ
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if

K ≥ Ω̃

(
H2Amdlin

ε2
· log

[
NG(ρ)

δ

])
.

Theorem 6.4.3 is almost the same as Theorem 6.4.1 with the dependency on the number of latent

state S replaced by the ambient dimensionality dlin. As a result, Theorem 6.4.3 can apply to the

case where the number of state S is extremely large or even infinite, as long as the underlying MDP

has a linear structure.

6.5 Challenges and Proof Overview

In this section we elaborate on the main challenges in analysis, explain our main technique and

provide a proof overview for Theorem 6.4.1. For clarity, we will focus on the special case of 2-step

decodable POMDP in this setting. We refer reader to Appendix E.2 for cases where m > 2.

6.5.1 Challenges: Bellman Rank is Prohibitively Large

We first note that existing postive results for RL algorithms with general function approximation

such as Olive Jiang et al. (2017), Golf Jin et al. (2021) all rely on the structural properties that

certain complexity measure on the Bellman error is small. One such complexity is the Bellman

rank Jiang et al. (2017), which explains the tractability of block MDP (the special case of m-step

decodable POMDP with m = 1).

Consider the Bellman error at the hth time step of a function f ∈ F when executing roll-in policy π,

given by

Eh(π, f) = E[(fh − Thfh+1)(zh, πf (zh)) | a1:h−1 ∼ π].

Bellman rank is defined as the smallest integer M such that the Bellman error can be factorized

as inner product in M dimensional linear space. That is, there exists ζ, ξ ∈ RM such that

Eh(π, f) = 〈ζ(π), ξ(f)〉.

Intuitively, Bellman rank describes how much information is shared among past (roll-in policy π)
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and future (value function f) at step h. In the special case of 1-step decodable POMDP, it suffices

to consider 1-step policy where the choice of action ah only depends on the current observation oh.

In this case, given the state sh at the current step h, the past—(s, o, a)1:h−1 (which only depends on

roll-in policy π) is completely independent of the future—(oh, ah, (s, o, a)h+1:H) (which only depends

on function f). Therefore, it can be shown the Bellman rank of 1-step decodable POMDP (i.e. block

MDP) is upper bounded by the number of states S Jiang et al. (2017).

However, such independent structure completely collapses in 2-step decodable POMDP, where we

must consider 2-step policy. Due to the nature of such policies, the choice of action ah not only

depends on the current observation oh, but also the observation and action in the previous step

oh−1, ah−1 (as shown in Figure 6.2 blue box). Therefore, conditioning sh, the past is no longer

independent of the future. This can potentially lead to very large Bellman rank.

Formally, our next result shows that the Bellman rank in 2-step decodable POMDP can be

prohibitively large—there exists examples where the Bellman rank can be lower bounded by the

cardinality of the observation space Ω(O). This is highly undesirable in the rich observation setting

where O can be even infinite. Furthermore, we also show that Olive algorithm—which was proposed

in Jiang et al. (2017) to solve all RL problems with small Bellman rank—needs at least Ω(O) samples

to find an O(1) optimal policy.

Proposition 6.5.1 (Bellman rank of m-step decodable POMDP is large). There exists a 2-step

decodable POMDP M and a function class F such that the Bellman rank of (M,F) is Ω(O).

Additionally, Olive instantiated with F requires Ω(O) samples to find an o(1) optimal policy.

This highlights the challenge on directly applying existing results or techniques to solve m-step

decodable POMDPs. Although Olive solves a 1-step decodable POMDP—namely, a block MDP—it

fails in solving an m-step decodable POMDP for m ≥ 2.

94



s2

o2

s3

o3

s4

o4a2 a3

Figure 6.2: An illustration of the dependency structure of a moment matching policy, depicted in
red, and a regular policy, depicted in blue, in a 2-step decodable POMDP. The moment matching
policy µπ,h+1 selects action ah based on the state sh and observation oh to match the distribution
Pπ[ah | sh, oh]. It breaks the dependence on the history by marginalizing out (oh−1, ah−1), but
correctly matches the distribution Pπ[oh+1, ah, oh].

6.5.2 Proof Overview & Moment Matching Policy

Our main proof idea revolves around breaking the complicated dependencies introduced by multiple-

step policies, which requires a number of crucial observations.

Our first key observation is that, in order to establish the sample complexity for Golf algorithm,

we don’t necessarily need to prove the low rank structure of the Bellman error. We only need to

alternatively identify an auxiliary function E?h(π, f) which satisfies the following two properties (see

formal statement in Lemma E.2.9):

1. Matches with standard bellman error when π = πf :

E?h(πf , f) = Eh(πf , f).

2. Has a low-rank decomposition:

E?h(π, f) = 〈ζ(π), ξ(f)〉 .

for some ζ(·), ξ(·) ∈ RM with small M ,

This discovery gives us a lot extra freedom in designing the functional form of the E?h. In particular,
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for 2-step decodable POMDP, we define E?h to be the normal Bellman error but with the policy at

step h− 1 changed from roll-in policy π to a new policy µf which depends only on f instead of π.

E?h(π, f) ≡ E[(fh − Thfh+1)(zh, πf (zh)) | a1:h−1 ∼ π ◦h−1 µf ].

The second key observation is that we can choose µf in a form which breaks the dependency and

allows low-rank dependency. Concretely, instead of choosing µf to be standard 2-step policy where

ah−1 will then depend on (oh−2, ah−2, oh−1), we choose µf to be the policy that only depends on

(sh−1, oh−1) (See Figure 6.2 red box). The benefit of considering such policy is that now conditioned

on sh−1 at step h − 1, the past—(s, o, a)1:h−2 (which only depends on roll-in policy π) is now

independent of the future—(oh−1, ah−1, (s, o, a)h:H) (which only depends on function f). This

immediately leads to a low-rank decomposition of E?h(π, f) with rank M = S.

Our third key observation is that we can carefully choose the value of µf within the form specified

above, so that E?h(π, f) matches the Bellman error Eh(π, f) when roll-in policy is the greedy policy

of f , i.e. π = πf . This is done by the idea of “moment-matching”, which is the reason we call policy

µf the “moment matching policy”. Specifically, we choose policy µf such that

µf (ah−1|(o, s)h−1) = Eπf [πf (ah−1|zh−1)|(o, s)h−1]

which is policy of πf averaging over all trajectories with (o, s)h−1 fixed. The most important property

of this policy is that the joint distributions over zh for policy πf and policy πf ◦h−1 µf (which

switches at time step h− 1) are the same. In symbol:

Pπf (zh) = Pπf◦h−1µf (zh)

This directly leads to the matching in the Bellman error. This finishes our construction of E?h(π, f)

satisfying the two properties mentioned earlier and the main part of proof overview.

Finally, we comment that our construction of µf depends on the latent state s which can not be
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observed in POMDP. Nevertheless, m-Golf bypasses this problem by executing a uniform action

for m time steps, instead of executing µf ; taking the uniform action for the last m time steps

allows us to upper bound E?h(π, f) using the importance sampling trick, while only suffering an Am

degradation in the sample complexity. Such factor is necessary according to Proposition 6.3.3.

6.6 Conclusion

In this chapter, we initiate the study of m-step decodable POMDPs as a model for understanding

the role of short-term memory in sequential decision making. We consider both the tabular and

function approximation setting and obtain results that scale exponential with the memory window

rather than the horizon, which could be much larger. In the function approximation case, our

techniques rely crucially on the moment matching policy to break dependency on the history, and

we hope this concept may be useful in other settings with partial observability.

We believe our progress on understanding short-term memory is just scratching the surface and there

are many questions that remain open even in the m-step decodable POMDP model. The most basic

question pertains to the tabular setting, where the upper bound in Corollary 6.3.2 and the lower

bound in Proposition 6.3.3 differ by an Om factor. Instantiating m-Golf in the tabular setting also

incurs an Om factor. On the other hand, the next result shows that by using a carefully constructed

policy class in an importance sampling approach, we can avoid the Om factor in exchange for an AH

factor, which could be more favorable in some settings. See Appendix E.3 for details and the proof.

Proposition 6.6.1. There exists an algorithm such that for any m ≤ H and any m-step decod-

able POMDP, the algorithm returns an ε-optimal policy with probability greater than 1 − δ given

poly(AH , O, S,H, log(1/δ))/ε2 samples.

Based on this result, we conjecture that the Om factor can be avoided and that Ampoly(H,S,O,A)

is the optimal sample complexity for m-step decodable POMDPs. However, this question remains

open.

The second question concerns whether we can avoid completeness, as defined in Assumption 6.2.4,

97



in the rich observation setting. Intuition from prior works suggests that if we could replace the

squared bellman error constraint with one on the average Bellman errors, then an algorithm and

analysis similar to Olive would successfully do this. However, when working with average Bellman

errors, introducing the moment matching policy requires explicitly importance weighting with them,

meaning that we must use these policies in the algorithm and not just the analysis. Unfortunately

since we do not know the moment matching policies (or a small class containing them), this approach

seems to fail.

We believe that characterizing the optimal sample complexity (in the tabular setting) or removing

the completeness assumption (in the rich observation setting) will require new techniques and be a

mark of significant progress toward expanding our understanding of decision making with short-term

memory. We look forward to studying these questions in future work.
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Appendix A

Remaining Proofs of Chapter 2

A.1 Online gradient descent (OGD)

Algorithm 7 Online gradient descent (OGD)

1: input: projection oracle ΓΛ {ΓΛ(λ) = argminλ′∈Λ ‖λ− λ′‖}
2: init: λ1 arbitrarily
3: parameters: step size ηt
4: for t = 1 to T do
5: observe convex loss function `t : Λ→ R
6: λ′t+1 = λt − ηt∇`t(λt)
7: λt+1 = ΓΛ(λ′t+1)

Theorem A.1.1. (Zinkevich, 2003) Assume that for any λ,λ′ ∈ Λ we have ‖λ− λ′‖ ≤ D and

also ‖∇`t(λ)‖ ≤ G. Let ηt = η = D
G
√
T

. Then the regret of OGD is

RegretT (OGD) =

T∑
t=1

`t(λt)−min
λ

T∑
t=1

`t(λ) ≤ DG
√
T .
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A.2 Proof of Theorem 2.3.1

We have that

1

T

T∑
t=1

g(λt,ut) =
1

T

T∑
t=1

min
u∈U

g(λt,u) (A.1)

≤ 1

T
min
u∈U

T∑
t=1

g(λt,u) (A.2)

≤ min
u∈U

g

(
1

T

T∑
t=1

λt,u

)
(A.3)

≤ max
λ∈Λ

min
u∈U

g(λ,u). (A.4)

Eq. (A.1) is because the u-player is playing best response so that ut = argminu∈Ug(λt,u). Eq. (A.2)

is because taking the minimum of each term of a sum cannot exceed the minimum of the sum as a

whole. Eqs. (A.3) and (A.4) use the concavity of g with respect to λ, and the definition of max,

respectively. By letting δ = 1
T RegretT , writing the definition of regret for the λ-player, and using

`t(λ) = −g(λ,ut), we have

1

T

T∑
t=1

g(λt,ut) + δ =
1

T
max
λ∈Λ

T∑
t=1

g(λ,ut) ≥ max
λ∈Λ

g

(
λ,

1

T

T∑
t=1

ut

)
≥ min

u∈U
max
λ∈Λ

g(λ,u),

where the second and third inequalities use convexity of g with respect to u and definition of min,

respectively. Combining yields

min
u∈U

g

(
1

T

T∑
t=1

λt,u

)
≥ min

u∈U
max
λ∈Λ

g(λ,u)− δ,

and also

max
λ∈Λ

g

(
λ,

1

T

T∑
t=1

ut

)
≤ max

λ∈Λ
min
u∈U

g(λ,u) + δ,

completing the proof.
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A.3 Proof of Theorem 2.3.3

Let v be the value of the game in Eq. (2.7):

v = min
µ∈∆(Π)

dist(z(µ), C), (A.5)

and let `t(λ) = −λ · ẑt (i.e., the loss function that OGD observes).

Lemma A.3.1. For t = 1, 2, . . . , T we have

`t(λt) = −λt · ẑt ≥ −v − (ε0 + ε1).

Proof. By Eq. (2.5) (which must hold by Lemma 2.3.2), and by Eq. (A.5), there exists µ∗ ∈ ∆(Π)

such that

v = dist(z(µ∗), C) = max
λ∈Λ

λ · z(µ∗).

Thus, λt · z(µ∗) ≤ v since λt ∈ Λ for all t. By our assumed guarantee for the policy πt returned by

the planning oracle, we have

−λt · z(πt) ≥ −λt · z(µ∗)− ε0 ≥ −v − ε0.

Now using the error bound of the estimation oracle,

‖z(πt)− ẑt‖ ≤ ε1, (A.6)

and the fact that ‖λt‖ ≤ 1, we have

(−λt · ẑt) + ε1 ≥ −λt · z(πt).

Combining completes the proof.

Now we are ready to prove Theorem 2.3.3. Using the definition of mixed policy µ̄ returned by the
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algorithm we have

dist(z(µ̄), C) = dist

(
1

T

T∑
t=1

z(πt), C

)

= max
λ∈Λ

λ ·

(
1

T

T∑
t=1

z(πt)

)
(A.7)

=
1

T
max
λ∈Λ

T∑
t=1

λ · z(πt)

≤ 1

T
max
λ∈Λ

T∑
t=1

λ · ẑt + ε1 (A.8)

= − 1

T
min
λ∈Λ

T∑
t=1

`t(λ) + ε1 (A.9)

≤ − 1

T
min
λ∈Λ

T∑
t=1

`t(λ) + ε1 +
1

T

T∑
t=1

(`t(λt) + ε1 + ε0 + v) (A.10)

= v +

(
− 1

T
min
λ∈Λ

T∑
t=1

`t(λ) +
1

T

T∑
t=1

`t(λt)

)
+ 2ε1 + ε0

= v +
RegretT (OGD)

T
+ 2ε1 + ε0.

Here, Eq. (A.7) is by Eq. (2.5). Eq. (A.8) uses Eq. (A.6) and the fact that ‖λ‖ ≤ 1. Eq. (A.11) uses

Lemma A.3.1.

The diameter of decision set Λ = C◦∩B is at most 1. The gradient of the loss function ∇(`t(λ)) = −ẑt

has norm at most ‖z(πt)‖ + ε1 ≤ B
1−γ + ε1. Therefore, setting η =

(
( B

1−γ + ε1)
√
T
)−1

based on

Theorem A.1.1, we get

RegretT (OGD)

T
≤
(

B

1− γ
+ ε1

)
T−1/2

A.4 ApproPO for feasibility
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Algorithm 8 ApproPO – Feasibility

1: input projection oracle ΓC(·) for target set C which is a convex cone,
positive response oracle PosPlan(·), estimation oracle Est(·),
step size η, number of iterations T

2: define Λ , C◦ ∩ B, and its projection operator ΓΛ(x) , (x− ΓC(x))/max{1, ‖x− ΓC(x)‖}
3: initialize λ1 arbitrarily in Λ
4: for t = 1 to T do
5: Call positive response oracle for the standard RL with scalar reward r = −λt · z:

πt ← PosPlan(λt)
6: Call the estimation oracle to approximate long-term measurement for πt:

ẑt ← Est(πt)
7: Update using online gradient descent with the loss function `t(λ) = −λ · ẑt:

λt+1 ← ΓΛ

(
λt + ηẑt

)
8: if `t(λt) < −(ε0 + ε1) then
9: return problem is infeasible

10: return µ̄, a uniform mixture over π1, . . . , πT

A.4.1 Proof of Theorem 2.3.4

Lemma A.4.1. If the problem is feasible, then for t = 1, 2, . . . , T we have

`t(λt) = −λt · ẑt ≥ −(ε0 + ε1).

Proof. If the problem is feasible, then there exists µ∗ such that z(µ∗) ∈ C. Since all λt ∈ C◦, they

all have non-positive inner product with every point in C including z(µ∗). Since −λt · z(µ∗) ≥ 0,

we can conclude that maxπ∈ΠR(π) = maxπ∈Π−λt · z(π) ≥ 0. Therefore, by our guarantee for the

positive response oracle,

R(πt) = −λt · z(π) ≥ −ε0.

Now using Eq. (A.6) and the fact that ‖λt‖ ≤ 1, we have

(−λt · ẑt) + ε1 ≥ −λt · z(πt).

Combining completes the proof. The proof of Theorem 2.3.4 is similar to that of

Theorem 2.3.3. If the algorithm reports infeasibility then the problem is infeasible as a result of
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Lemma A.4.1. Otherwise, we have

1

T

T∑
t=1

(`t(λt) + ε1 + ε0) ≥ 0,

which can be combined with Eq. (A.9) as before. Continuing this argument as before yields

dist(z(µ), C) ≤
(

B

1− γ
+ ε1

)
T−1/2 + 2ε1 + ε0,

completing the proof.

A.5 Proof of Lemma 2.3.5

Let C′ = C × {κ} and q be the projection of x̃ = x⊕ 〈κ〉 onto C̃ = cone(C′), i.e.,

q = arg min
y∈C̃
‖x̃− y‖.

Let r be the last coordinate of q. We prove the lemma in cases based on the value of r (which

cannot be negative by construction).

Case 1 (r > κ): Since q ∈ cone(C′) with r > 0, there exists α > 0 and q′ ∈ C′ so that q = αq′.

See Figure A.1(a). Consider the plane defined by the three points x̃,q,q′. Since the origin 0 is on

the line passing through q and q′, it must also be in this plane. Now consider the line that passes

through x̃ and q′. Note that all points on this line have last coordinate equal to κ, and they are all

also in the aforementioned plane. Let v ⊕ 〈κ〉 be the projection of 0 onto this line (v ∈ Rd).

Note that the two triangles ∆(x̃,q,q′) and ∆(0,v⊕〈κ〉,q′) are similar since they are right triangles

with opposite angles at q′. Therefore, by triangle similarity,

‖q′‖
‖v ⊕ 〈κ〉‖

=
‖x̃− q′‖
‖x̃− q‖

≥ dist(x̃, C′)
dist(x̃, C̃)

=
dist(x, C)
dist(x̃, C̃)

.
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Since q′ ∈ C′, we have ‖q′‖ ≤
√

(maxx∈C ‖x‖)2 + κ2, resulting in

‖q′‖
‖v ⊕ 〈κ〉‖

≤
√

(maxx∈C ‖x‖)2 + κ2

κ
=
√

1 + 2δ ≤ 1 + δ

by the choice of κ given in the lemma. Combining completes the proof for this case.

Case 2 (r = κ): Since q ∈ cone(C′) with κ as last coordinate, we have q ∈ C′. Thus,

dist(x, C) = dist(x̃, C′) ≤ ‖x̃− q‖ = dist(x̃, C̃)

which completes the proof for this case.

Case 3 (0 < r < κ): The proof for this case is formally identical to that of Case 1, except that,

in this case, the two triangles ∆(x̃,q,q′) and ∆(0,v ⊕ 〈κ〉,q′) are now similar as a result of being

right triangles with a shared angle at q′. See Figure A.1(b).

Case 4 (r = 0): Since q ∈ cone(C′), q must have been generated by multiplying some α ≥ 0 by

some point in C′. Since all points in C′ have last coordinate equal to κ > 0, and since r = 0, it must

be the case that α = 0, and thus, q = 0. Let q′ be the projection of x̃ onto C′. See Figure A.1(c).

Consider the plane defined by the three points x̃,q = 0,q′. Let q′′ be the projection of x̃ onto the

line passing through q and q′. Then

‖x̃− q′′‖ ≤ ‖x̃‖ = dist(x̃, C̃).

Now consider the line passing through x̃ and q′. Note that all points on this line have last coordinate

equal to κ and are also in the aforementioned plane. Let v ⊕ 〈κ〉 be the projection of 0 onto this

line (v ∈ Rd). Note that the two triangles ∆(x̃,q′′,q′) and ∆(0,v ⊕ 〈κ〉,q′) are similar since they

are right triangles with a shared angle at q′. Therefore, by triangle similarity,

‖q′‖
‖v ⊕ 〈κ〉‖

=
‖x̃− q′‖
‖x̃− q′′‖

≥ dist(x̃, C′)
dist(x̃, C̃)

=
dist(x, C)
dist(x̃, C̃)

.
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The rest of the proof for this case is exactly as in Case 1.

A.6 Additional experimental details

All the models were trained using the following hyperparameters: policy network consists of 2-layer

fully-connected MLP with ReLU activation and 128 hidden units and a A2C learning rate of 10−2.

For ApproPO, the constant κ (subsection 2.3.3) is set to be 20. In the following figures, the

performance of the algorithms has been depicted using different hyperparamters; showing average

and standard deviation over 25 runs,.
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(a) r > κ

(b) 0 < r < κ

(c) r = 0

Figure A.1: Geometric Interpretation of the proof of Lemma 2.3.5
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Figure A.2: Performance of ApproPO using different hyperparameters. The two numbers are
learning rate for the online learning algorithm and n (subsection 2.3.4) respectively. In all figures,
the x-axis is number samples. The vertical axes correspond to the three constraints, with thresholds
shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an upper
bound.
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Figure A.3: Performance of ApproPO with diversity constraints using different hyperparameters.
The two numbers are learning rate for the online learning algorithm and n (subsection 2.3.4)
respectively. In all figures, the x-axis is number samples. The vertical axes correspond to the three
constraints, with thresholds shown as a dashed line; for reward (middle) this is a lower bound; for
the others it is an upper bound.
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Figure A.4: Performance of RCPO using different learning rates for Lagrange multiplier. In all
figures, the x-axis is number samples. The vertical axes correspond to the three constraints, with
thresholds shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an
upper bound.
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Appendix B

Remaining Proofs of Chapter 3

Structure of the supplementary material.

The supplementary material consists of six sections:

• Appendix B.1 provides the formal description of the algorithm and the instantiations of

ConPlanner as well as how it can be expressed as a (linear/convex) mathematical program.

• Appendix B.2 provides the proofs for the results of the basic setting presented in Section 3.3.

• Appendix B.3 provides the proofs and additional discussion for the results of the concave-convex

setting presented in Section 3.4.

• Appendix B.4 provides the proofs and additional discussion for the results of knapsack setting

presented in Section 3.5.

• Appendix B.5 provides further details regarding the experiments presented in Section 3.6.

• Appendix B.6 provides auxiliary concentration lemmas useful for the derivation of our results.

.

124



B.1 Algorithm: Formal description and design choices

Our main algorithm, denoted by ConRL, is presented at Algorithm 9. We instantiate ConRL for

our different settings (i.e. basic setting, concave-convex, and knapsack) by using the appropriate

ConPlanner that we discuss in the remainder of this section.

Algorithm 9 ConRL

1: for Episode k from 1 to K do

2: Compute empirical estimates:

Compute Nk, p̂k, r̂k, and ĉk based on equations (3.3)

3: Compute bonus:

Compute b̂k as equation (3.5)

4: Call constrained planner:

πk ← ConPlanner(p̂k, r̂k, ĉk, b̂k)

5: Execute policy: initial state sk,1 = s0

6: for Stage h from 1 to H do

7: Select ak,h ∼ πk
(
sk,h

)
8: Observe reward rk,h, consumptions ∀i ∈ D : ck,h,i, and new state sk,h+1

B.1.1 Basic setting - BasicConPlanner

We define the bonus-enhanced cMDP, i.e. M(k) =
(
p(k), r(k), c(k)

)
, as

p(k)(s′|s, a) = p̂k(s′|s, a) ∀s, a, s′

r(k)(s, a) = r̂k(s, a) + b̂k(s, a) ∀s, a

c(k)(s, a, i) = ĉk(s, a, i)− b̂k(s, a) ∀s, a, i ∈ D
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then we solve the following optimization problem

max
π

Eπ,p
(k)
[ H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah, i

)]
≤ ξ(i).

This optimization problem can be solved exactly since it is equivalent to the following linear program

on occupation measures (Rosenberg and Mansour, 2019; ?). Decision variables are ρ(s, a, h), i.e.

probability of agent being at state action pair (s, a) at time step h.

max
ρ

∑
s,a,h

ρ(s, a, h)r(k)(s, a) s.t.
∑
s,a,h

ρ(s, a, h)c(k)(s, a, i) ≤ ξ(i) ∀i ∈ D

∀s′, h
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p(k)(s′|s, a)

∀s, a, h 0 ≤ ρ(s, a, h) ≤ 1
∑
s,a

ρ(s, a, h) = 1

(B.1)

B.1.2 Concave-convex setting - ConvexConPlanner

In this setting, unlike basic setting, objective and constraints are not linear. Therefore, due to lack

of monotonicity, we cannot explicitly define the bonus-enhanced cMDPM(k) =
(
p(k), r(k), c(k)

)
.

The bonus-enhanced cMDP is implicit in the following program that we solve (see section 3.4)

max
π

max
r(k)∈

[
r̂k±b̂k

] f(Eπ,p(k)
[ H∑
h=1

r(k)
(
sh, ah

)])
s.t. min

c(k)∈
[
ĉk±b̂k·1

] g(Eπ,p(k)
[ H∑
h=1

c(k)
(
sh, ah

)])
≤ 0.

Similar to before, expressing this program based on occupation measures provides a convex program.

max
ρ

max
r∈
[
r̂k±b̂k

] f( ∑
s,a,h

ρ(s, a, h)r(s, a)
)

s.t. min
c∈
[
ĉk±b̂k·1

] g( ∑
s,a,h

ρ(s, a, h)c(s, a)
)
≤ 0

∀s′, h :
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p̂k(s′|s, a)

∀s, a, h : 0 ≤ ρ(s, a, h) ≤ 1 and
∑
s,a

ρ(s, a, h) = 1

(B.2)
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The notations r ∈
[
r̂k ± b̂k

]
and c ∈

[
ĉk ± b̂k · 1

]
are defined as

r ∈
[
r̂k ± b̂k

]
⇐⇒ ∀s, a : r(s, a) ∈ [r̂k(s, a)− b̂k(s, a), r̂k(s, a) + b̂k(s, a)]

c ∈
[
ĉk ± b̂k · 1

]
⇐⇒ ∀i ∈ D, s, a : c(s, a, i) ∈ [ĉk(s, a, i)− b̂k(s, a), ĉk(s, a, i) + b̂k(s, a)]

Note that if f and g are linear, we end up with a linear program similar to (B.1)

B.1.3 Knapsack setting - KnapsackConPlanner

We define the bonus-enhanced cMDP, i.e. M(k) =
(
p(k), r(k), c(k)

)
similar to basic setting (B.1.1).

We also solve a similar optimization problem with tighter constraints:

max
π

Eπ,p
(k)
[ H∑
h=1

r(k)
(
sh, ah

)]
s.t. ∀i ∈ D : Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah, i

)]
≤ (1− ε)Bi

K
.

This optimization problem can again be solved using the following linear program on occupation

measures. Decision variables are ρ(s, a, h), i.e. probability of agent being at state action pair (s, a)

at step h.

max
ρ

∑
s,a,h

ρ(s, a, h)r(k)(s, a) s.t.
∑
s,a,h

ρ(s, a, h)c(k)(s, a, i) ≤ (1− ε)Bi
K

∀i ∈ D

∀s′, h
∑
a

ρ(s′, a, h+ 1) =
∑
s,a

ρ(s, a, h)p(k)(s′|s, a)

∀s, a, h 0 ≤ ρ(s, a, h) ≤ 1
∑
s,a

ρ(s, a, h) = 1

(B.3)

B.2 Analysis: Basic setting (Section 3.3)

In this section, we prove the main guarantee for the basic setting.

127



B.2.1 Validity of bonus (Lemma 3.3.2)

We first prove that b̂k(s, a) = min

{
2H,H

√
2 ln
(

8SAH(d+1)k2/δ)

Nk(s,a)

}
of Eq. Eq. (3.5) is valid as in the

Definition 3.3.1.

Proof of Lemma 3.3.2. We focus on a single state-action pair s, a, stage h, and objective m. Since

the support of m is in [0, 1] and the one of the value is in [0, H − 1], by Hoeffding inequality (see

Lemma B.6.2), it holds that, for all k, since (s, a)-pair is visited Nk(s, a) times prior to episode k,

with probability at least 1− δ′:

∣∣∣(m̂k(s, a)−m?(s, a)
)

+
∑
s′∈S

(
p̂k(s′|s, a)− p?(s′|s, a)

)
V
∣∣∣ ≤ H√2 ln(2/δ′)

Nk(s, a)
.

Also note that m̂k(s, a) ∈ [0, 1],m?(s, a) ∈ [0, 1], and ‖V ‖∞ ≤ H, the LHS of the above inequality

must be less than 1 +H ≤ 2H.

As a result, the bonus b̂k(s, a, δ) satisfies this inequality for a particular state-action-step-objective

with failure probability at most δ′ = δ
4SAH(d+1)k2 and is therefore valid (satisfying it for all states-

actions-steps-objectives) with failure probability δ
4k2 . Union bounding across episodes, the probability

of b̂k(s, a, δ) not being valid for some k is at most
∑K
k=1

δ
4k2 ≤ δ.

B.2.2 Valid bonus implies optimism

The main reason to optimize a bonus-enhanced model with valid bonuses is because the latter render

the model optimistic, i.e., its estimated reward is an overestimate of the true reward. Similarly, in

constrained settings, its estimated resource consumptions are underestimates of the true resource

consumptions. This is formalized in the following definition.

Definition B.2.1. A cMDPM = (p, r, c) is optimistic if its estimated reward (resp. consumption)

value function for policy π? upper (resp. lower) bounds its corresponding value function under the
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ground truth:

E
[
V π

?,p
r (s1, 1)

]
≥ E

[
V π

?,p?

r? (s1, 1)
]

and E
[
V π

?,p
ci (s1, 1)

]
≤ E

[
V π

?,p?

c?i
(s1, 1)

]
∀i ∈ D.

An important block of the analysis for the basic setting is to show that, when using a bonus-enhanced

model with valid bonuses, the resulting cMDP is optimistic.

Lemma B.2.2. If the bonus b̂k(s, a) of Eq. Eq. (3.5) in episode k is valid (Definition 3.3.1) for the

corresponding cMDPM(k) =
(
p(k), r(k), c(k)

)
then M(k) is optimistic.

Proof. We first prove the optimism of the model for the reward objective. More concretely, we show

by induction that for any state s, action a, and stage h, Qπ
?,p(k)

r(k) (s, a, h) ≥ Qπ
?,p?

r? (s, a, h); taking

expectation on the state-action pair of the first state, the claim then follows.

Since the setting ends at episode H, Qπ
?,p(k)

r(k) (s, a,H + 1) = Qπ
?,p?

r? (s, a,H + 1) = 0.

We assume that the inductive hypothesis Qπ
?,p(k)

r(k) (s, a, h+ 1) ≥ Qπ
?,p?

r? (s, a, h+ 1) (and thus also

V π
?,p(k)

r(k) (s, h+ 1) ≥ V π
?,p?

r? (s, h+ 1)) holds, and proceed with the inductive step. The Q-functions

in question are:

Qπ
?,p(k)

r(k) (s, a, h) = r(k)(s, a) +
∑
s′∈S

p(k)(s′|s, a)V π
?,p(k)

r(k) (s′, h+ 1)

≥ r(k)(s, a) +
∑
s′∈S

p(k)(s′|s, a)V π
?,p?

r? (s′, h+ 1)

Qπ
?,p?

r? (s, a, h) = r?(s, a) +
∑
s′∈S

p?(s′|s, a)V π
?,p?

r? (s′, h+ 1)

Subtracting, we have:

Qπ
?,p(k)

r(k) (s, a, h)−Qπ
?,p?

r? (s, a, h) ≥
(
r̂k(s, a) + b̂k(s, a)− r?(s, a)

)
+
∑
s′∈S

(
p̂k(s′|s, a)− p?(s′|s, a)

)
V π

?,p?

r? (s′, h+ 1) ≥ 0,
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where the last inequality holds since the bonuses are valid.

The optimism of the model with respect to the consumption objectives follows the same steps

altering the direction of the inequalities and setting the estimate as empirical mean minus the

bonus.

We emphasize that our bonus in Eq Eq. (3.5) does not scale polynomially with respect to |S|; despite

that, as indicated by the above lemma, it suffices to prove optimism.

B.2.3 Simulation lemma

To prove the Bellman-error regret decomposition, an essential piece is the so called simulation lemma

(Kearns and Singh, 2002) which we adapt to constrained settings below:

Lemma B.2.3 (Simulation lemma). For any policy π, any cMDPM = (p, r, c), and any objective

m ∈ {r} ∪ {ci}i∈D with corresponding true objective m? ∈ {r?} ∪ {c?i }i∈D,, it holds that:

Eπ
[
V π,pm (s1, 1)

]
− Eπ

[
V π,p

?

m? (s1, 1)
]

= Eπ
[ H∑
h=1

Bellπ,pm (sh, ah, h)
]
. (B.4)

Proof. For all of m ∈ {r} ∪ {ci}i∈D, rearranging the definitions of Bellman errors, we obtain:

Qπ,pm (s, a, h) =
(
Bellπ,pm (s, a, h) +m?(s, a)

)
+
∑
s′∈S

p?(s′|s, a)V π,pm (s′, h+ 1)

Qπ,p
?

m? (s, a, h) =
(
Bellπ,p

?

m? (s, a, h) +m?(s, a)
)

+
∑
s′∈S

p?(s′|s, a)V π,p
∗

m∗ (s′, h+ 1)

By definition of the Bellman error, the Bellman error with respect to the true model is equal to 0.

As a result, subtracting the two above equations, we obtain:

Qπ,pm (s, a, h)−Qπ,p
?

m? (s, a, h) = Bellπ,pm (s, a, h) +
∑
s′∈S

p?(s′|s, a)
(
V π,pm (s′, h+ 1)− V π,p

?

m? (s′, h+ 1)
)
.
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Taking expectation over policy π to select a, the initial state s1, and setting h = 1, we obtain:

Es1
[
V π,pm

(
s(1), 1

)
− V π,p

?

m?
(
s1, 1

)]
= Eπ

[
Bellπ,pm

(
s1, a1, 1

)]
+ Eπ

[
V π,pm

(
s2, 2

)
− V π,p

∗

m?
(
s2, 2

)]
.

Recursively bounding the second term of the RHS as above concludes the lemma.

B.2.4 Bellman-error regret decomposition (Proposition 3.3.3)

Proof of Proposition 3.3.3. The consumption requirement Eq. (3.6) for resource i follows by applying

the simulation lemma (Lemma B.2.3) on cMDPM(k) and objective m = c
(k)
i (with corresponding

true objective m? = c?i ) and using that πk is feasible for ConPlanner(p(k), r(k), c(k)):

Eπk,p
?
[ H∑
h=1

c?(sh, ah, i)
]

= Eπk
[
V π,p

?

c?i
(s1, 1)

]
= E

[
V πk,pci (s1, 1)

]
− Eπk

[ H∑
h=1

Bellπk,p
(k)

c
(k)
i

(
sh, ah, h)

]
≤ ξ(i) + Eπk

[ H∑
h=1

∣∣∣Bellπk,p
(k)

c
(k)
i

(
sh, ah, h

)∣∣∣]

Regarding the reward requirement Eq. (3.6), what we wish to bound is:

Eπ
?,p?
[ H∑
h=1

r?(sh, ah)
]
− Eπk,p

?
[ H∑
h=1

r?(sh, ah)
]

= E
[
V π

?,p?

r? (s1, 1)
]
− E

[
V πk,p

?

r? (s1, 1)
]

the validity of the bonus implies that the model M(k) is optimistic (Lemma B.2.2), i.e., we have

that E
[
V π

?,p?

r? (s1, 1)
]
≤ E

[
V π

?,p(k)

r(k) (s1, 1)
]
. If π? is feasible for ConPlanner(p(k), r(k), c(k)) then,

since πk is the maximizer for this program:

E
[
V π

?,p(k)

r(k) (s1, 1)
]
− E

[
V πk,p

?

r? (s1, 1)
]
≤ E

[
V πk,p

(k)

r(k) (s1, 1)
]
− E

[
V πk,p

?

r? (s1, 1)
]

= Eπk
[ H∑
h=1

Bellπk,p
(k)

r(k)

(
sh, ah, h

)]

where the last equality holds by applying the simulation lemma with m = r. Hence, this proves

Eq. (3.6).
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What is left to show is that π? is indeed feasible for ConPlanner(p(k), r(k), c(k)). Since M(k) is

optimistic and π? is feasible for the ground truth M?, for all resources i ∈ D:

E
[
V π

?,p(k)

c
(k)
i

(s1, 1)
]
≤ E

[
V π

?,p?

c?i
(s1, 1)

]
≤ ξ(i).

This completes the proof of the proposition.

B.2.5 Bounding the Bellman error

We now provide an upper bound on the Bellman error which arises in the RHS of the regret

decomposition (Proposition 3.3.3).

Lemma B.2.4. Let ε > 0. If the bonus b̂k is valid for all episodes k simultaneously then, with

probability at least 1− δ: for all objectives m(k) ∈ {r(k)}∪{c(k)
i }i∈D, transitions p = p(k), and stages

h, the Bellman error at episode k is upper bounded by:

∣∣∣Bellπk,p
(k)

m(k) (s, a, h)
∣∣∣ ≤ 4H2

√
2S ln

(
16SAH2(d+ 1)k2/(εδ))

Nk(s, a)
+ εS.

Proof of Lemma B.2.4. Let Ψ be an ε-net in [−2H2, 2H2]S . For a fixed value V̄ ∈ Ψ, similar to

Lemma 3.3.2, with probability 1 − δ′, simultaneously for all states s ∈ S, actions a ∈ A, steps

h ∈ [H], episodes k ∈ [K], and objectives m(k) ∈ {r(k)} ∪ {c(k)
i }i∈D, it holds that:

∣∣∣m(k)(s, a)−m?(s, a) +
∑
s′∈S

(
p(s′|s, a)− p?(s′|s, a)

)
V̄ (s′)

∣∣∣
≤ b̂k(s, a) + 2H2

√
2 ln

(
8SAH(d+ 1)k2/δ′)

Nk(s, a)

Since Ψ is an ε-net for V̄ , there are (2H2/ε)S potential values. In order to have the above hold

simultaneously for all these values with probability 1− δ, we need to set δ′ = δ
(2H2/ε)S

.
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Since the value
(
p(k)(s′|s, a)− p?(s′|s, a)

)
V πk,p
m(k) (s′, h+ 1) is in [−2H2, 2H2] for all s′, it holds that

there exists a value V in the ε-net with distance at most εS. As a result, since b̂k(s, a) is valid for k:

∣∣∣Bellπk,p
(k)

m(k) (s, a, h)
∣∣∣ ≤ ∣∣∣m(k)(s, a)−m?(s, a) +

∑
s′∈S

(
p(k)(s′|s, a)− p?(s′|s, a)

)
V (s′)

∣∣∣
+
∣∣∣ ∑
s′∈S

(
p(k)(s′|s, a)− p?(s′|s, a)

)(
V (s′)− V πk,p

(k)

m(k) (s′, h+ 1)
)∣∣∣

≤ b̂k(s, a) + 2H2

√
2S ln

(
16SAH2(d+ 1)k2/(εδ))

Nk(s, a)
+ εS.

Upper bounding b̂k(s, a) ≤ 2H2

√
2S ln

(
16SAH2(d+1)k2/(εδ))

Nk(s,a) completes the lemma.

B.2.6 Final guaraantee for the basic setting (Theorem 3.3.4)

Proof. The failure probability of the algorithm is δ due to the validity of bonus b̂k(s, a) (Lemma 3.3.2)

and another δ by the bound on Bellman error (Lemma B.2.4). When neither failure events occur

(probability 1 − 2δ), Proposition 3.3.3 upper bounds either of reward or consumption regret by

Eπk
[∣∣∣Bellπk,p

(k)

m(k) (sh, ah, h)
∣∣∣]. By Lemma B.2.4, the Bellman error at episode t, for ε > 0, is at

most:

∣∣∣Bellπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣ ≤ 4H2

√
2S ln

(
16SAH2(d+ 1)t2/(εδ))

Nt(s, a)
+ εS

Summing across all h = 1 . . . H and t = 1, . . . , k, the sum of Bellman errors is at most:

k∑
t=1

H∑
h=1

∣∣∣Bellπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣

≤
k∑
t=1

H∑
h=1

(
4H2

√
2S ln

(
16SAH2(d+ 1)t2/(εδ))

Nt(s, a)
+ εS

)
≤
∑
s,a

( 2H∑
j=1

4H2
√

2S ln
(
16SAH2(d+ 1)k2/(εδ

)
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+

Nk(s,a)∑
j=H+1

4H2

√
4S ln

(
16SAH2(d+ 1)k2/(εδ))

j
+ εS

)

The second inequality follows since a particular state-action pair may have the same visitations

for H times (as we only update this quantity at the end of the episode). To avoid incurring an

additional dependence on H, we separate the first H visitations of each state-action pair and treat

the bound as if j = 1 for them. 1 For the remaining visitations, j and Nk(s, a) are always within a

factor of 2 and this factor therefore appears within the square root.

We now bound the second term:

∑
s,a

(Nk(s,a)∑
j=H+1

4H2

√
4S ln

(
16SAH2(d+ 1)k2/(εδ))

j
+ εS

)
≤ 4SAH2

√
Nk(s, a) ln

(
Nk(s, a)

)
· 4S ln

(
16SAH2(d+ 1)k2/(εδ)) + εkHS

≤ 4SAH2

√
kH · 4S · ln(k) ln

(
16SAH2(d+ 1)k2/(εδ)

)
SA

+ εkHS

≤ 16S
√
AH5 ·

√
k ·
√

ln(k) ln
(
2SAH(d+ 1)k/δ

)
+ 1.

The last inequality holds by setting ε = 1
kHS .

The first term can be bounded by additive terms that depend only logarithmically on k:

∑
s,a

( 2H∑
j=1

4H2
√

2S ln
(
16SAH2(d+ 1)k2/(εδ

)
≤ 32S3/2AH3

√
ln(2SAH(d+ 1)k/δ

)

As a result:

k∑
t=1

H∑
h=1

∣∣∣Bellπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣ ≤ 16S

√
AH5

√
k ·
√

ln(k) ln
(
2SAH(d+ 1)k/δ

)
+ 1

+ 32S3/2AH3
√

ln
(
2SAH(d+ 1)k/δ

)
1The reason why we sum until 2H in the first term is since we want to consider all such visitations that occur in

an episode that started with Nk(s, a) < H; the additional factor of 2 in the second term comes since, j/Nt(s, a) ≤ 2
if Nt(s, a) ≥ H and the j-th visitation happens within the same episode.
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Now we link the additive Bellman error to the expected sum of Bellman errors under the expectation

of the policies {πt} (as needed by Proposition 3.3.3) via a simple martingale argument. From

Lemma B.6.3, with probability at least 1− δ, we have:

∣∣∣∣∣
k∑
t=1

H∑
h=1

∣∣∣Bellπt,p
(t)

m(t) (st,h, at,h, h)
∣∣∣− k∑

t=1

H∑
h=1

Eπt
[
H∑
h=1

∣∣∣Bellπt,p
(t)

m(t) (sh, ah, h)
∣∣∣]∣∣∣∣∣

≤ 5H2.5
√

2 ln(4k2/δ)k,

where we use the fact that |Bellπ,pm | ≤ 5H2 due to of Qπ,pm (s, a) ∈ [0, 2H2], m?(s, a) ∈ [0, 1], and

V π,pm (s) ∈ [0, 2H2]. Combining the above, we conclude the proof.

B.3 Analysis: concave-convex setting (Section 3.4)

In this section, we prove the main guarantee for the convex-concave setting. Since the regret

decomposition of the basic setting (Proposition 3.3.3) does not hold direclty as f and g are not linear,

we need to create an analogous regret decomposition (Proposition B.3.2) for the convex-concave

setting. This can be done by leveraging the Lipschitzness of the functions. Armed with this

new regret decomposition, we can directly call the results we have for for the basic setting (e.g.,

upper bounds of Bellman errors) to conclude the regret analysis for the convex-concave setting.

The first step leading to this regret decomposition is to show that π? is a feasible solution of

ConvexConPlanner.

B.3.1 Feasibility of optimal policy in concave-convex setting (Lemma

B.3.1)

Lemma B.3.1. If the bonus b̂k is valid (in the sense of Definition 3.3.1) then policy π? that

maximizes the objective of the convex-concave setting is feasible in ConvexConPlanner.

Proof. Unlike the linear case, the feasibility of π?, requires more care. Applying the same dynamic
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programming arguments as in Lemma B.2.2, it follows that:

∀i ∈ D : E
[
V π

?,p(k)

ĉi,k−bk (s1, 1)
]
≤ Es

[
V π

?,p?

c?i
(s1, 1)

]
≤ E

[
V π

?,p(k)

ĉi,k+bk
(s1, 1)

]
.

Letting g̃(α) = E
[
V π

?,p(k)

ĉi,k+αbk
(s(1), 1)

]
, the above can be rewritten as:

∀i ∈ D : g̃(−1) ≤ E
[
V π

?,p?

c?i
(s1, 1)

]
≤ g̃(1).

Since g̃(·) is the expected value over the same policy and under the same transitions, it is continuous

with respect to its argument. As a result, applying mean-value theorem on each i separately,

there exists some αi such that g̃(αi) = Es
[
V π

?,p?

c?i
(s1, 1)

]
. Due to the feasibility of π? on the true

transitions and consumptions, it holds that g
(
g̃(αi)

)
≤ 0. Hence, selecting estimates ĉi,k + αib̂k

creates a feasible solution for π? under the estimated transitions of the ConvexConPlanner

program. The final value of π? at this program maximizes the objective retaining feasibility; hence

the existence of one feasible selection of consumption estimates concludes the proof of the lemma.

We conclude by remarking that proving optimism feasibility for the concave-convex setting in

multiple-step RL setting is more challenging than that in single-step multi-arm bandit setting

Agrawal and Devanur (2014) since in bandits, there are no transitions. In the proof above, to show

that π? is feasible in ConvexConPlanner which is defined with respect to p(k), we leverage the fact

that g̃(α) is continuous and a novel application of mean-value theorem to link π?’s performance in the

optimistic model E
[
V π

?,p(k)

ĉi,k+αibk
(s1, 1)

]
and π?’s performance under the real model Es

[
V π

?,p?

c?i
(s1, 1)

]
.

B.3.2 Regret decomposition for concave-convex setting

Using the Lipschitz continuous assumption of f and g, we can decompose the regret into a sum of

Bellman errors as before, but scaled by the Lipschitz constant this time.

Proposition B.3.2. Let L be the Lipschitz constant for f and g. If b̂k(s, a, δ) is valid for all

episodes k simultaneously then the per-episode reward and consumption regrets can be upper bounded
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by:

f
(
Eπ

?,p?
[ H∑
h=1

r?(sh, ah)
])
− f

(
Eπk,p

?
[ H∑
h=1

r?(sh, ah)
])
≤ L · Eπk

[ H∑
h=1

Bellπk,p
(k)

r(k)

(
sh, ah, h)

])
g
(
Eπk,p

?
[ H∑
h=1

c?(sh, ah, i)
])
≤ L

∑
i∈D
·Eπk

[ H∑
h=1

∣∣∣Bellπk,p
(k)

c
(k)
i

(sh, ah, h)
∣∣∣]

Proof. We first prove the reward requirement. Let r(π) be the solution of the inner maximization

program for policy π, and we define r(k) = r(πk). For notational convenience, we denote V π,pm =

Eπ,p
[
V π,pm

]
Since r?(s, a) ∈ [r̂(s, a)− b̂k(s, a, δ), r̂(s, a) + b̂k(s, a, δ)] and the bonus b̂k is valid, similar

to Lemma B.2.2, it holds:

V π
?,p?

r? ∈
[
V π

?,p(k)

r̂−b , V π
?,p(k)

r̂+b

]
. (B.5)

As a result, by mean-value theorem, there exists α ∈ [−1, 1] such that V π
?,p?

r? = V π
?,p(k)

r̂+αb . Since πk

is the maximizer of ConvexConPlanner and π? is feasible for that program, it holds that:

f
(
V πk,p

(k)

r(πk)

)
≥ f

(
V π

?,p(k)

r(π?)

)
≥ f

(
V π

?,p(k)

r̂+αb

)
=f
(
V π

?,p?

r?

)
, (B.6)

where the second-to-last inequality holds since r(π?) is the maximizer of the inner program for π?

and the equality holds by Eq. (B.5).

We are now ready to provide the equivalent of the regret decomposition:

f(V π
?,p?

r? )− f(V πk,p
?

r? ) ≤ f(V πk,p
(k)

r(πk) )− f(V πk,p
?

r? ) ≤ L ·
∣∣∣V πk,p(k)

r(πk) − V πk,p
?

r?

∣∣∣
≤ L · Eπk

(
H∑
h=1

Bellπk,p
(k)

r(k)

(
sh, ah, h

))

where the first inequality holds by Eq. (B.6). the second inequality by Lipschitzness and the last

inequality holds by simulation lemma (Lemma B.2.3).

For the consumption requirement, since πk is feasible in ConvexConPlanner, denoting again by

c(π) the consumption in the maximizer for policy π in the inner mathematical program. Same as
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above we define c(k) = c(πk). It holds that:

g
(
Eπk,p

(k)
[ H∑
h=1

ch(πk)
])
≤ 0 (B.7)

As a result,

g
(
Eπk,p

?
[ H∑
h=1

c?h

])
− g
(
Eπk,p

(k)
[ H∑
h=1

ch(πk)
])
≤ L

∥∥∥∥∥Eπk,p?[
H∑
h=1

c?h

]
− Eπk,p

(k)
[ H∑
h=1

ch(πk)
]∥∥∥∥∥

1

=L
∑
i∈D

∣∣∣Eπk,p?[ H∑
h=1

c?h(i)
]
− Eπk,p

(k)
[ H∑
h=1

ch(πk, i)
]∣∣∣

≤ L ·
∑
i∈D

Eπ
(

H∑
h=1

∣∣∣Bellπk,p
(k)

c
(k)
i

(
sh, ah, h

)∣∣∣) ,
where again we applied Lipschitness and simulation lemma.

B.3.3 Concave-convex theorem (Theorem 3.4.1)

Proof of Theorem 3.4.1. The proof follows similarly to the proof of Theorem 3.3.4 by replacing

Proposition 3.3.3 with Proposition B.3.2. The linear dependency on d in the consumption regret

comes from the fact that the Lipschitzness of g is defined in L1 norm.

B.4 Analysis: Knapsack setting (Section 3.5)

In this section, we prove the guarantee for the hard-constraint setting. The goal is to show that

over K episodes, our algorithm has sublinear reward regret comparing to the best dynamic policy

(formally defined in Appendix B.4.2), while satisfying hard budget constraints with high probability.

B.4.1 Theorem with hard constraints (Theorem 3.5.1)

Proof of Theorem 3.5.1. We denote by Opt the expected total reward of π?. Consider now the

policy π̃? that selects the null policy with probability ε and follows π? otherwise. This policy is

feasible for Eq. (3.8); as a result the expected reward π̃? for Eq. (3.8) is at least (1− ε)Opt. Since
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the total reward is upper bounded by KH, it therefore holds that:

K∑
k=1

Eπ̃
?
[ H∑
h=1

r?
(
sh, ah

)]
≥ (1− ε)Opt ≥ Opt− εKH (B.8)

In the high-probability event where the regret guarantee of AggReg(δ) does not fail, the reward of

the algorithm is at least:

K∑
k=1

H∑
h=1

rk,h ≥
K∑
k=1

Eπ̃
?
[ H∑
h=1

r?(sh, ah)
]
−AggReg(δ), (B.9)

Combining Eq. (B.8) and Eq. (B.9), with probability 1− δ, the reward regret with respect to π? is

at most:

RewReg(K) ≤ 1

K
AggReg(δ) + εH (B.10)

We now focus on the consumption. Since we optimize Eq. (3.8), for any resource i ∈ D, when the

regret guarantee AggReg(δ) against π̃? does not fail and given that π̃? is feasible for Eq. (3.8), it

holds that:

K∑
k=1

H∑
h=1

ck,h,i ≤
K∑
k=1

Eπ̃
?
[ H∑
h=1

c
(
sh, ah, i

)]
+ AggReg(δ) ≤ (1− ε)Bi + AggReg(δ)

Hence, when the regret guarantee AggReg(δ) does not fail, the consumption is less than Bi for all

i as long as ε ≥ AggReg(δ)
mini Bi

. Moreover ε is a probability as a result it should also be less than 1 which

holds when miniBi ≥ AggReg(δ). Applying on Eq. (B.10) and assuming without loss of generality

that KH > miniBi (otherwise the setting is essentially unconstrained), the reward regret is at most

RewReg(K) ≤ 2HAggReg(δ)

miniBi
.
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B.4.2 Dynamic policy benchmark

We call a policy dynamic if it maps the entire history to a distribution over the action space.

Specifically we denote history Hk,h as the history that contains all the information from the

beginning of the first episode to the end of the step h − 1 at the k-th episode plus the state at

step h in episode k. At any episode k and step h, a dynamic policy π̃(·|Hk;h) ∈ ∆(A) maps history

Hk;h to a distribution over action space. We denote Πdynamic as the set of all dynamic policies

that satisfies the budget constraints deterministically, i.e., for any π̃ ∈ Πdynamic, when executed

for K episodes in the MDP, we have
∑K
k=1

∑H
h=1 ci(sk,h, ak,h) ≤ Bi for all i ∈ D, deterministically.

Ideally we want to compare against the best dynamic policy that maximizes the expected total

reward maxπ̃∈Πdynamic
Eπ̃
[∑K

k=1

∑K
h=1 rk,h

]
. We denote such an optimal dynamic policy as π̃? and

its expected total reward across K episodes as

Opt := max
π̃∈Πdynamic

Eπ̃
[
K∑
k=1

K∑
h=1

rk,h

]
.

The lemma below shows that indeed the stationary Markovian policy π? actually achieves no smaller

expected total reward across K episodes than that of the best dynamic policy.

Lemma B.4.1. The reward of the policy π? maximizing program Eq. (3.1) with ξ(i) = Bi
K is at least

as large as the per-episode reward of the optimal dynamic policy that is subject to hard constraints

instead:

Eπ
?
[ H∑
h=1

r?
(
sh, ah

)]
≥ 1

K
max

π̃∈Πdynamic

Eπ̃
[ K∑
k=1

H∑
h=1

r(sk,h, ak,h)
]

=
Opt

K
.

Proof. Denote π̃? as the optimal dynamic policy from Πdynamic. Any policy induces a state-action

distribution at episode k and stage h, denoted as ρπ̃(s, a;h, k), which stands for the probability of

π̃ visits state-action pair (s, a) at stage h in episode k. Denote ρπ̃(s, a;h) =
∑K
k=1 ρπ̃(s, a;h, k)/K
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which stands for the probability of π̃ visiting (s, a) at stage h. We have:

∑
a

ρπ̃(s′, a;h, k) =
∑
s,a

ρπ̃(s, a;h− 1, k)p?(s′|s, a),∀s′,

due to the Markovian transition p?(s′|s, a), which implies that:

∑
a

ρπ̃(s′, a;h) =
∑
s,a

ρπ̃(s, a;h− 1)p?(s′|s, a),∀s′.

Hence, ρπ̃(s, a;h) satisfies the flow constraints, and hence induces a stationary Markovian policy:

ππ̃(a|s) ∝ ρπ̃(s, a;h)/
∑
a

ρπ̃(s, a;h),

and ππ̃ induces state-action visitation distribution that are exactly equal to ρπ̃(s, a;h).

Note that π̃? satisfies the budget constraints deterministically, which means in expectation, it will

satisfies the constraints as well, i.e.,

K∑
k=1

H∑
h=1

∑
(s,a)

ρπ̃?(s, a;h)ci(s, a) ≤ Bi, ∀i ∈ D,

which implies that in expectation, for ππ̃? , we have that for all i ∈ D:

Eππ̃?
[
H∑
h=1

ci(sh, ah)

]
=

H∑
h=1

∑
(s,a)

ρππ̃? (s, a, h)ci(s, a) =

K∑
k=1

H∑
h=1

∑
(s,a)

ρπ̃?(s, a;h)ci(s, a)/K ≤ Bi/K.

This means that ππ̃? is a feasible solution of the hard-constraint program.

Similarly, we have that the expected per-episode total reward of π̃? is the same as the expected total

reward of ππ̃? :

Eππ̃?
[ H∑
h=1

rh(sh, ah)
]

=
1

K
Eπ̃

?

[
K∑
k=1

H∑
h=1

rk,h

]
.
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Hence, due to the optimality of π?, we immediately have:

Eπ
?
[ H∑
h=1

rh

]
≥ Eππ̃?

[ H∑
h=1

rh

]
=

1

K
Eπ̃

?
[ K∑
k=1

H∑
h=1

rk,h

]
.

Since our approach incurs sublinear regret with respect to π?, it follows from the above lemma that

it incurs sublinear regret with respect to Opt – the total reward across K episodes from the best

dynamic policy.

B.5 Experimental details

In the experiments, both ApproPO and RCPO use the same policy gradient algorithm, specifically,

Advantage Actor-Critic (A2C) Mnih et al. (2016) as the learning algorithm. We implemented

ConRL using two version of LagrConPlanner (see algorithm 10 below) as ConPlanner in

which the planner is either value iteration (exact planner) or A2C (approximate planner similar to

Dyna model-base RL Sutton (1991)) using fictitious samples. All three algorithms have outer-loop

learning rates which we tuned while hyperparameters used for A2C is same across all three methods.

Here, we report the result for the best learning rate for each method.

B.5.1 LagrConPlanner

Our theoretical results posit that ConPlanner is solved optimally, which can be indeed achieved

via linear programming (see section B.1). However in our experiments it suffices to use a general

heuristic for ConPlanner. Our approach is to Lagrangify the constraints, and create a min-max

mathematical program with the Lagrangean objective:

min
∀i∈D:λ(i)≤0

max
π

(
Eπ,p

(k)
[ H∑
h=1

r(k)
(
sh, ah

)]
+
∑
i∈D

λ(i)
(
Eπ,p

(k)
[ H∑
h=1

c(k)
(
sh, ah, i

)]
− ξ(i)

)
.
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Define pseudo-reward r
(k)
λ as

r
(k)
λ (s, a) = r(k)(s, a) +

∑
i∈D

λ(i)[c(k)(s, a)− ξ(i)]

With a fixed choice of Lagrange multipliers {λ(i)}i∈D, this is an unconstrained planning program

which we refer to as Planner(p(k), r
(k)
λ ) and it can be solved by a planning oracle.

We update Lagrange multipliers via projected gradient descent Zinkevich (2003). The overhead

of ConPlanner is computational, as we do not require new samples. The full procedure is in

Algorithm 10. The near-optimality of Algorithm 10 can be proved by leveraging the fact that we

are iteratively updating π and λ using no-regret online learning procedure (Best Response for π and

OGD for λ) (e.g., Cesa-Bianchi and Lugosi (2006)). We omit the analysis for Algorithm 10 as it is

not the main focus of this work.

Algorithm 10 Lagrangean-based Constrained Planner (LagrConPlanner)

1: hyper-parameters: learning rate η
2: Input: Estimates p̂k, r̂k, ĉk and bonus b̂k
3: Compute bonus-enhanced model M(k) =

(
p(k), r(k), c(k))

p(k)(s′|s, a) = p̂k(s′|s, a) ∀s, a, s′

r(k)(s, a) = r̂k(s, a) + b̂k(s, a) ∀s, a

c(k)(s, a, i) = ĉk(s, a, i)− b̂k(s, a) ∀s, a, i ∈ D

4: Initialize Lagrange parameters λ1(i) 0 for i ∈ D
5: for Iteration k from 1 to N do
6: Define

r
(k)
λ (s, a) = r(k)(s, a) +

∑
i∈D

λ(i)[c(k)(s, a)− ξ(i)]

7: πk Planner(p(k), r
(k)
λ )

8: λk+1(i) min
{

0, λk(i)− ηEπk,p(k)
[∑H

h=1[c(k)(sh, ah, i)]− ξ(i)
]}

∀i ∈ D

9: Return mixture policy π := 1
N

∑N
k=1 πk

In our experiments, two versions of Planner have been implemented: Value Iteration (exact
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planner) and A2C with fictitious samples (approximate planner)

Value Iteration as Planner This program takes p and r as input. Finite horizon value iteration

is simply solving the following acyclic dynamic program.

Q(s, a, h) =


0 h = H + 1

r(s, a) +
∑
s′

[
p(s′|s, a) maxa′ Q(s′, a′, h+ 1)

]
h = 1, . . . ,H

then the optimal policy for step h is computed as

πh(s) = argmaxaQ(s, a, h)

and the algorithm returns the H-step policy

π = (π)Hh=1

A2C with fictitious samples as Planner This program takes p and r as input, then, using

model p and r it generates episodes and use those samples to train our A2C agent. Since we only

call this subroutine with our estimated model (p← p̂ and r ← r̂) those episodes are fictitious (not

adding to sample complexity). The algorithm is given Algorithm 11 (Parameterized policy πθ and

value function estimate Vθ)

B.5.2 Hyperparameter Tuning

Both ConRL-A2C and RCPO used the Adam optimizer. For our method we performed a

hyperparamter search on both domains over the following values in Table B.1; selected values are

given in Table B.2. Note that reset row refers to when using the A2C planner during each call to the

planner we tried the following options: (warm-start) reuse previous weights and reset the optimizer

(warm -start), or (continue) continue learning using the previous weights (continue) and optimizer,

or (none) reset the model weights and optimizer.
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Algorithm 11 A2C planner with fictitious samples

1: hyper-parameters: learning rate η, α ∈ [0, 1]
2: Input: transitions p, reward function r
3: Define A2C loss

L(θ) = Eπθ,p[
H∑
h=1

− log πθ(ah|sh)(R(h)− Vθ(sh)) + α(R(h)− Vθ(sh))2]

R(h) =

H∑
h′=h

r(sh, ah)

4: Initialize θ arbitrarily
5: for Iteration i from 1 to T do
6: Emulate an episode by running πθ on MDP with transitions p and reward function r
7: update θ ← θ − η∇θL(θ)
8: Return πθ

Table B.1: Considered Hyperparameters

Hyperparameter Values Considered
A2C learning rate 10−2, 10−3, 10−4

lambda learning rate 100, {1, 2, 5} × 10−1, 2× 10−2, 10−3, 2× 10−3

reset warm-start, continue, none
conplanner iterations 10, 20, 30, 50, 100, 150, 200, 250
A2C Entropy coeff 10−3

A2C Value loss coeff 0.5

TFW-UCRL2

We used the code provided by the author (with no algorithmic parameter changed). Moreover,

TFW-UCRL2 uses weights (L0, L1, . . . , Lk) in the objective function g(w) defined in Equation 1

in Cheung (2019). We only tuned these weights to identify the one maximizing the reward while

guaranteeing the constraint satisfaction (for a more fair comparison with the baseline). In our

experiments, we have k = 2 and you can see the performance of TFW-UCRL2 for L0 = 1 and

L1 ∈ {10−2, 10−3, 10−4, 10−5} in Figure B.1.
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Table B.2: Selected Hyperparameters

Hyperparameter Gridworld Box
A2C learning rate 10−3 10−3

lambda learning rate 2× 10−1 10−2

reset none none
conplanner iterations 10 10
A2C Entropy coeff 10−3 10−3

A2C Value loss coeff 0.5 0.5

B.6 Concentration tools

This section contains general concentration inequalities that are not tied with the constrained RL

setting considered in the chapter.

Lemma B.6.1 (Hoeffding). Let {Xi}Ni=1 be a set with each Xi i.i.d sampled from some distribution

and E[Xi] = 0 for all i and maxi |Xi| ≤ b. Then with probability at least 1− δ, it holds that:

∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≤ b
√

2 ln(2/δ)

N
.

Lemma B.6.2 (Anytime version of Hoeffding). Let {Xi}∞i=1 be a set with each Xi i.i.d sampled

from some distribution and E[Xi] = 0 for all i and maxi |Xi| ≤ b. Then with probability at least

1− δ, for any N ∈ N+, it holds that:

∣∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣∣ ≤ b
√

2 ln(4N2/δ)

N
.

Proof. We first fix N ∈ N+ and apply standard Hoeffding (Lemma B.6.1) with a failure probability

δ/N2. Then we apply a union bound over N+ and use the fact that
∑
N>0

δ
2N2 ≤ δ to conclude the

lemma.

The following lemma is used when bounding the final regret in the above analysis where we bound the

difference between the cumulative Bellman error along the empirical trajectories and the cumulative
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Bellman error under the expectation of trajectories (the expectation is taken with respect to the

policies generating these trajectories cross episodes).

Lemma B.6.3. Consider a sequence of episodes k = 1 to K, a sequence of policies {πk}Kk=1, and a

sequence of functions {fk}Kk=1 with corresponding filtration {Fk} with πk ∈ Fk−1 and fk ∈ Fk−1.

Each policy πk generates a sequence of trajectory {sk;h, sk;h}Hh=1. Denote a function fk : S ×A →

[0, C], with fk ∈ Fk−1. With probability at least 1− δ, for any K, we have:

∣∣∣∣∣
K∑
i=1

H∑
h=1

fk(sk;h, ak;h)−
K∑
k=1

Eπk
(

H∑
h=1

fk(s(h), a(h))

)∣∣∣∣∣ ≤ C√2 ln(4K2/δ)KH.

Proof. Denote the random variable vk;h = fk (sk;h, ak;h). Denote Ek;h as the conditional expectation

that is conditioned on all history from the beginning to time step h (not including step h) at

episode k. Note that we have: Ek;h [vk] = Eπk (fk (sk;h, ak;h)). Note that |vk;h| ≤ C for any k, h

by the assumption on fk. Hence, {vk;h}k,h forms a sequence of Martingales. Applying Hoeffding’s

inequality, we have with probability at least 1− δ,

∣∣∣∣∣
K∑
k=1

H∑
h=1

vk;h −
K∑
k=1

Eπk
(

H∑
h=1

fk(s(h), a(h))

)∣∣∣∣∣ ≤ C√2 ln(2/δ)KH = C
√

2 ln(2/δ)HK.

Assigning failure probability δ/k2 for each episode k and using a union bound over all episodes

conclude the proof.
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Figure B.1: Performance of TFW-UCRL2 with different choices of L1 (L0 = 1)
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Appendix C

Remaining Proofs of Chapter 4

C.1 Proof for Section 4.2

In this section we provide proofs and missing details for Section 4.2.

C.1.1 Proof of Theorem 4.2.5

Consider the following algorithm which is performing an approximate version of binary search on

the optimal cost. We use ⊕ to denote vector concatenation.

Theorem C.1.1. For any choice of approachability algorithm (as in Definiton 4.2.3) and for any

ε, δ > 0, if we choose

T = O
[

log(H/ε)
]
, KAPP = mAPP(ε, εδ/(2H)), Kest = O

[H2 log(dH/εδ)

ε2
]
, ε′ = O(ε)
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Algorithm 12 Solving Constrained RL Using Approachability

1: Input: approachability algorithm APP
2: Hyperparameters: ε′ > 0
3: Initialize: L← 0 and R← H
4: Define the augmented VMDP model

rh(s, a) = rh(s, a)⊕ ch(s, a) ∀h ∈ [H]
M = {S,A, H,P, r}

5: for iteration t = 1, 2, . . . , T do
6: Set mid = (R+ L)/2
7: Define the target set for approachability

Ct = {x⊕ y | x ∈ C, y ≤ mid}
8: πt ← output of APP algorithm for the model M with target set Ct using KAPP episodes.

9: vt ← estimate V
πt

1 (s1) using Kest episodes, where V is the value function for M.
10: if dist(vt, C) ≤ ε′ then
11: R← mid
12: else
13: L← mid
14: Return πT

then, with probability at least 1− δ, Algorithm 12 satisfies


Cπ

T

1 (s1)− min
π:Vπ

1 (s1)∈C
Cπ1 (s1) ≤ O(ε),

dist
(
VπT

1 (s1), C
)
≤ O(ε).

Proof of Theorem C.1.1. By definition 4.2.3, Lemma C.6.1, and union bound; with probability at

least 1− δ, we have for all t ∈ [T ]

‖vt −V
πt

1 (s1)‖ ≤ ε,

dist(V
πt

1 (s1), C) ≤ min
π

dist(V
π

1 (s1), C) + ε.

(C.1)

We use Lt, Rt, and midt to denote values of L, R, and mid during tth iteration. By choice of T we

have

RT − LT ≤ ε. (C.2)

Define c∗ = minπ:Vπ
1 (s1)∈C C

π
1 (s1) and let π∗ = argminπ:Vπ

1 (s1)∈CC
π
1 (s1). Let’s consider these cases
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• Case mid ≥ c∗: It’s easy to see that minπ dist(V
π

1 (s1), C) = 0, therefore by second inequality

in Equation C.1 we have

dist(V
πt

1 (s1), C) ≤ ε.

Since distance function is 1-Lipschitz with respect to Euclidean norm, by first inequality in

Equation C.1, we have

dist(vt, C) ≤ ε+ ε = 2ε

• Case mid ≤ c∗ − 3ε: It’s easy to see that minπ dist(V
π

1 (s1), C) ≥ 3ε, therefore by definition of

minimum we have

dist(V
πt

1 (s1), C) ≥ 3ε.

Since distance function is 1-Lipschitz with respect to Euclidean norm, by first inequality in

Equation C.1, we have

dist(vt, C) ≥ 3ε− ε = 2ε.

What we showed above implies that if we set ε′ = 2ε, in all iterations t ∈ [T ] we have

Lt ≤ c∗, Rt ≥ c∗ − 3ε.

Combining with Equation C.2, we get

c∗ − 4ε ≤ LT ≤ midT ≤ RT ≤ c∗ + ε
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Therefore we have,

max{Cπ
T

1 (s1)−midT ,dist
(
VπT

1 (s1), C
)
}

≤ dist(V
πT

1 (s1), C)

≤ min
π

dist(V
π

1 (s1), C) + ε

≤ dist(V
π∗

1 (s1), C) + ε

≤ max{c∗ −midT , 0}+ ε

≤ c∗ − (c∗ − 4ε) + ε = 5ε

It implies 
dist

(
VπT

1 (s1), C
)
≤ 5ε

Cπ
T

1 (s1) ≤ 5ε+ midT ≤ c∗ + 6ε

Rescaling ε to ε/6 completes the proof.

Proof of Theorem 4.2.5. Using Theorem C.1.1 the claim follows immediately: total sample com-

plexity of Algorithm 12 is

T (KAPP +Kest) ≤ log(1/ε) · O
(
mAPP(ε, εδ/H) +

H2 log[d/εδ]

ε2

)
.

C.2 Proof for Section 4.3

In this section we provide proofs and missing details for Section 4.3.

C.2.1 Fenchel duality

Consider a convex and closed function f : dom(f) → R. We define the dual function f∗, called

Fenchel conjugate, as

f∗(θ) = max
x∈dom(f)

[
〈θ,x〉 − f(x)

]
.
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If function f is 1-Lipschitz and dom(f) = B(H); then, the conjugate function f∗ is H-Lipschitz

with dom(f∗) = B(1) (Corollary 13.3.3 in Rockafellar 2015). Therefore, Fenchel daulity implies

f(x) = max
θ∈B(1)

[
〈θ,x〉 − f∗(θ)

]
.

In particular, for closed, convex, and 1-Lipschitz function f defined as


f : B(H)→ R

f(x) = dist(x, C)

we have

f∗(θ) = max
x∈C
〈θ,x〉.

It’s easy to verify that ∂f∗(θ) = argmaxx∈C〈θ,x〉 is a subgradient of f∗ at θ. Fenchel duality implies

that

dist(x, C) = max
θ∈B(1)

[
〈θ,x〉 −max

x′∈C
〈θ,x′〉

]
. (C.3)

C.2.2 Online Convex Optimization (OCO)

We will be using the guarantee of online gradient ascent algorithm (Zinkevich, 2003) in the proof.

Therefore, we briefly review the framework of online convex optimization. We can imagine an

online game between the leaner and the environment: The learner is given a decision set Θ; at

time t = 1, 2, . . . , T , the leaner makes a decision θt ∈ Θ, the environment reveals a concave utility

function ut : Θ→ R, and the learner gains utility ut(θt). The learner’s goal is to minimize regret

defined as

RegretT , max
θ∈Θ

[ T∑
t=1

ut(θ)
]
−
[ T∑
t=1

ut(θt)
]
.

An OCO algorithm is no-regret if RegretT = o(T ), meaning its average utility approaches to best in

hindsight. The online gradient ascent (OGA) is an example of such algorithm (Algorithm 13). In

Theorem C.2.1 we formally state the theoretical guarantee of this algorithm.
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Algorithm 13 Online gradient ascent (OGA)

1: input: projection operator ΓΘ where ΓΘ(θ) = argminθ∈Θ‖θ − θ′‖
2: init: θ1 arbitrarily
3: parameters: step size ηt
4: for t = 1 to T do
5: observe concave utility function ut : Θ→ R
6: θt+1 = ΓΘ

(
θt + ηt∂u

t(θt)
)
{where ∂ut(θt) is a subgradient of ut at θt}

Theorem C.2.1 (Zinkevich 2003). Assume that for any θ, θ′ ∈ Θ we have ‖θ − θ′‖ ≤ D and

u1, . . . , uT are concave and G-Lipschitz. By setting ηt = D
G
√
t
, Algorithm 13 satisfies

RegretT ≤ O(DG
√
T ).

C.2.3 Proof of Theorem 4.3.1

We use the following choice for parameters:

K ≥ mRFE(ε/2, δ/2), T ≥ c · (H2ι/ε2). (C.4)

We denote vt := Vπt

1 (s1) and start with the following lemma.

Lemma C.2.2. Define even E0 to be:


‖ 1
T

∑T
t=1 vt − v̂t‖ ≤ O(

√
H2ι/T ),

V∗1(s1;−θt) ≤ Vπt

1 (s1;−θt) + ε/2 ∀t ∈ [T ].

where ι = log(d/δ). We have P(E0) ≥ 1− δ.

Proof of Lemma C.2.2. We show that each claim holds with probability at least 1− δ/2; applying a

union bound completes the proof.
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First claim. Let Ft be the filtration capturing all the randomness in the algorithm before iteration

t. We have E[v̂t | Ft] = vt and we also know that ‖v̂t‖ ≤ H almost surely. By applying Lemma C.6.1,

with probability at least 1− δ we have

‖ 1

T

T∑
t=1

vt − v̂t‖ ≤ O(
√
H2 log[d/δ]/T ),

which completes the proof.

Second claim. Choice of parameters in Equation C.4 along with Definition 4.2.1 immediately

implies that with probability at least 1− δ/2 we have

V∗1(s1;−θt) ≤ Vπt

1 (s1;−θt) + ε/2 ∀t ∈ [T ].

Note that in Algorithm 3, πt is the output of the planning phase of the RFE algorithm for the

vector −θt as input.

The following lemma states that if α = minπ dist(Vπ
1 (s1), C) ≥ 0 is the closest achievable distance

to target set C, then any halfspace containing C is reachable up to error α.

Lemma C.2.3. For any θ ∈ B(1), we have

min
x∈C
〈θ,x〉 ≤ min

π
dist(Vπ

1 (s1), C) + V∗1(s1; θ).

Proof of Lemma C.2.3. Let π = argminπdist(Vπ
1 (s1), C) and define v = Vπ

1 (s1). Let ṽ = ΓC(v) be
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the orthogonal projection of v into C. We have

V∗1(s1; θ) ≥ Vπ
1 (s1; θ)

= 〈θ,v〉

= 〈θ,v − ṽ〉+ 〈θ, ṽ〉

≥ −‖v − ṽ‖+ min
x∈C
〈θ,x〉

≥ −min
π

dist(Vπ
1 (s1), C) + min

x∈C
〈θ,x〉

Now we are ready to proceed with proof of Theorem 4.3.1.
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Proof of Theorem 4.3.1. With probability at least 1− δ event E0 holds and we have

dist(Vπout

1 (s1), C) = dist
( 1

T

T∑
t=1

vt, C
)

(i)
= max

θ∈B(1)

[
〈θ, 1

T

T∑
t=1

vt)〉 −max
x∈C
〈θ,x〉

]
= max
θ∈B(1)

[ 1

T

T∑
t=1

(
〈θ, v̂t〉 −max

x∈C
〈θ,x〉) + 〈θ, 1

T

T∑
t=1

vt − v̂t〉
]

(ii)

≤ max
θ∈B(1)

[ 1

T

T∑
t=1

(
〈θ, v̂t〉 −max

x∈C
〈θ,x〉)

]
+O(

√
H2ι/T )

(iii)

≤ 1

T

T∑
t=1

(
〈θt, v̂t〉 −max

x∈C
〈θt,x〉) +O(

√
H2/T ) +O(

√
H2ι/T )

(iv)

≤ min
π

dist(Vπ
1 (s1), C) +

1

T

T∑
t=1

(
〈θt, v̂t〉+ V∗1(s1;−θt)

)
+O(

√
H2ι/T )

(v)

≤ min
π

dist(Vπ
1 (s1), C) + ε/2 +

1

T

T∑
t=1

(
〈θt, v̂t〉+ Vπt

1 (s1;−θt)
)

+O(
√
H2ι/T )

= min
π

dist(Vπ
1 (s1), C) + ε/2 +

1

T

T∑
t=1

〈θt, v̂t − vt〉+O(
√
H2ι/T )

(vi)

≤ min
π

dist(Vπ
1 (s1), C) + ε/2 +O(

√
H2ι/T )

(vii)

≤ min
π

dist(Vπ
1 (s1), C) + ε

where (i) is by Equation C.3, (ii) is by first inequality in event E0 together with Cauchy-Schwarz,

(iii) is by guarantee of OGA in Theorem C.2.1, (iv) is by Lemma C.2.3, (v) is by second inequality

in event E0, (vi) is by first inequality in event E0 together with Cauchy-Schwarz, and finally (vii) is

by setting T ≥ c
(
H2ι/ε2

)
for large enough constant c, completing the proof.

C.3 Proof for Section 4.4

In this section we provide proofs and missing details for Section 4.4.
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Algorithm 14 VI-Zero: Exploration Phase

1: Hyperparameters: Bonus βt.
2: Initialize: for all (s, a, h) ∈ S ×A× [H]: Q̃h(s, a)← H and Nh(s, a)← 0,
3: for all (s, a, h, s′) ∈ S ×A× [H]× S: Nh(s, a, s′)← 0,
4: ∆← 0.
5: for episode k = 1, 2, . . . ,K do
6: for step h = H,H − 1, . . . , 1 do
7: for state-action pair (s, a) ∈ S ×A do
8: t← Nh(s, a).
9: if t > 0 then

10: Q̃h(s, a)← min{[P̂hṼh+1](s, a) + βt, H}.
11: for state s ∈ S do
12: Ṽh(s)← maxa∈A Q̃h(s, a) and πh(s)← argmaxa∈AQ̃h(s, a)

13: if Ṽ (s1) ≤ ∆ then

14: ∆← Ṽ (s1) and P̂out ← P̂h
15: for step h = 1, 2, . . . ,H do
16: Take action ah ← πh(sh) and observe next state sh+1

17: Update Nh(sh, ah)← Nh(sh, ah) + 1 and Nh(sh, ah, sh+1)← Nh(sh, ah, sh+1) + 1

18: P̂h(· | sh, ah)← Nh(sh, ah, ·)/Nh(sh, ah)

19: Return P̂out

C.3.1 Reward-free Algorithm for Tabular VMDPs

In the exploration phase, we use VI-Zero (Liu et al., 2020) with modified choice of hyperparameters.

The pseudocode is displayed in Algorithm 14. Intuitively, the value function Q̃h(s, a) computed in

the algorithm measures the level of uncertainty that agent may suffer if it takes action a at state

s in step h. It incentivize the greedy policy to visit underexplored states improving our empirical

estimate P̂.

In the planning phase, given θ ∈ B(1) as input we can use any planning algorithm (such as value

iteration) for M̂θ = (S,A, H, P̂out, 〈θ, r̂〉) where r̂ is empirical estimate of r using collected samples

{rkh}.

C.3.2 Proof of Theorem 4.4.1

In this section, we prove Theorem C.3.1 which implies the first claim in Theorem 4.4.1. Second and

third claims in Theorem 4.4.1 immediately follow due to Theorem 4.3.1 and Theorem 4.2.5.
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Let P̂k and r̂k be our empirical estimates of the transition and the return vectors at the beginning of

the kth episode in Algorithm 14 and define M̂k = (S,A, H, P̂k, r̂k). We use Nk
h (s, a) to denote the

number of times we have visited state-action (s, a) in step h before kth episode in Algorithm 14. We

use superscript k to denote variable corresponding to episode k; in particular, (sk1 , a
k
1 , . . . , s

k
H , a

k
H) is

the trajectory we have visited in the kth episode.

For any θ ∈ B(1), let M̂k
θ be the scalarized MDP using vector θ (defined in Section 4.2). We use

V̂ k(·; θ), Q̂k(·, ·; θ), and π̂kθ = π̂k(·; θ) to denote the optimal value function, optimal Q-value function,

and optimal policy of M̂k
θ respectively. Therefore, we have

Q̂kh(s, a; θ) = [P̂khV̂ kh+1](s, a; θ) + r̂kh(s, a; θ),

V̂ kh (s; θ) = max
a∈A

Q̂kh(s, a; θ),

π̂kh(s; θ) = argmaxa∈AQ̂
k
h(s, a; θ).

(C.5)

Theorem C.3.1. There exist absolute constants cβ and cK , such that for any ε ∈ (0, H], δ ∈ (0, 1],

if we choose bonus βt = cβ
(√

min{d, S}H2ι/t + H2Sι/t
)

where ι = log[dSAKH/δ], and run the

exploration phase (Algorithm 14) for K ≥ cK
(

min{d, S}H4SAι′/ε2 +H3S2A(ι′)2/ε
)

episodes where

ι′ = log[dSAH/(εδ)], then with probability at least 1− δ, the algorithm satisfies

∀θ ∈ B(1) : V ?1 (s1; θ)− V πθ1 (s1; θ) ≤ ε,

where πθ is the output of the any planning algorithm (e.g., value iteration) for the MDP M̂out
θ .

Therefore, we have

mRFE(ε, δ) ≤ O
(min{d, S}H4SAι′

ε2
+
H3S2A(ι′)2

ε

)
.

The bonus for episode k can be written as

βkh(s, a) = cβ

(√ min{d, S}H2ι

max{Nk
h (s, a), 1}

+
H2Sι

max{Nk
h (s, a), 1}

)
, (C.6)
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where ι = log[dSAKH/δ] and cβ is some large absolute constant.

We begin with the following lemma showing that the value function for a fixed π and also the

optimal value function is H-Lipschitz with respect to θ.

Lemma C.3.2. For all (s, h) ∈ S × [H], for all policies π, and for any two vectors θ, θ′ ∈ B(1), we

have

|V ?h (s; θ)− V ?h (s; θ′)| ≤ (H − h+ 1)‖θ − θ′‖

|V πh (s; θ)− V πh (s; θ′)| ≤ (H − h+ 1)‖θ − θ′‖

Proof of Lemma C.3.2. We prove each claim separately.

First claim. We prove the lemma by backward induction on h. For h = H + 1 we have V ?h (s; θ) =

V ?h (s; θ′) = 0 and the inequality holds. Now assume that |V ?h+1(s; θ)−V ?h+1(s; θ′)| ≤ (H −h)‖θ− θ′‖

holds, we want to show that the claim also holds for h. We have

|V ?h (s; θ)− V ?h (s; θ′)| = |max
a∈A

Q?h(s, a; θ)−max
a′∈A

Q?(s, a′; θ′)|

≤ max
a∈A
|Q?h(s, a; θ)−Q?h(s, a; θ′)|

= max
a∈A
|〈θ − θ′, rh(s, a)〉+

∑
s′∈S

P(s′ | s, a)(V ?h+1(s′; θ)− V ?h+1(s′; θ′))

≤ max
a∈A
||〈θ − θ′, rh(s, a)〉|+ max

a∈A
|
∑
s′∈S

P(s′ | s, a)(V ?h+1(s′; θ)− V ?h+1(s′; θ′))|

≤ ‖θ − θ′‖+ (H − h)‖θ − θ′‖

= (H − h+ 1)‖θ − θ′‖.

It completes the proof of the lemma.
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Second claim. The second claim is much easier to prove, since we have

|V πh (s; θ)− V πh (s; θ′)| =
∣∣∣Eπ[ H∑

h′=1

〈θ − θ′, rh(s′h, a
′
h)〉
]∣∣∣

≤ Eπ
[ H∑
h′=1

|〈θ − θ′, rh(s′h, a
′
h)〉|
]

≤ Eπ
[ H∑
h′=1

‖θ − θ′‖
]

= (H − h+ 1)‖θ − θ′‖

where the first inequality uses Jensen, and second inequality uses Cauchy-Schwarz.

Lemma C.3.3. Let c be some large absolute constant such that 2c+ 12c2 ≤ cβ. Define event E1 to

be: for all (s, a, s′, h) ∈ S ×A× S × [H], k ∈ [K], and θ ∈ B(1),



|[(P̂kh − Ph)V ?h+1](s, a; θ)| ≤ c
√

min{d,S}H2ι

max{Nkh (s,a),1} ,

|(r̂kh − rh)(s, a; θ)| ≤ c
√

ι
max{Nkh (s,a),1} ,

|(P̂kh − Ph)(s′ | s, a)| ≤ c
(√

P̂kh(s′|s,a)ι

max{Nkh (s,a),1} + ι
max{Nkh (s,a),1}

)
,

(C.7)

where ι = log[dSAKH/δ]. We have P(E1) ≥ 1− δ.

Proof of Lemma C.3.3. The proof is by applying concentration and covering arguments together

with union bounds. The following shows that each claim holds with probability at least 1 − δ;

rescaling δ to δ/3 and applying a union bound completes the proof.

First claim: For a fixed (s, a, k, h, θ) ∈ S×A× [K]× [H]×B(1), using Azuma-Hoeffding inequality,

with probability at least 1− δ′ we have

|[(P̂kh − Ph)V ?h+1](s, a; θ)| ≤ O
(√H2 log(1/δ′)

Nk
h (s, a)

)
.
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Now consider an ε′-covering Bε′ for the unit Euclidean ball B(1) with log |Bε′ | ≤ O(d log(1/ε′)).

For any θ ∈ B(1), there exists θ′ ∈ Bε′ satisfying ‖θ − θ‖ ≤ ε′. The concentration inequality

above along with a union bound implies that with probability at least 1− δ for any (s, a, k, h, θ′) ∈

S ×A× [K]× [H]× Bε′ we have

|[(P̂kh − Ph)V ?h+1](s, a; θ′)| ≤ O
(√ dH2

Nk
h (s, a)

log(
SAKH

ε′δ
)
)
.

Now consider an arbitrary (s, a, k, h, θ) ∈ S × A × [K] × [H] × B(1). Let θ′ ∈ Bε′ be such that

‖θ − θ′‖ ≤ ε′; we have

|[(P̂kh − Ph)V ?h+1](s, a; θ)|
(i)

≤ |[P̂kh(V ?h+1(·; θ)− V ?h+1(·; θ′))](s, a)]|+ |[(P̂kh − Ph)V ?h+1](s, a; θ′)|

+ |[Ph(V ?h+1(·; θ′)− V ?h+1(·; θ))](s, a)]|

(ii)

≤ 2H‖θ − θ′‖+O
(√ dH2

Nk
h (s, a)

log(
SAKH

ε′δ
)
)

≤ 2Hε′ +O
(√ dH2

Nk
h (s, a)

log(
SAKH

ε′δ
)
)
,

where (i) is by adding and subtracting the term [(P̂kh−Ph)V ?h+1](s, a; θ′) along with triangle inequality,

and (ii) is by Lemma C.3.2. Setting ε′ = 1
HNkh (s,a)

≥ 1
HK results in

[(P̂kh − Ph)V ?h+1](s, a; θ)| ≤ O
(√ dH2

Nk
h (s, a)

log(
SAKH

δ
)
)
.

On the other hand, consider an ε′-cover Vε′ for the `∞ ball of radius H in dimension S, i.e.

{v ∈ RS | ‖v‖∞ ≤ H}. For a fixed (s, a, k, h,v) ∈ S ×A× [K]× [H]× Vε′ , using Azuma-Hoeffding

inequality, with probability at least 1− δ′ we have

|[(P̂kh − Ph)v](s, a)| ≤ O
(√H2 log(1/δ′)

Nk
h (s, a)

)
.
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Note that |Vε′ | ≤ (3H/ε′)d, therefore by putting δ′ = δ/(SAKH|Vε′ |) we get for all (s, a, k, h,v) ∈

S ×A× [K]× [H]× Vε′

|[(P̂kh − Ph)v](s, a)| ≤ O
(√SH2 log(SAKH/(ε′δ))

Nk
h (s, a)

)
.

Now consider an arbitrary (s, a, k, h, θ) ∈ S × A× [K]× [H]× B(1), and let v ∈ Vε′ be such that

‖V ?h+1(·; θ)− v‖∞ ≤ ε′. We have

|[(P̂kh − Ph)V ?h+1](s, a; θ)| ≤ |[P̂kh(V ?h+1(·; θ)− v)](s, a)|+ |[(P̂kh − Ph)v](s, a)|

+ |[Ph(V ?h+1(·; θ)− v)](s, a)|

≤ 2ε′ +O
(√SH2 log(SAKH/(ε′δ))

Nk
h (s, a)

)
.

Setting ε′ = 1
Nkh (s,a)

≥ 1
K results in

|[(P̂kh − Ph)V ?h+1](s, a; θ)| ≤ O
(√ SH2

Nk
h (s, a)

log(
SAKH

δ
)
)

The two bounds together complete the proof for the first claim.

Second claim: We have ‖rkh‖ ≤ 1 almost surely and E[rkh | Fkh ] = rh(skh, a
k
h). For a fixed

(s, a, k, h) ∈ S ×A× [K]× [H], applying Lemma C.6.1 implies that with probability at least 1− δ′

we have

‖(r̂kh − rh)(s, a)‖ ≤ O
(√ log(d/δ′)

Nk
h (s, a)

)
.

Setting δ′ = δ/(SAKH) and applying a union bound, for all (s, a, k, h) ∈ S × A × [K] × [H], we

have

‖(r̂kh − rh)(s, a)‖ ≤ O
(√ log(dSAKH/δ)

Nk
h (s, a)

)
.
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Now consider an arbitrary (s, a, k, h, θ) ∈ S ×A× [K]× [H]× B(1), we have (by Cauchy-Schwarz)

|(r̂kh − rh)(s, a; θ)| = |〈θ, (r̂kh − rh)(s, a)|

≤ ‖θ‖‖(r̂kh − rh)(s, a)‖

≤ O
(√ log(dSAKH/δ)

Nk
h (s, a)

)
,

completing proof of this claim.

Third claim: For a fixed (s, a, s′, k, h) ∈ S×A×S×[K]×[H], using empirical Bernstein inequality,

with probability at least 1− δ′ we have

|(P̂kh − Ph)(s′ | s, a)| ≤ O
(√ P̂kh(s′ | s, a) log(1/δ′)

Nk
h (s, a)

+
log(1/δ′)

Nk
h (s, a)

)

Applying a union bound and setting δ′ = δ/S2AKH completes the proof.

The following lemma shows that the optimal value functions of M̂k
θ are close to the optimal value

functions of Mθ and their difference is controlled by Q̃ and Ṽ computed in Algorithm 14.

Lemma C.3.4. Suppose event E1 holds (defined in Lemma C.3.3); then, for all (s, a, k, h, θ) ∈

S ×A× [K]× [H]× B(1) we have

|Q̂kh(s, a; θ)−Q?h(s, a; θ)| ≤ Q̃kh(s, a),

|V̂ kh (s; θ)− V ?h (s; θ)| ≤ Ṽ kh (s).

(C.8)

Proof of Lemma C.3.4. We prove the lemma by backward induction on h. For h = H + 1 the claim

holds trivially. Now suppose that the claim is true for (h + 1)th step, we want to show that the
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claim is also true for hth step. For the Q-value function we have

|Q̂kh(s, a; θ)−Q?h(s, a; θ)|

≤ min
{
|[(P̂kh − Ph)V ?h+1](s, a; θ)|+ |(r̂kh − rh)(s, a; θ)|︸ ︷︷ ︸

(T1)

+ |[P̂kh(V̂ kh+1 − V ?h+1)](s, a; θ)|︸ ︷︷ ︸
(T2)

, H
}

(i)

≤ min
{
βkh(s, a) + [P̂khṼ kh+1](s, a), H

}
(ii)
= Q̃kh(s, a),

where (i) follows from T1 ≤ βkh(s, a) (event E1) and T2 ≤ [P̂khṼ kh+1](s, a) (induction hypothesis), and

(ii) is due to definition of Q̃kh in Algorithm 14. Now for the value function we have

|V̂ kh (s; θ)− V ?h (s; θ)|

= |max
a∈A

Q̂kh(s, a; θ)−max
a′∈A

Q̂?(s, a′; θ)|

≤ max
a∈A
|Q̂kh(s, a; θ)− Q̂?(s, a; θ)|

≤ max
a∈A

Q̃kh(s, a) = Ṽ kh (s),

which completes the induction step and consequently the proof.

Now we are ready to introduce the main lemma that shows value of π̂kθ under the true model is

close to its value under empirical model. The difference is controlled by Q̃ and Ṽ computed in

Algorithm 14.

Lemma C.3.5. Suppose event E1 holds (defined in Lemma C.3.3); then, for all (s, a, k, h, θ) ∈

S ×A× [K]× [H]× B(1) we have

|Q̂kh(s, a; θ)−Qπ̂
k
θ

h (s, a; θ)| ≤ αhQ̃kh(s, a),

|V̂ kh (s; θ)− V π̂
k
θ

h (s; θ)| ≤ αhṼ kh (s),

(C.9)

where αH+1 = 1 and αh = [(1 + 1
H )αh+1 + 1

H ]; we have 1 ≤ αh ≤ 5 for h ∈ [H].

Proof of Lemma C.3.5. We prove the claim by backward induction on h. For h = H + 1 the claim
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trivially holds. Now suppose that the claim is true for step h+ 1 and we want to show that it also

holds for step h.

|Q̂kh(s, a; θ)−Qπ̂
k
θ

h (s, a; θ)|

≤ min
{
|[(P̂kh − Ph)(V

π̂kθ
h+1 − V

?
h+1)](s, a; θ)|︸ ︷︷ ︸

(T1)

+ |[(P̂kh − Ph)V ?h+1](s, a; θ)|+ |(r̂kh − rh)(s, a; θ)|︸ ︷︷ ︸
(T2)

+ |[P̂kh(V̂ kh+1 − V
π̂kθ
h+1)](s, a; θ)|︸ ︷︷ ︸

(T3)

, H
}

(C.10)

For the term (T3), by applying induction hypothesis we have

(T3) ≤ αh+1[P̂khṼ kh+1](s, a). (C.11)

Using event E1, for the term (T2) we have

(T2) ≤ 2c

√
min{d, S}H2ι

max{Nk
h (s, a), 1}

. (C.12)

It only remains to bound the term (T1); we have

(T1) ≤
∑
s′∈S
|P̂kh(s′ | s, a)− Ph(s′ | s, a)||(V π̂

k
θ

h+1 − V
?
h+1)(s′)|

≤
∑
s′∈S
|P̂kh(s′ | s, a)− Ph(s′ | s, a)|

[
|(V π̂

k
θ

h+1 − V̂
k
h+1)(s′)|+ |(V̂ kh+1 − V ?h+1)(s′)|

]
(i)

≤
∑
s′∈S
|P̂kh(s′ | s, a)− Ph(s′ | s, a)|(αh+1 + 1)Ṽ kh+1(s′)

(ii)

≤
∑
s′∈S

[
c(

√
P̂kh(s′ | s, a)ι

max{Nk
h (s, a), 1}

+
ι

max{Nk
h (s, a), 1}

)
]
(αh+1 + 1)Ṽ kh+1(s′)

(iii)

≤
∑
s′∈S

[ P̂kh(s′ | s, a)

H
+

c2Hι+ cι

max{Nk
h (s, a), 1}

]
(αh+1 + 1)Ṽ kh+1(s′)

≤ αh+1 + 1

H
[P̂khṼ kh+1](s, a) + 2c2(αh+1 + 1)

H2Sι

max{Nk
h (s, a), 1}

,

(C.13)
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where (i) is due Lemma C.3.4 along with induction hypothesis, (ii) is due to event E1, and (iii) is

by AM-GM. Plugging equation C.11, C.12, and C.13 back in C.10, we get

|Q̂kh(s, a; θ)−Qπ̂
k
θ

h (s, a; θ)|

≤ min
{

[(1 +
1

H
)αh+1 +

1

h
][P̂khṼ kh+1](s, a) + 2c

√
min{d, S}H2ι

max{Nk
h (s, a)+, 1}

+ 2c2(αh+1 + 1)
H2Sι

max{Nk
h (s, a), 1}

, H
}

(i)

≤ min
{

[(1 +
1

H
)αh+1 +

1

h
][P̂khṼ kh+1](s, a) + βkh(s, a), H

}
(ii)

≤ αh min{[P̂khṼ kh+1](s, a) + βkh(s, a), H}
(iii)
= αhQ̃

k
h(s, a),

(C.14)

where (i) is by the definition of the bonus βkh (we have 2c+ 12c2 ≤ C and (αh+1 + 1) ≤ 6), (ii) is by

the definition of αh (note that 1 ≤ αh), and (iii) is by the definition of Q̃kh in Algorihtm 14. The

inequality for value function follows immediately since we have

|V̂ kh (s; θ)− V π̂
k
θ

h (s; θ)|

= |[Dπ̂kθ Q̂
π̂kθ
h ](s; θ)− [Dπ̂kθQ

k
h](s; θ)|

≤ αh[Dπ̂kθ Q̃
k
h](s)

≤ αh max
a∈A

Q̃kh(s, a)

= αhṼ
k
h (s).

It completes the induction step and consequently the proof of the lemma.

Theorem C.3.6 (Similar to guarantee for UCB-VI from Azar et al. 2017). For any δ ∈ (0, 1], if

we choose βkt in Algorithm 14 as in Equation C.6; then, with probability at least 1− δ, we have

K∑
k=1

Ṽ k1 (s1) ≤ O(
√

min{d, S}H4SAKι+H3S2Aι2).
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Proof of Theorem C.3.6. For a fixed k, by definition of Ṽ we have

Ṽ k1 (s1) ≤
H∑
h=1

(
βkh(skh, a

k
h) + ζkh

)
,

where ζkh = [P̂khṼ kh+1](skh, a
k
h)− Ṽ kh+1(skh+1). Summing over k gives us,

K∑
k=1

Ṽ k1 (s1) ≤
K∑
k=1

H∑
h=1

βkh(skh, a
k
h)︸ ︷︷ ︸

(T1)

+

K∑
k=1

H∑
h=1

ζkh︸ ︷︷ ︸
(T2)

.

Now we bound each term separately. For the term (T1), using standard pigeonhole argument, we

have

(T1) = C
[ K∑
k=1

H∑
h=1

√
min{d, S}H2ι

Nk
h (skh, a

k
h)

+

K∑
k=1

H∑
h=1

H2Sι

Nk
h (skh, a

k
h)

]

= C
[√

min{d, S}H2ι
∑
h,s,a

NKh (s,a)∑
i=1

√
1

i
+H2Sι

∑
h,s,a

NKh (s,a)∑
i=1

1

i

]
≤ C ′

[√
min{d, S}H2ι

∑
h,s,a

√
NK
h (s, a) +H2Sι

∑
h,s,a

log(KH)
]

≤ C ′
[√

min{d, S}H2ι
√
HSA

√
KH +H3S2Aι2

]
≤ O(

√
min{d, S}H4SAKι+H3S2Aι2).

For the second term, note that ζkh forms a martingale difference sequence; therefore, by Azuma-

Hoeffding’s inequality, with probability at least 1− δ, we have

(T2) ≤ O(H
√

(KH) log(1/δ)) = O(
√
H3K log(1/δ)),

resulting in a lower order term and completing the proof.

Proof of Theorem C.3.1. By Algorithm 14, we have out = argmink∈[K]Ṽ
k
1 (s1), resulting in Ṽ out

1 (s1) ≤
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1
K

∑K
k=1 Ṽ

k
1 (s1). Therefore, with probability at least 1− 2δ, for any vector θ ∈ B(1) we have

V ?1 (s1; θ)− V π̂
out
θ

1 (s1; θ) ≤ |V ?1 (s1; θ)− V̂ out
1 (s1; θ)|+ |V̂ out

1 (s1; θ)− V π̂
out
θ

1 (s1; θ)|
(i)

≤ (1 + α1)Ṽ out
1 (s1)

≤ 6Ṽ out
1 (s1)

≤ 6

K

K∑
k=1

Ṽ k1 (s1)

(ii)

≤ O(
√

min{d, S}H4SAι/K +H3S2Aι2/K)

(iii)

≤ ε,

where (i) is due to Lemma C.3.4 and Lemma C.3.5, (ii) is due to Theorem C.3.6, and (iii) is due to

K ≥ cK(min{d, S}H4SAι′/ε2 + H3S2A(ι′)2/ε) with a sufficiently large constant cK . Rescaling δ

completes the proof.

C.4 Proof for Section 4.5

In this section we provide proofs and missing details for Section 4.5.

C.4.1 Reward-free algorithm for linear VMDPs

We use slightly modified version of the reward-free algorithm introduced by Wang et al. (2020a).

The exploration phase and planning phase are displayed in Algorithm 15 and 16, respectively.

C.4.2 Proof of Theorem 4.5.2

In this section, we prove Theorem C.4.1 which implies the first claim in Theorem 4.5.2. Second and

third claims in Theorem 4.5.2 immediately follow due to Theorem 4.3.1 and Theorem 4.2.5.

Theorem C.4.1. There exist absolute constants cβ and cK , such that for any ε ∈ (0, H] and

δ ∈ (0, 1], if we choose bonus coefficient β = cβ · dlinH
√
ι with ι = log[dlindKH/δ], and run the
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Algorithm 15 Reward-Free RL for Linear VMDPs: Exploration Phase

1: Hyperparameters: Bonus coefficient β.
2: for episode k = 1, 2, . . . ,K do
3: for step h = H,H − 1, . . . , 1 do
4: Λ̃kh =

∑k−1
i=1 φ(sih, a

i
h)φ(sih, a

i
h)> + I

5: ũkh(·, ·)← min{β ·
√
φ(·, ·)>(Λ̃kh)−1φ(·, ·), H}

6: Define r̃kh(·, ·)← ũkh(·, ·)/H
7: w̃k

h ← (Λ̃kh)−1
∑k−1
i=1 φ(sih, a

i
k)Ṽ kh+1(sih+1)

8: Q̃kh(·, ·)← min{(w̃k
h)>φ(·, ·) + r̃kh(·, ·) + ũkh(·, ·), H}

9: Ṽ kh (·) = maxa∈A Q̃
k
h(·, a) and π̃kh(·)← argmaxa∈AQ̃

k
h(·, a)

10: Observe initial state sk1 ← s1

11: for step h = 1, 2, . . . ,H do
12: Take action akh ← π̃kh(skh) and observe next state skh+1

13: Return D ← {(skh, akh)}(h,k)∈[H]×[K]

Algorithm 16 Reward-Free RL for Linear VMDPs: Planning Phase

1: Hyperparameters: Bonus coefficient β.
2: Input: Dataset D = {(skh, akh)}(k,h)∈[K]×[H], vector θ ∈ B(1)

samples of return function {rkh}(k,h)∈[K]×[H]

3: for step h = H,H − 1, . . . , 1 do
4: Λ̂h =

∑K
i=1 φ(sih, a

i
h)φ(sih, a

i
h)> + I

5: ûh(·, ·)← min{β ·
√
φ(·, ·)>(Λ̂h)−1φ(·, ·), H}

6: ŵh ← (Λ̂h)−1
∑K
i=1 φ(sih, a

i
h)[V̂h+1(sih+1) + θ>rih]

7: Q̂h(·, ·)← min{(ŵh)>φ(·, ·) + ûh(·, ·), H}
8: V̂h(·) = maxa∈A Q̂h(·, a) and π̂h(·)← argmaxa∈AQ̂h(·, a)
9: Return πθ = {π̂h}Hh=1
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exploration algorithm (Algorithm 15) for K ≥ cK [d3
linH

6(ι′)2/ε2] episodes where ι′ = log[dlindH/(εδ)],

then with probability at least 1− δ, for any θ ∈ B(1), the output of the planning phase satisfies:

V ?1 (s1; θ)− V πθ1 (s1; θ) ≤ ε,

where πθ is the output of the planning algorithm (Algorithm 16) given θ as input. Therefore, in this

case we have

mRFE(ε, δ) ≤ O
(
d3

linH
6(ι′)2/ε2

)
.

In this section, we denote φkh := φ(skh, a
k
h) for (k, h) ∈ [K] × [H]. For a scalar reward function

r′ : S ×A → [−1, 1] and a policy π, we use V πh (· | r′) and Qπh(·, · | r′) to denote the value function

and Q-value function for the MDP (S,A, H,P, r′). Similarly we define the optimal value function

and Q-value function denoted by V ?h (· | r′) and Q?h(· | r′).

The bonus coefficient is defined to be

β = cβ · dlinH
√
ι (C.15)

where ι = log[dlindHK/δ].

We start with the following concentration lemma.

Lemma C.4.2. Suppose Assumption 4.5.1 holds. Let c be some large absolute constant. Define

event E2 to be: for all (k, h, θ) ∈ [K]× [H]× B(1),



∥∥∥∑k−1
i=1 φih

(
Ṽ kh+1(sih+1)− [PhṼ kh+1](sih, a

i
h)
)∥∥∥

(Λ̃kh)−1
≤ c ·H

√
d2

linι,∥∥∥∑K
i=1 φ

i
h

(
V̂h+1(sih+1)− [PhV̂h+1](sih, a

i
h)
)∥∥∥

(Λ̂h)−1
≤ c ·H

√
d2

linι,∥∥∥∑K
i=1 φ

i
h

(
θ>(r̂h − rh)(sih, a

i
h)
)∥∥∥

(Λ̂h)−1
≤ c ·

√
dlinι,

|
∑K
k=1

∑H
h=1[PhṼ kh+1](skh, a

k
h)− Ṽ kh+1(skh)| ≤ c ·H2

√
Kι,

(C.16)
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where ι = log[dlindHK/δ]. We have P(E2) ≥ 1− δ.

Proof of Lemma C.4.2. The first three inequalities follow from the standard concentration inequali-

ties of the self-normalized process, a covering argument over the value functions or θ, and union

bound. We refer readers to the proofs of Lemma B.3 in Jin et al. (2020c) or Lemma A.1 in Wang

et al. (2020a) for details. The last inequality follows immediately from Azuma-Hoeffding’s inequality

since for a fixed h, {[PhṼ kh+1](skh, a
k
h)− Ṽ kh+1(skh)}k∈[K] is a martingale difference sequence bounded

by H.

The following lemma shows that Ṽ k1 (defined in Algorithm 15) is optimistic with respect to reward

function r̃k. In addition, it shows its sum over k can be controlled by Õ(
√
d3

linH
4K).

Lemma C.4.3. Suppose Assumption 4.5.1 and event E2 (defined in Lemma C.4.2) hold; we have

V ?1 (s1 | r̃k) ≤ Ṽ k1 (s1) ∀k ∈ [K]

k∑
k=1

Ṽ k1 (s1) ≤ O
(√

d3
linH

4Kι2
)

Proof of Lemma C.4.3. Let wk
h =

∫
Ṽ kh+1(s′)dµh(s′); by Assumption 4.5.1, we have

‖wk
h‖ ≤ H‖µh(S)‖ ≤ H

√
dlin

[PhṼ kh+1](s, a) = φ(s, a)>wk
h ∀(s, a) ∈ S ×A

(C.17)

For all k, h, s, a ∈ [K]× [H]× S ×A, we have

φ(s, a)>w̃k
h − [PhṼ kh+1](s, a)

= φ(s, a)>[w̃k
h −wk

h]

= φ(s, a)>(Λ̃kh)−1
( k−1∑
i=1

φihṼ
k
h+1(sih+1)− Λ̃khw

k
h

)
= φ(s, a)>(Λ̃kh)−1

( k−1∑
i=1

φihṼ
k
h+1(sih+1)−

k−1∑
i=1

φih(φih)>wk
h −wk

h

)
.
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Note that (φih)>wk
h = [PhṼ kh+1](sih, a

i
h). Therefore, we have

|φ(s, a)>w̃k
h − [PhṼ kh+1](s, a)|

=
∣∣∣φ(s, a)>(Λ̃kh)−1

[ k−1∑
i=1

φih

(
Ṽ kh+1(sih+1)− [PhṼ kh+1](sih, a

i
h)
)
−wk

h

]∣∣∣
≤
∣∣∣φ(s, a)>(Λ̃kh)−1

[ k−1∑
i=1

φih

(
Ṽ kh+1(sih+1)− [PhṼ kh+1](sih, a

i
h)
)]∣∣∣+ |φ(s, a)>(Λ̃kh)−1wk

h|

≤
∥∥∥k−1∑
i=1

φih

(
Ṽ kh+1(sih+1)− [PhṼ kh+1](sih, a

i
h)
)∥∥∥

(Λ̃kh)−1
· ‖φ(s, a)‖(Λ̃kh)−1 + ‖wk

h‖(Λ̃kh)−1 · ‖φ(s, a)‖(Λ̃kh)−1 .

Note that ‖wk
h‖(Λ̃kh)−1 ≤ ‖wk

h‖ ≤ H
√
dlin since Λ̃kh � I.

By event E2 we have
∥∥∥∑k−1

i=1 φih

(
Ṽ kh+1(sih+1)− [PhṼ kh+1](sih, a

i
h)
)∥∥∥

(Λ̃kh)−1
≤ c ·H

√
d2

linι. Plugging

back, results in

|φ(s, a)>w̃k
h − [PhṼ kh+1](s, a)|

≤ (H
√
dlin + c ·H

√
d2

linι)‖φ(s, a)‖(Λ̃kh)−1

≤ (cβ ·H
√
d2

linι)‖φ(s, a)‖(Λ̃kh)−1

= β‖φ(s, a)‖(Λ̃kh)−1

(C.18)

Now we are ready to complete the proof:

First claim: we prove the claim

V ?h (s | r̃k) ≤ Ṽ kh (s) ∀s ∈ S,

by backward induction on h. For h = H + 1 the claim is trivial since both LHS and RHS are zero.

Now suppose that we have

V ?h+1(s | r̃k) ≤ Ṽ kh+1(s) ∀s ∈ S.
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Then, for all s ∈ S we have

V ?h (s | r̃k) = max
a∈A

Q?h(s | r̃k)

= max
a∈A
{min{r̃kh(s, a) + [PhV ?h+1](s, a | r̃k), H}}

≤ max
a∈A
{min{r̃kh(s, a) + [PhṼ kh+1](s, a), H}}

≤ max
a∈A
{min{r̃kh(s, a) + φ(s, a)>w̃k

h + β‖φ(s, a)‖(Λ̃kh)−1 , H}}

≤ max
a∈A

Q̃kh(s, a) = Ṽ kh (s),

where the first inequality is due to induction hypothesis and the second inequality is due to

Equation C.18. It proves the induction step and completes the induction.

Second claim: Let

ζkh = [PhṼ kh+1](skh, a
k
h)− Ṽ kh+1(skh) ∀(k, h) ∈ [K]× [H]

we have
K∑
k=1

Ṽ k1 (sk1) ≤
K∑
k=1

(
(r̃k1 + uk1)(sk1 , a

k
1) + (φk1)>w̃k

1

)
=

K∑
k=1

(
(1 + 1/H)β · ‖φ(s, a)‖(Λ̃k1 )−1 + (φk1)>w̃k

1

)
≤

K∑
k=1

(
(2 + 1/H)β · ‖φ(s, a)‖(Λ̃k1 )−1 + [P1Ṽ

k
2 ][sk1 , a

k
1 ]
)

≤
K∑
k=1

(
Ṽ k2 (sk2) + (2 + 1/H)β · ‖φ(s, a)‖(Λ̃k1 )−1 + ζk1

)
By repeatedly applying the same argument we get

K∑
k=1

Ṽ k1 (sk1) ≤ (2 + 1/H)β

K∑
k=1

H∑
h=1

‖φ(s, a)‖(Λ̃kh)−1︸ ︷︷ ︸
(T1)

+

K∑
k=1

H∑
h=1

ζkh︸ ︷︷ ︸
(T2)

.
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For the term (T1) we have

T1 =

K∑
k=1

H∑
h=1

‖φ(s, a)‖(Λ̃k1 )−1

(i)

≤

√√√√KH

K∑
k=1

H∑
h=1

(φkh)>(Λ̃kh)(φkh)

(ii)

≤
√
KH(2dlinH log(K)),

where (i) uses Cauchy-Schwarz, and (ii) uses Lemma D.2 in Jin et al. (2020c) that implies∑K
k=1

∑H
h=1(φkh)>(Λ̃kh)(φkh) ≤ 2dlinH log(K).

For the term (T2), by the third inequality in event E2, we have

T2 ≤ c ·H2
√
Kι.

Plugging back in the original equation gives us

K∑
k=1

Ṽ k1 (sk1)

≤ (2 + 1/H)β ·
√
KH(2dlinH log(K)) + c ·H2

√
Kι

≤ c′
√
d3

linH
4Kι2,

for some absolute constant c′, which completes the proof of the lemma.

Lemma C.4.4. Suppose Assumption 4.5.1 and event E2 (defined in Lemma C.4.2) hold; Let

û = {ûh}Hh=1 (as defined in Line 5 of Algorithm 16), we have

V ?1 (s1 | û/H) ≤ O
(√

d3
linH

4ι2/K
)

Proof of Lemma C.4.4. Note that Λ̂h � Λ̃kh for all k ∈ [K]. Therefore for all h ∈ [H] and (s, a) ∈

S ×A, we have

ûh(s, a)/H ≤ ũkh(s, a)/H = r̃kh(s, a)
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Using Lemma C.4.3 we have

KV ?1 (s1 | û/H) ≤
K∑
k=1

V ∗1 (s1 | r̃k)

≤
K∑
k=1

Ṽ k1 (s1)

≤ O
(√

d3
linH

4Kι2
)
.

Dividing both sides by K completes the proof.

Lemma C.4.5. Suppose Assumption 4.5.1 and event E2 (defined in Lemma C.4.2) hold. For all

(s, a, h, θ) ∈ S ×A× [H]× B(1) we have

Q∗h(s, a; θ) ≤ Q̂h(s, a) ≤ θ>rh(s, a) + [PhV̂h+1](s, a) + 2ûh(s, a).

Proof of Lemma C.4.5. First note that by Assumption 4.5.1, we have rh(s, a) = Whφ(s, a). Define

wh =

∫
V̂h+1(s′)dµh(s′) + θ>Wh.

By Assumption 4.5.1, we have

‖wh‖ ≤ ‖
∫
V̂h+1(s′)dµh(s′)‖+ ‖θ>Wh‖

≤ H‖µh(S)‖+ ‖θ‖‖Wh‖

≤ H ·
√
dlin +

√
dlin ≤ 2H

√
dlin.

Therefore we have

‖wh‖ ≤ 2H ·
√
dlin

[PhV̂h+1](s, a) + θ>rh(s, a) = φ(s, a)>wh ∀(s, a) ∈ S ×A
(C.19)
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Now using similar argument in Lemma C.4.3, for all (s, a, h, θ) ∈ S ×A× [H]× B(1) we can have

∣∣φ(s, a)>ŵh − [PhV̂h+1](s, a)− θ>rh(s, a)
∣∣

≤
∥∥∥ K∑
i=1

φih

(
V̂h+1(sih+1)− [PhV̂h+1](sih, a

i
h)
)∥∥∥

(Λ̂h)−1︸ ︷︷ ︸
(T1)

·‖φ(s, a)‖(Λ̂h)−1

+
∥∥∥ K∑
i=1

φih

(
θ>(r̂h − rh)(sih, a

i
h)
)∥∥∥

(Λ̂h)−1︸ ︷︷ ︸
(T2)

·‖φ(s, a)‖(Λ̂h)−1

+ ‖wk
h‖(Λ̂h)−1︸ ︷︷ ︸
(T3)

·‖φ(s, a)‖(Λ̂h)−1

Note that (T3) = ‖wh‖(Λ̂h)−1 ≤ ‖wh‖ ≤ 2H
√
dlin since Λ̂h � I. The other two terms (T1) and (T2)

are both upper-bounded by c ·H
√
d2

linι due to event E2. Plugging back results in

∣∣φ(s, a)>ŵh − [PhV̂h+1](s, a)− θ>rh(s, a)
∣∣

≤
[
2H
√
dlin + 2cH

√
d2

linι
]
‖φ(s, a)‖(Λ̂h)−1

≤ [cβ ·H
√
d2

linι]‖φ(s, a)‖(Λ̂h)−1

= β‖φ(s, a)‖(Λ̂h)−1 .

(C.20)

Now we are ready to complete the proof of the lemma. For all (s, a, h, θ) ≤ S ×A× [H]× B(1), we

have

Q̂h(s, a) = min{φ(s, a)>ŵh + ûh(s, a), H}

≤ min{[PhV̂h+1](s, a) + θ>rh(s, a) + 2β‖φ(s, a)‖(Λ̂h)−1 , H}

≤ [PhV̂h+1](s, a) + θ>rh(s, a) + 2 min{β‖φ(s, a)‖(Λ̂h)−1 , H}

= [PhV̂h+1](s, a) + θ>rh(s, a) + 2ûh(s, a),

where the first inequality uses Equation C.20. It completes the proof for one side of the inequality

in Lemma C.4.5. For the other side we prove the claim by backward induction on h. For h = H + 1
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we the claim is trivial. Now suppose that

Q∗h+1(s, a; θ) ≤ Q̂h+1(s, a),

we want to prove the claim for h. We have

Q∗h(s, a; θ) = min{θ>rh(s, a) + [PhV ∗h+1](s, a; θ), H}
(i)

≤ min{θ>rh(s, a) + [PhV̂h+1](s, a; θ), H}
(ii)

≤ min{φ(s, a)>ŵh + β‖φ(s, a)‖(Λ̂h)−1 , H}

≤ min{φ(s, a)>ŵh + min{β‖φ(s, a)‖(Λ̂h)−1 , H}, H}

= min{φ(s, a)>ŵh + ûh(s, a), H} = Q̂h(s, a),

where (i) uses induction hypothesis, and (ii) uses Equation C.20. It completes the proof of the

lemma.

Proof of Theorem C.4.1. With probability at least 1− δ, event E2 holds and we have

V̂1(s1)− V π̂1 (s1; θ)

= Q̂1(s1, π̂1(s1))−Qπ̂1 (s1, π̂1(s1); θ)

(i)

≤
(

[P1V̂2](s1, π̂1(s1)) + θ>r1(s1, π̂1(s1)) + 2û1(s1, π̂1(s1))
)

−
(
θ>r1(s1, π̂1(s1)) + [P1V

π̂
2 ](s1, π̂1(s1); θ)

)
= 2û1(s1, π̂1(s1)) +

(
[P1V̂2](s1, π̂1(s1))− [P1V

π̂
2 ](s1, π̂1(s1); θ)

)
= 2û1(s1, π̂1(s1)) + Es2∼π̂[V̂2(s2)− V π̂2 (s2; θ)]

= . . .

= 2Eπ̂[

H∑
h=1

ûh(sh, ah)]

= 2V π̂1 (s1 | û),

(C.21)
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where (i) is uses Lemma C.4.5. Therefore we have

V ?1 (s1; θ)− V π̂1 (s1; θ)

(i)

≤ V̂1(s1)− V π̂1 (s1; θ)

(ii)

≤ 2V π̂1 (s1 | û)

(iii)

≤ 2V ?1 (s1 | û)

= 2H · V ?1 (s1 | û/H)

(iv)

≤ O
(√

d3
linH

6ι2/K
)

(v)

≤ ε,

where (i) uses Lemma C.4.5, (ii) uses Equation C.21, (iii) uses definition of optimal value function,

(iv) uses Lemma C.4.4, and (v) is due to K ≥ cK [d3
linH

6(ι′)2/ε2] with a sufficiently large constant

cK ; It completes the proof.

C.5 Proof for Section 4.6

In this section we provide proofs and missing details for Section 4.6.

C.5.1 Proof of Theorem 4.6.3

Define vt = V µ
t,νt

1 (s1) and note that E[v̂t] = vt.

Lemma C.5.1. Define even E3 to be:


‖ 1
T

∑T
t=1 vt − v̂t‖ ≤ O(

√
dH2ι/T ),

V µ
t,νt

1 (s1; θt)− V ?1 (s1; θt) ≤ ε/2 ∀t ∈ [T ].

where ι = log(d/δ). We have P(E0) ≥ 1− δ.
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Proof of Lemma C.5.1. We prove each claim holds with probability at least 1− δ/2; applying union

bound completes the proof.

First claim. Let Ft be the filtration capturing all the randomness in the algorithm before iteration

t. We have E[v̂t | Ft] = vt and we also know that ‖v̂t‖ ≤ H almost surely. By applying Lemma C.6.1,

with probability at least 1− δ we have

‖ 1

T

T∑
t=1

vt − v̂t‖ ≤ O(
√
H2 log[d/δ]/T ),

which completes the proof.

Second claim. We have K ≥ mRFE(ε/2, δ/2), therefore by probability at least 1− δ/2 (Defini-

tion 4.6.1) we have

V µ
t,†

1 (s1; θt)− V †,ω
t

1 (s1; θt) ≤ ε/2,

Since (µt, ωt) is the output of the planning phase. By definition of V ?, V ·,†, and V †,·, we further

know that

V ?1 (s1; θt) = max
ν

V †,ν1 (s1; θt) ≥ V †,ω
t

1 (s1; θt)

V µ
t,†

1 (s1; θt) = max
ν

V µ
t,ν

1 (s1; θt) ≥ V µ
t,νt

1 (s1; θt)

Combining the three equations gives us,

V µ
t,νt

1 (s1; θt)− V ?1 (s1; θt) ≤ V µ
t,†

1 (s1; θt)− V †,ω
t

1 (s1; θt) ≤ ε/2,

and completes the proof.

Lemma C.5.2. For any θ ∈ B(1), we have

V ∗1 (s1; θ) ≤ max
x∈C
〈θ,x〉+ max

ν
min
µ

dist(Vµ,ν
1 (s1), C)

Proof of Lemma C.5.2. Let α = maxν minµ dist(Vµ,ν
1 (s1), C); therefore, for every max-player policy
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ν there exist a min-player policy µ(ν) such that dist(V
µ(ν),ν
1 (s1), C) ≤ α. Let ΓC be the (Euclidean)

projection operator into C. We have

V ∗1 (s1; θ) = V µ
?,ν∗

1 (s1; θ)

≤ V µ(ν∗),ν∗

1 (s1; θ)

= 〈θ,Vµ(ν∗),ν∗

1 (s1)〉

= 〈θ,Vµ(ν∗),ν∗

1 (s1)− ΓC

[
V
µ(ν∗),ν∗

1 (s1)
]
〉+ 〈θ,ΓC

[
V
µ(ν∗),ν∗

1 (s1)
]
〉

≤ ‖θ‖dist(V
µ(ν∗),ν∗

1 (s1), C) + max
x∈C
〈θ,x〉

≤ α+ max
x∈C
〈θ,x〉,

Recalling that α = maxν minµ dist(Vµ,ν
1 (s1), C) completes the proof.

Proof of Theorem 4.6.3. With probability at least 1− δ, event E3 (as in Definition C.5.1) holds and
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we have

dist(
1

T

T∑
t=1

Vµt,νt

1 (s1), C)

= dist
( 1

T

T∑
t=1

vt, C
)

(i)
= max

θ∈B(1)

[
〈θ, 1

T

T∑
t=1

vt)〉 −max
x∈C
〈θ,x〉

]
= max
θ∈B(1)

[ 1

T

T∑
t=1

(
〈θ, v̂t〉 −max

x∈C
〈θ,x〉) + 〈θ, 1

T

T∑
t=1

vt − v̂t〉
]

(ii)

≤ max
θ∈B(1)

[ 1

T

T∑
t=1

(
〈θ, v̂t〉 −max

x∈C
〈θ,x〉)

]
+O(

√
dH2ι/T )

(iii)

≤ 1

T

T∑
t=1

(
〈θt, v̂t〉 −max

x∈C
〈θt,x〉) +O(

√
H2/T ) +O(

√
dH2ι/T )

(iv)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) +

1

T

T∑
t=1

(
〈θt, v̂t〉 −V∗1(s1; θt)

)
+O(

√
dH2ι/T )

(v)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ε/2 +

1

T

T∑
t=1

(
〈θt, v̂t〉 −Vµt,νt

1 (s1; θt)
)

+O(
√
dH2ι/T )

= max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ε/2 +

1

T

T∑
t=1

〈θt, v̂t − vt〉+O(
√
dH2ι/T )

(vi)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ε/2 +O(

√
dH2ι/T )

(vii)

≤ max
ν

min
µ

dist(Vµ,ν
1 (s1), C) + ε

where (i) is by Equation C.3, (ii) is by first inequality in event E3 together with Cauchy-Schwarz,

(iii) is by guarantee of OGA in Theorem C.2.1, (iv) is by Lemma C.5.2, (v) is by second inequality

in event E3, (vi) is by first inequality in event E3 together with Cauchy-Schwarz, and finally (vii) is

by setting T ≥ c
(
dH2ι/ε2

)
for large enough constant c, completing the proof.
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C.5.2 Proof of Theorem 4.6.4

Algorithm

Exploration phase. Similar to Algorithm 14, we use VI-Zero proposed by Liu et al. (2020) with

different choice of hyperparameters. The pseudo-code is provided in Algorithm 17.

Planning phase. In the planning phase, given θ ∈ B(1) as input we can use any planning

algorithm for Ĝθ = (S,A,B, H, P̂out, 〈θ, r̂〉) where r̂ is empirical estimate of r using collected samples

{rkh}. One such algorithm could be Nash value iteration (e.g. see Algorithm 5 in Liu et al. 2020)

that computes Nash equilibrium policy for a known model.

Algorithm 17 VI-Zero for VMGs: Exploration Phase

1: Hyperparameters: Bonus βt.
2: Initialize: for all (s, a, b, h) ∈ S ×A× B × [H]: Q̃h(s, a, b)← H and Nh(s, a, b)← 0,
3: for all (s, a, b, h, s′) ∈ S ×A× B × [H]× S: Nh(s, a, b, s′)← 0,
4: ∆← 0.
5: for episode k = 1, 2, . . . ,K do
6: for step h = H,H − 1, . . . , 1 do
7: for state-action pair (s, a, b) ∈ S ×A× B do
8: t← Nh(s, a, b).
9: if t > 0 then

10: Q̃h(s, a, b)← min{[P̂hṼh+1](s, a, b) + βt, H}.
11: for state s ∈ S do
12: Ṽh(s)← max(a,b)∈A×B Q̃h(s, a, b) and πh(s)← argmax(a,b)∈A×BQ̃h(s, a, b)

13: if Ṽ (s1) ≤ ∆ then

14: ∆← Ṽ (s1) and P̂out ← P̂h
15: for step h = 1, 2, . . . ,H do
16: Take action (ah, bh)← πh(sh) and observe next state sh+1

17: Update Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1
18: Update Nh(sh, ah, bh, sh+1)← Nh(sh, ah, bh, sh+1) + 1

19: P̂h(· | sh, ah, bh)← Nh(sh, ah, bh, ·)/Nh(sh, ah, bh)

20: Return P̂out

Proof of Theorem 4.6.4

Proof is almost identical to proof of Theorem ?? provided in Appendix C.3; therefore, we only

provide the statement for the main lemmas without proof.
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Let P̂k and r̂k be our empirical estimates of the transition and the return vectors at the beginning

of the kth episode in Algorithm 17 and define Ĝk = (S,A,B, H, P̂k, r̂k). We use Nk
h (s, a, b) to

denote the number of times we have visited state-action (s, a, b) in step h before kth episode in

Algorithm 17. We use superscript k to denote variable corresponding to episode k; in particular,

(sk1 , a
k
1 , b

k
1 , . . . , s

k
H , a

k
H , b

k
H) is the trajectory we have visited in the kth episode.

For any θ ∈ B(1), let Ĝkθ be the scalarized VMG using vector θ (defined in Section 4.6). We use

V̂ k(·; θ), Q̂k(·, ·, ·; θ), and (µ̂kθ , ν̂
k
θ ) = (µ̂k(·; θ), ν̂k(·; θ)) to denote the optimal value function, optimal

Q-value function, and Nash equilibrium policy of Ĝkθ respectively. Therefore, we have

Q̂kh(s, a, b; θ) = [P̂khV̂ kh+1](s, a, b; θ) + r̂kh(s, a, b; θ),

V̂ kh (s; θ) = min
µ

max
ν

[Dµ×νQ̂kh](s; θ),

V̂ kh (s; θ) = [Dµ̂kθ×ν̂kθ Q̂
k
h](s; θ).

(C.22)

Theorem C.5.3 (restatement of Theorem 4.6.4). There exist absolute constants cβ and cK , such

that for any ε ∈ (0, H], δ ∈ (0, 1], if we choose bonus βt = cβ
(√

min{d, S}H2ι/t+H2Sι/t
)

where ι =

log[dSABKH/δ], and run the exploration phase (Algorithm 17) for K ≥ cK
(

min{d, S}H4SABι′/ε2+

H3S2AB(ι′)2/ε
)

episodes where ι′ = log[dSABH/(εδ)], then with probability at least 1 − δ, the

algorithm satisfies for all θ ∈ B(1)

V µθ,†1 (s1; θ)− V †,νθ1 (s1; θ) = [V µθ,†1 (s1; θ)− V ?1 (s1; θ)] + [V ?1 (s1; θ)− V †,νθ1 (s1; θ)] ≤ ε,

where (µθ, νθ) is the output of any planning algorithm (e.g., Nash value iteration) for the Markov

game Ĝout
θ . Therefore, we have

mRFE(ε, δ) ≤ O
(min{d, S}H4SABι′

ε2
+
H3S2AB(ι′)2

ε

)
.
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The bonus for episode k can be written as

βkh(s, a, b) = cβ

(√ min{d, S}H2ι

max{Nk
h (s, a, b), 1}

+
H2Sι

max{Nk
h (s, a, b), 1}

)
, (C.23)

where ι = log[dSABKH/δ] and cβ is some large absolute constant.

We start with the concentration lemma similar to Lemma C.3.3.

Lemma C.5.4. Let c be some large absolute constant. Define event E4 to be: for all (s, a, b, s′, h) ∈

S ×A× B × S × [H], k ∈ [K], and θ ∈ B(1),



|[(P̂kh − Ph)V ?h+1](s, a, b; θ)| ≤ c
√

min{d,S}H2ι

max{Nkh (s,a,b),1} ,

|(r̂kh − rh)(s, a, b; θ)| ≤ c
√

ι
max{Nkh (s,a,b),1} ,

|(P̂kh − Ph)(s′ | s, a, b)| ≤ c
(√

P̂kh(s′|s,a,b)ι
max{Nkh (s,a,b),1} + ι

max{Nkh (s,a,b),1}

)
,

(C.24)

where ι = log[dSABKH/δ]. We have P(E4) ≥ 1− δ.

Similar to Lemma C.3.4, the following lemma shows that the optimal value functions of Ĝkθ are close

to the optimal value functions of Gθ and their difference is controlled by Q̃ and Ṽ computed in

Algorithm 17.

Lemma C.5.5. Suppose event E4 holds (defined in Lemma C.5.4); then, for all (s, a, b, k, h, θ) ∈

S ×A× B × [K]× [H]× B(1) we have

|Q̂kh(s, a, b; θ)−Q?h(s, a, b; θ)| ≤ Q̃kh(s, a, b),

|V̂ kh (s; θ)− V ?h (s; θ)| ≤ Ṽ kh (s).

(C.25)

Similar to Lemma C.3.5, now we are ready to introduce the main lemma that shows value of π̂kθ

under the true model is close to its value under empirical model. The difference is controlled by Q̃

and Ṽ computed in Algorithm 17.
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Lemma C.5.6. Suppose event E4 holds (defined in Lemma C.5.4); then, for all (s, a, b, k, h, θ) ∈

S ×A× B × [K]× [H]× B(1) we have

|Q̂kh(s, a, b; θ)−Q†,ν̂
k
θ

h (s, a, b; θ)| ≤ αhQ̃kh(s, a, b),

|V̂ kh (s; θ)− V †,ν̂
k
θ

h (s; θ)| ≤ αhṼ kh (s),

(C.26)

and

|Q̂kh(s, a, b; θ)−Qµ̂
k
θ ,†
h (s, a, b; θ)| ≤ αhQ̃kh(s, a, b),

|V̂ kh (s; θ)− V µ̂
k
θ ,†

h (s; θ)| ≤ αhṼ kh (s),

(C.27)

where αH+1 = 1 and αh = [(1 + 1
H )αh+1 + 1

H ]; we have 1 ≤ αh ≤ 5 for h ∈ [H].

Similar to Lemma C.3.6, we can bound the uncertainty using the following lemma.

Theorem C.5.7. For any δ ∈ (0, 1], if we choose βkt in Algorithm 17 as in Equation C.23; then,

with probability at least 1− δ, we have

K∑
k=1

Ṽ k1 (s1) ≤ O(
√

min{d, S}H4SABKι+H3S2ABι2).

Proof of Theorem C.5.3 (restatement of Theorem 4.6.4). By Algorithm 17, we have out = argmink∈[K]Ṽ
k
1 (s1),

resulting in Ṽ out
1 (s1) ≤ 1

K

∑K
k=1 Ṽ

k
1 (s1). Therefore, with probability at least 1− 2δ, for any vector

θ ∈ B(1) we have

V
µ̂out
θ ,†

1 (s1; θ)− V †,ν̂
out
θ

1 (s1; θ) ≤ |V µ̂
out
θ ,†

1 (s1; θ)− V̂ out
1 (s1; θ)|+ |V̂ out

1 (s1; θ)− V †,ν̂
out
θ

1 (s1; θ)|
(i)

≤ 2α1Ṽ
out
1 (s1)

≤ 10Ṽ out
1 (s1)

≤ 10

K

K∑
k=1

Ṽ k1 (s1)

(ii)

≤ O(
√

min{d, S}H4SABι/K +H3S2ABι2/K)

(iii)

≤ ε,
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where (i) is due to Lemma C.5.6, (ii) is due to Theorem C.5.7, and (iii) is due toK ≥ cK(min{d, S}H4SABι′/ε2+

H3S2AB(ι′)2/ε) with a sufficiently large constant cK . Rescaling δ completes the proof.

C.6 Auxiliary tools

Lemma C.6.1 (Hoeffding type inequality for norm-subGaussian, Corollary 7 in Jin et al. 2019).

Let {Xt}t∈[T ] be a d-dimensional vector-valued random variable. Consider filtration {Ft}t∈[T ] and

define Et[·] = E[· | Ft]. If ‖Xt‖ ≤ R almost surely, then it holds with probability at least 1− δ,

‖
T∑
t=1

Xt − Et−1[Xt]‖ ≤ O(R
√
T log[d/δ]).
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Appendix D

Remaining Proofs of Chapter 5

D.1 Algorithm Olive

In this section, we analyze algorithm Olive proposed in Jiang et al. (2017), which is based on

hypothesis elimination. We prove that, despite Olive was originally designed for solving low Bellman

rank problems, it naturally learns RL problems with low BE dimension as well.

The main advantage of Olive comparing to Golf is that Olive does not require the completeness

assumption. In return, Olive has several disadvantages including worse sample complexity, and no

sublinear regret.

The pseudocode of Olive is presented in Algorithm 18, where in each phase the algorithm contains

the following three main components:

• Line 3 (Optimistic planning): compute the most optimistic value function fk from the candidate

set Bk−1, and choose πk to be its greedy policy.

• Line 4-7 (Estimate Bellman error): estimate the Bellman error of fk under πk; output πk if

the estimated error is small, and otherwise activate the elimination procedure.
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Algorithm 18 Olive (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 F , Dh ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1f(s1, πf (s1)).

4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate Ê(fk, πk, h) for all h ∈ [H], where

Ê(g, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

(
gh(s, a)− r −max

a′∈A
gh+1(s′, a′)

)
.

6: if
∑H
h=1 Ê(fk, πk, h) ≤ Hζact then

7: Terminate and output πk.
8: Pick any t ∈ [H] for which Ê(fk, πk, t) ≥ ζact.
9: Execute πk for nelim episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.

10: Estimate Ê(f, πk, t) for all f ∈ F .

11: Update Bk =
{
f ∈ Bk−1 :

∣∣∣Ê(f, πk, t)
∣∣∣ ≤ ζelim

}
.

• Line 8-11 (Eliminate functions with large Bellman error): pick a step t ∈ [H] where the

estimated Bellman error exceeds the activation threshold ζact; eliminate all functions in the

candidate set whose Bellman error at step t exceeds the elimination threshold ζelim.

We comment that Olive is computationally inefficient in general because implementing the optimistic

planning part requires solving an NP-hard problem in the worst case (Theorem 4, Dann et al., 2018).

D.1.1 Theoretical guarantees

Now, we are ready to present the theoretical guarantee for Olive.

Theorem D.1.1 (Olive). Under Assumption 5.2.1, there exists absolute constant c such that if

we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d log(NF (ζelim/8)) · ι
ε2

where d = dimBE(F ,DF , ε/H) and ι = c log(Hd/δε), then with probability at least 1− δ, Algorithm

18 will output an O(ε)-optimal policy using at most O(H3d2 log[NF (ζelim/8)] · ι/ε2) episodes.

189



Theorem D.1.1 claims that Olive learns an ε-optimal policy of an MDP with BE dimension d

within Õ(H3d2 log(NF )/ε2) episodes. When specialized to low Bellman rank problems, our sample

complexity has the same quadratic dependence on Bellman rank d as in Jiang et al. (2017).

Comparing to Golf, the major advantage of Olive is that Olive does not require completeness

assumption (Assumption 5.2.2) to work. Nevertheless, Olive only learns the RL problems that

have low BE dimension with respect to distribution family DF , not D∆. The sample complexity of

Olive is also worse than the sample complexity Golf (as presented in Corollary 5.4.3).

Finally, we comment that interpreting Olive through the lens of BE dimension, makes the proof of

Theorem D.1.1 surprisingly natural, which follows from the definition of BE dimension along with

some standard concentration arguments.

D.1.2 Interpret Olive with BE dimension

In this subsection, we explain the key idea behind Olive through the lens of BE dimension.

To provide a clean high-level view, let us assume all estimates are accurate for now, and the

activation threshold ζact and the elimination threshold ζelim satisfy ζelim

√
d ≤ ζact, where d =

dimBE

(
F ,DF , ζact

)
. Since E(Q?, π, h) ≡ 0 for any (π, h), Q? is always in the candidate set. Therefore,

the optimistic planning (Line 3) guarantees maxa f
k
1 (s1, a) ≥ V ?1 (s1).

If the Bellman error summation is small (Line 6) i.e.,
∑H
h=1 E(fk, πk, h) ≤ Hζact, then by simple

policy loss decomposition (e.g., Lemma 1 in Jiang et al. (2017)) and the optimism of fk, πk is Hζact-

optimal. Otherwise, the elimination procedure is activated at some step t satisfying E(fk, πk, t) ≥ ζact

and all f with E(f, πk, t) ≥ ζelim get eliminated. The key observation here is:

If the elimination procedure is activated at step h in phase k1 < . . . < km, then the

roll-in distribution of πk1 , . . . , πkm at step h is an ζact-independent sequence with respect

to the class of Bellman residuals (I − Th)F at step h. Therefore, we should have m ≤ d.

For the sake of contradiction, assume m ≥ d+ 1. Let us prove πk1 , . . . , πkd+1 is a ζact-independent
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sequence. Firstly, for any j ∈ [d+ 1], since fkj is not eliminated in phase k1, . . . , kj−1, we have

√√√√j−1∑
i=1

(
E(fkj , πki , h)

)2 ≤ √d× ζelim ≤ ζact.

Besides, because the elimination procedure is activated at step h in phase kj , we have E(fkj , πkj , h) ≥

ζact. By Definition 5.3.1, we obtain that the roll-in distribution of πkj at step h is ζact-independent

of those of πk1 , . . . , πkj−1 for j ∈ [d+ 1], which contradicts the definition d = dimBE

(
F ,DF , ζact

)
.

As a result, the elimination procedure can happen at most d times for each h ∈ [H], which means

the algorithm should terminate within dH + 1 phases and output an Hζact-optimal policy.

D.2 V-type BE Dimension and Algorithms

The definition of Bellman rank, mentioned in Definition 5.3.5 and Proposition 5.3.6, is slightly

different from the original definition in Jiang et al. (2017). We denote the former by Q-type and

the latter (the original definition) by V-type. In this section we introduce V-type BE Dimension as

well as V-type variants of Golf and Olive. We show that similar results also hold for the V-type

variants.

Definition D.2.1 (V-type Bellman rank). The V-type Bellman rank is the minimum integer d so

that there exists φh : F → Rd and ψh : F → Rd for each h ∈ [H], such that for any f, f ′ ∈ F , the

average V-type Bellman error

EV(f, πf ′ , h) := E[(fh − Thfh+1)(sh, ah) | sh ∼ πf ′ , ah ∼ πf ] = 〈φh(f), ψh(f ′)〉,

where ‖φh(f)‖2 · ‖ψh(f ′)‖2 ≤ ζ, and ζ is the normalization parameter.

The only difference between these two definitions is how we sample ah. In the Q-type definition we

have ah ∼ πf ′ (the roll-in policy), however in the V-type definition we have ah ∼ πf (the greedy

policy of the function evaluated in the Bellman error) instead. It is worth mentioning that the
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Q-type and V-type bellman error coincide whenever f = f ′; namely, E(f, πf , h) = EV(f, πf , h) for

all f ∈ F .

We can similarly define the V-type variant of BE Dimension. At a high level, V-type BE dimension

dimVBE(F ,Π, ε) measures the complexity of finding a function in F such that its expected Bellman

error under any state distribution in Π is smaller than ε.

Definition D.2.2 (V-type BE dimension). Let (I − Th)VF ⊆ (S → R) be the state-wise Bellman

residual class of F at step h which is defined as

(I − Th)VF :=
{
s 7→ (fh − Thfh+1)(s, πfh(s)) : f ∈ F

}
.

Let Π = {Πh}Hh=1 be a collection of H probability measure families over S. The V-type ε-BE

dimension of F with respect to Π is defined as

dimVBE(F ,Π, ε) := max
h∈[H]

dimDE

(
(I − Th)VF ,Πh, ε

)
.

Relation with low V-type Bellman rank With slight abuse of notation, denote by DF,h the

collection of all probability measures over S at the hth step, which can be generated by rolling in

with a greedy policy πf with f ∈ F . Similar to Proposition 5.3.6, the following proposition claims

that the V-type BE dimension of F with respect to DF := {DF,h}h∈[H] is always upper bounded by

its V-type Bellman rank up to some logarithmic factor.

Proposition D.2.3 (low V-type Bellman rank ⊂ low V-type BE dimension). If an MDP with

function class F has V-type Bellman rank d with normalization parameter ζ, then

dimVBE(F ,DF , ε) ≤ O(1 + d log(1 + ζ/ε)).

The proof of Proposition D.2.3 is almost the same as that of Proposition 5.3.6 in Appendix D.4.1.

We omit it here since the only modification is to replace Q-type Bellman rank with its V-type variant

192



Algorithm 19 V-type Golf (F ,K, β)

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for epoch k from 1 to K do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1f(s1, πf (s1)).
4: for step h from 1 to H do
5: Collect a tuple (sh, ah, rh, sh+1) by executing πk at step 1, . . . , h − 1 and taking action

uniformly at random at step h.
6: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
7: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Gh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s′, a′)]2.

8: Output πout sampled uniformly at random from {πk}Kk=1.

wherever it is used.

D.2.1 Algorithm V-type Golf

In this section we describe the V-type variant of Golf. The pseudocode is provided in Algorithm 19.

Its only difference from the Q-type analogue is in Line 5: for each h ∈ [H], we roll in with policy πk

to sample sh, and then instead of continuing following πk we take random action at step h.

Now we present the theoretical guarantee for Algorithm 19. Its proof is almost the same as that of

Corollary 5.4.3 and can be found in appendix D.7.2.

Theorem D.2.4 (V-type Golf). Under Assumption 5.2.1, 5.4.1, there exists an absolute constant

c such that for any given ε > 0, if we choose β = c log[KHNF∪G(ε2/(d|A|H2))], then with probability

at least 0.99, πout is O(ε)-optimal, if

K ≥ Ω

(
H2d|A|
ε2

· log

[
NF∪G

(
ε2

H2d|A|

)
· Hd|A|

ε

])
,

where d = minΠ∈{D∆,DF} dimVBE

(
F ,Π, ε/H

)
.

Compared with Theorem D.2.5 (V-type Olive), Theorem D.2.4 (V-type Golf) has the following
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two advantages.

• The sample complexity in Theorem D.2.4 depends linearly on the V-type BE-dimension while

the dependence in Theorem D.2.5 is quadratic.

• Theorem D.2.4 applies to RL problems of finite V-type BE dimension with respect to either

DF or D∆. In comparison, Theorem D.2.5 provides no guarantee for the D∆ case.

Finally, we comment that for the low Q-type BE dimension family, we provide both regret and sample

complexity guarantees while for the low V-type counterpart, we only derive sample complexity result

due to the need of taking actions uniformly at random in Algorithm 20 and Algorithm 19. Dong

et al. (2020) propose an algorithm that can achieve
√
T -regret for problems of low V-type Bellman

rank. It is an interesting open problem to study whether similar techniques can be adapted to the

low V-type BE dimension setting so that we can also obtain
√
T -regret.

D.2.2 Algorithm V-type Olive

In this section, we describe the original Olive (i.e., V-type Olive) proposed by Jiang et al. (2017),

and its theoretical guarantee in terms of V-type BE dimension.

The pseudocode is provided in Algorithm 20. Its only difference from Algorithm 18 is Line 9-10:

note that V-type Bellman rank needs the action at step t to be greedy with respect to the function

f instead of being picked by the roll-in policy πk, so we choose action at uniformly at random and

use the importance-weighted estimator to estimate the Bellman error for each f .

We have the following similar theoretical guarantee for Algorithm 20. Its proof is almost the same

as that of Theorem D.1.1 and can be found in Appendix D.7.1.

Theorem D.2.5 (V-type Olive). Assume realizability (Assumption 5.2.1) holds and F is finite.

There exists absolute constant c such that if we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d|A| log(|F|) · ι
ε2
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Algorithm 20 V-type Olive (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 ← F , Dh ← ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1f(s1, πf (s1)).

4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate ẼV(fk, πk, h) for all h ∈ [H], where

ẼV(fk, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

(
fkh (s, a)− r −max

a′∈A
fkh+1(s′, a′)

)
.

6: if
∑H
h=1 ẼV(fk, πk, h) ≤ Hζact then

7: Terminate and output πk.
8: Pick any t ∈ [H] for which ẼV(fk, πk, t) > ζact.
9: Collect nelim episodes by executing πk for step 1, . . . , t − 1 and picking action uniform at

random for step t. Refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
10: Estimate ÊV(f, πk, t) for all f ∈ F , where

ÊV(f, πk, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

1[a = πf (s)]

1/|A|

(
fh(s, a)− r −max

a′∈A
fh+1(s′, a′)

)
.

11: Update Bk =
{
f ∈ Bk−1 :

∣∣∣ÊV(f, πk, t)
∣∣∣ ≤ ζelim

}
.

where d = dimVBE

(
F ,DF , ε/H

)
and ι = c log[Hd|A|/δε], then with probability at least 1 − δ,

Algorithm 20 will output an O(ε)-optimal policy using at most O(H3d2|A| log(|F|) · ι/ε2) episodes.

For problems with Bellman rank d and finite function class F , Theorem D.2.5 together with

Proposition D.2.3 guarantees Õ(H3d2|A| log(|F|)/ε2) samples suffice for finding an ε-optimal policy,

which matches the result in Jiang et al. (2017). For function class F of infinite cardinality but with

finite covering number, we can first compute an O(ζelim)-cover of F , which we denote as Zρ, and

then run Algorithm 20 on Zρ. By following almost the same arguments in the proof of Theorem

D.2.5 (the only difference is to replace Q? by its proxy in Zρ), we can show Algorithm 20 will output

an O(ε)-optimal policy using at most Ω̃(H3d2|A| log(N)/ε2) episodes where N = NF (O(ζelim)).

D.2.3 Discussions on Q-type versus V-type

In this work, we have introduced two complementary definitions of Bellman rank: Q-type Bellman

rank and V-type Bellman rank. And we prove they are upper bounds for Q-type and V-type BE

dimension, respectively. Here, we want to emphasize that both Q-type and V-type Bellman rank
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have their own advantages. Specifically, the Q-type version has the following strengths.

1. There are natural RL problems whose Q-type Bellman rank is small, while their V-type

Bellman rank is very large, e.g., the linear function approximation setting studied in in Zanette

et al. (2020a).

2. All the existing sample complexity results for the V-type cases scale linearly with respect to

the number of actions, while those for the Q-type cases are independent of the number of

actions. Therefore, for control problems such as Linear Quadratic Regulator (LQR), which

has both small Q-type and V-type Bellman rank but infinite number of actions, the notion of

Q-type is more suitable.

On the other hand, there are problems that naturally induce low V-type Bellman rank but have

large Q-type Bellman rank, e.g., reactive POMDPs.

D.3 Examples

In this section, we introduce examples with low BE dimension. We will start with linear models and

their variants, then introduce kernel MDPs, and finally present kernel reactive POMDPs which have

low BE dimension, but possibly large Bellman rank and large Eluder dimension. All the proofs for

this section are deferred to Appendix D.8.

D.3.1 Linear models and their variants

In this subsection, we review problems with linear structure in ascending order of generality. We

start with the definition of linear MDPs (e.g., Jin et al., 2020c).

Definition D.3.1 (Linear MDPs). We say an MDP is linear of dimension d if for each h ∈ [H], there

exists feature mappings φh : S×A → Rd, and d unknown signed measures ψh = (ψ
(1)
h , . . . , ψ

(d)
h ) over

S, and an unknown vector θrh ∈ Rd, such that Ph(· | s, a) = φh(s, a)>ψh(·) and rh(s, a) = φh(s, a)>θrh

for all (s, a) ∈ S ×A.
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We remark that existing works (e.g., Jin et al., 2020c) usually assumxe φ is known to the learner.

Next, we review a more general setting—the linear completeness setting (e.g., Zanette et al., 2020a).

Definition D.3.2 (Linear completeness setting). We say an MDP is in the linear completeness

setting of dimension d, if there exists a feature mapping φh : S ×A → Rd, such that for the linear

function class Fh = {φh(·)>θ | θ ∈ Rd}, both Assumption 5.2.1 and 5.2.2 are satisfied.

We make three comments here. Firstly, we note that linear MDPs automatically satisfy both

linear realizability and linear completeness assumptions, therefore are special cases of the linear

completeness setting with the same ambient dimension. Secondly, only assuming linear realizability

but without completeness is insufficient for sample-efficient learning (see exponential lower bounds

in Weisz et al. (2021)). Finally, as mentioned in Appendix D.2.3, though MDPs in the linear

completeness setting have low Q-type Bellman rank, their V-type Bellman rank can be arbitrarily

large.

Finally, we review the generalized linear completeness setting (Wang et al., 2019), which generalizes

the linear completeness setting by adding nonlinearity.

Definition D.3.3 (Generalized linear completeness setting). We say an MDP is in the generalized

linear completeness setting of dimension d, if there exists a feature mapping φh : S ×A → Rd, and

a link function σ, such that for the generalized linear function class Fh = {σ(φh(·)>θ) | θ ∈ Rd},

both Assumption 5.2.1 and 5.2.2 are satisfied, and the link function is strictly monotone, i.e., there

exist 0 < c1 < c2 <∞ such that σ′(x) ∈ [c1, c2] for all x.

One can directly verify by definition that when we choose link function σ(x) = x in the generalized

linear completeness setting, it will reduce to the standard linear version. Besides, it is known (Russo

and Van Roy, 2013) the generalized linear completeness setting is a special case of low Eluder

dimension, thus belonging to the low BE dimension family. Finally, we comment that despite the
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linear completeness setting belongs to the low Bellman rank family, the generalized version does not

because of the possible nonlinearity of the link function.

D.3.2 Effective dimension and kernel MDPs

In this subsection, we introduce the notion of effective dimension. With this notion, we prove a

useful proposition that any linear kernel function class with low effective dimension also has low

Eluder dimension. This proposition directly implies that kernel MDPs are special cases of low Eluder

dimension, which are also special cases of low BE dimension.

Effective dimension We start with the definition of effective dimension for a set, which is also

known as critical information gain in Du et al. (2021).

Definition D.3.4 (ε-effective dimension of a set). The ε-effective dimension of a set X is the

minimum integer deff(X , ε) = n such that

sup
x1,...,xn∈X

1

n
log det

(
I +

1

ε2

n∑
i=1

xix
>
i

)
≤ e−1. (D.1)

Based on this definition, we can also define the effective dimension of a function class.

Definition D.3.5 (ε-effective dimension of a function class). Given a function class F defined on X ,

its ε-effective dimension deff(F , ε) = n is the minimum integer n such that there exists a separable

Hilbert space H and a mapping φ : X → H so that

• for every f ∈ F there exists θf ∈ BH(1) satisfying f(x) = 〈θf , φ(x)〉H for all x ∈ X ,

• deff(φ(X ), ε) = n where φ(X ) = {φ(x) : x ∈ X}.

The following proposition shows that the Eluder dimension of any function class is always upper

bounded by its effective dimension.
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Proposition D.3.6 (low effective dimension ⊂ low Eluder dimension). For any function class F

and domain X , we have

dimE(F , ε) ≤ dimeff(F , ε/2).

On the other hand, we remark that effective dimension requires the existence of a benign linear

structure in certain Hilbert spaces. In constrast, Eluder dimension does not require such conditions.

Therefore, the function class of low Eluder dimension is more general than the function class of low

effective dimension.

Kernel MDPs Now, we are ready to define kernel MDPs and prove it is a subclass of low Eluder

dimension.

Definition D.3.7 (Kernel MDPs). In a kernel MDP of effective dimension d(ε), for each step

h ∈ [H], there exist feature mappings φh : S × A → H and ψh : S → H where H is a separable

Hilbert space, so that the transition measure can be represented as the inner product of features,

i.e., Ph(s′ | s, a) = 〈φh(s, a), ψh(s′)〉H. Besides, the reward function is linear in φ, i.e., rh(s, a) =

〈φh(s, a), θrh〉H for some θrh ∈ H. Here, φ is known to the learner while ψ and θr are unknown.

Moreover, a kernel MDP satisfies the following regularization conditions: for all h

• ‖θrh‖H ≤ 1 and ‖φh(s, a)‖H ≤ 1 for all s, a.

• ‖
∑
s∈S V(s)ψh(s)‖H ≤ 1 for any function V : S → [0, 1].

• dimeff(Xh, ε) ≤ d(ε) for all h and ε, where Xh = {φh(s, a) : (s, a) ∈ S ×A}.

In order to learn kernel MDPs, we need to construct a proper function class F . Formally, for each

h ∈ [H], we choose Fh = {φh(·, ·)>θ | θ ∈ BH(H + 1 − h)}. One can easily verify F satisfies

both realizability and completeness by following the same arguments as in linear MDPs (Jin et al.,

2020c). In order to apply Golf or Olive, we also need to show it has low BE dimension and

bounded log-covering number. Below, we prove in sequence that F has low Eluder dimension and

low log-covering number. Therefore, kernel MDPs fall into our low BE dimension framework.
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Proposition D.3.8 (kernel MDPs ⊂ low Eluder dimension). Let M be a kernel MDP of effective

dimension d(ε), then

dimE(F , ε) ≤ d(ε/2H).

Proposition D.3.8 follows directly from Proposition D.3.6 by rescaling the parameters. Utilizing

Proposition D.3.8, we can further prove the log-covering number of F is also upper bounded by the

effective dimension of the kernel MDP up to some logarithmic factor.

Proposition D.3.9 (bounded covering number). Let M be a kernel MDP of effective dimension

d(ε), then

logNF (ε) ≤ O
(
Hd(ε) · log(1 + d(ε)H/ε)

)
.

D.3.3 Effective Bellman rank and kernel reactive POMDPs

To begin with, we introduce the definition of effective Bellman rank and prove that it is always

an upper bound for BE dimension. We will see effective Bellman rank serves as a useful tool for

controlling the BE dimension of the example discussed in this section—kernel reactive POMDPs.

Q-type effective Bellman rank We start with Q-type ε-effective Bellman rank which is simply

the ε-effective dimension of a special feature set.

Definition D.3.10 (Q-type ε-effective Bellman rank). The Q-type ε-effective Bellman rank is the

minimum integer d so that

• There exists φh : F → H and ψh : F → H for each h ∈ [H] where H is a separable Hilbert

space, such that for any f, f ′ ∈ F , the average Bellman error

E(f, πf ′ , h) := Eπf′ [(fh − Thfh+1)(sh, ah)] = 〈φh(f), ψh(f ′)〉H

where ‖φh(f)‖H ≤ ζ, and ζ is the normalization parameter.

• d = maxh∈[H] deff(Xh(ψ,F), ε/ζ) where Xh(ψ,F) = {ψh(fh) : fh ∈ Fh}.
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One can easily verify that when H is a finite-dimensional Euclidean space, the ε-effective Bellman

rank is always upper bounded by the original Bellman rank up to a logarithmic factor in ζ and

ε−1. Moreover, the effective Bellman rank can be much smaller than the original Bellman rank if

the induced feature set {Xh(ψ,F)}h∈[H] approximately lies in a low-dimensional linear subspace.

Therefore, effective Bellman rank can be viewed as a strict generalization of the original version.

Proposition D.3.11 (low Q-type effective Bellman rank ⊂ low Q-type BE dimension). Suppose

function class F has Q-type ε-effective Bellman rank d, then

dimBE(F ,DF , ε) ≤ d.

Proposition D.3.11 claims that problems with low Q-type effective Bellman rank also have low

Q-type BE dimension.

V-type effective Bellman rank We can similarly define the V-type variant of effective Bellman

rank, and prove it is always an upper bound for V-type BE dimension.

Definition D.3.12 (V-type ε-effective Bellman rank). The V-type ε-effective Bellman rank is the

minimum integer d so that

• There exists φh : F → H and ψh : F → H for each h ∈ [H] where H is a separable Hilbert

space, such that for any f, f ′ ∈ F , the average Bellman error

EV(f, πf ′ , h) := E[(fh − Thfh+1)(sh, ah) | sh ∼ πf ′ , ah ∼ πf ] = 〈φh(f), ψh(f ′)〉H

where ‖φh(f)‖H ≤ ζ, and ζ is the normalization parameter.

• d = maxh∈[H] deff(Xh(ψ,F), ε/ζ) where Xh(ψ,F) = {ψh(fh) : fh ∈ Fh}.

Proposition D.3.13 (low V-type effective Bellman rank ⊂ low V-type BE dimension). Suppose
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function class F has V-type ε-effective Bellman rank d, then

dimVBE(F ,DF , ε) ≤ d.

The proof of Proposition D.3.13 is almost the same as that of Proposition D.3.11. We omit it since

the only modification is to replace Q-type effective Bellman rank with its V-type variant wherever it

is used.

We want to briefly comment that the majority of examples introduced in Du et al. (2021) have

low effective Bellman rank. For example, low occupancy complexity, linear Q∗/V ∗, linear Bellman

complete and Q∗ state aggregation have low Q-type effective Bellman rank. And the feature selection

problem has low V-type Bellman rank.

Kernel reactive POMDPs We start with the definition of POMDPs. A POMDP is defined by

a tuple (S,A,O,T,O, r,H) where S denotes the set of hidden states, A denotes the set of actions, O

denotes the set of observations, T denotes the transition measure, O denotes the emission measure,

r = {rh}Hh=1 denotes the collections of reward functions, and H denotes the length of each episode.

At the beginning of each episode, the agent always starts from a fixed initial state. At each step

h ∈ [H], after reaching sh, the agent will observe oh ∼ Oh(· | sh). Then the agent picks action ah,

receives rh(oh, ah) and transits to sh+1 ∼ Th(· | sh, ah). In POMDPs, the agent can never directly

observe the states s1:H . It can only observe o1:H and r1:H . Now we are ready to formally define

kernel reactive POMDPs.

Definition D.3.14 (Kernel reactive POMDPs). A kernel reactive POMDP is a POMDP that

additionally satisfies the following two conditions

• For each h ∈ [H], there exist mappings φh : S × A → H and ψh : S → H where H is a

separable Hilbert space, such that Th(s′ | s, a) = 〈φh(s, a), ψh(s′)〉H for all s′, a, s. Moreover,

for any function V : S → [0, 1], ‖
∑
s′∈S V(s′)ψh(s′)‖H ≤ 1.

• (Reactiveness) The optimal action-value function Q∗ only depends on the current observation
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and action, i.e., for each h ∈ [H], there exists function f∗h : O ×A → [0, 1] such that for all

τh = [o1, a1, r1, . . . , oh] and ah

Q∗h(τh, ah) = f∗h(oh, ah).

The following proposition shows that when a kernel reactive POMDP has low effective dimension, it

also has low V-type BE dimension.

Proposition D.3.15 (kernel reactive POMDPs ⊂ low V-type BE dimension). Any kernel reactive

POMDP and function class F ⊆ (O ×A → [0, 1]) satisfy

dimVBE(F ,DF , ε) ≤ max
h∈[H]

deff(Xh, ε/2),

where Xh = {Eπf [φh(sh, ah)] : f ∈ F}.

We comment that when H approximately aligns with a low-dimensional linear subspace, the V-type

effective Bellman rank in Proposition D.3.15 will also be low. However, the Eluder dimension of F

can be arbitrarily large because we basically pose no structural assumption on F . Besides, its V/Q-

type original Bellman rank can also be arbitrarily large, because H may be infinite-dimensional and

the observation set O may be exponentially large. If we additionally assume F satisfies realizability

(f∗ ∈ F), then we can apply V-type Olive and obtain polynomial sample-complexity guarantee.

D.4 Proofs for BE Dimension

In this section, we provide formal proofs for the results stated in Section 5.3.

D.4.1 Proof of Proposition 5.3.6

The proof is basically the same as that of Example 3 in Russo and Van Roy (2013) with minor

modification.
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Proof. Without loss of generality, assume max{‖φh(f)‖2, ‖ψh(f)‖2} ≤
√
ζ, otherwise we can satisfy

this assumption by rescaling the feature mappings. Assume there exists h ∈ [H] such that dimDE((I−

Th)F ,DF,h, ε) ≥ m. Let µ1, . . . , µm ∈ DF,h be a an ε-independent sequence with respect to (I−Th)F .

By Definition 5.3.1, there exists f1, . . . , fm such that for all i ∈ [m],
√∑i−1

t=1(Eµt [f ih − Thf ih+1])2 ≤ ε

and |Eµi [f ih − Thf ih+1]| > ε. Since µ1, . . . , µn ∈ DF,h, there exist g1, . . . , gn ∈ F so that µi is

generated by executing πgi for all i ∈ [n].

By the definition of Bellman rank, this is equivalent to: for all i ∈ [m],
√∑i−1

t=1(〈φh(gi), ψh(f t)〉)2 ≤ ε

and |〈φh(gi), ψh(f i)〉| > ε.

For notational simplicity, define xi = φh(gi), zi = ψh(f i) and Vi =
∑i−1
t=1 ztz

>
t + ε2

ζ · I. The previous

argument directly implies: for all i ∈ [m], ‖xi‖Vi
≤
√

2ε and ‖xi‖Vi
· ‖zi‖V−1

i
> ε. Therefore, we

have ‖zi‖V−1
i
≥ 1√

2
.

By the matrix determinant lemma,

det[Vm] = det[Vm−1](1 + ‖zm‖2V−1
m

) ≥ 3

2
det[Vm−1] ≥ . . . ≥ det[

ε2

ζ
· I](

3

2
)m−1 = (

ε2

ζ
)d(

3

2
)m−1.

On the other hand,

det[Vm] ≤ (
trace[Vm]

d
)d ≤ (

ζ(m− 1)

d
+
ε2

ζ
)d.

Therefore, we obtain

(
3

2
)m−1 ≤ (

ζ2(m− 1)

dε2
+ 1)d.

Take logarithm on both sides,

m ≤ 4

[
1 + d log(

ζ2(m− 1)

dε2
+ 1)

]
,

which, by simple calculation, implies

m ≤ O
(

1 + d log(
ζ2

ε2
+ 1)

)
.
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D.4.2 Proof of Proposition 5.3.7

Proof. Assume δz1 , . . . , δzm is an ε-independent sequence of distributions with respect to (I − Th)F ,

where δzi ∈ D∆. By Definition 5.3.1, there exist functions f1, . . . , fm ∈ F such that for all i ∈ [m],

we have |(f ih − Thf ih+1)(zi)| > ε and
√∑i−1

t=1 |(f ih − Thf ih+1)(zt)|2 ≤ ε. Define gih = Thf ih+1. Note

that gih ∈ Fh because ThFh+1 ⊂ Fh. Therefore, we have for all i ∈ [m], |(f ih − gih)(zi)| > ε

and
√∑i−1

t=1 |(f ih − gih)(zt)|2 ≤ ε with f ih, g
i
h ∈ Fh. By Definition 5.2.4 and 5.2.5, this implies

dimE(Fh, ε) ≥ m, which completes the proof.

D.4.3 Proof of Proposition 5.3.8

Proof. For any m ∈ N+, denote by e1, . . . , em the basis vectors in Rm, and consider the following

linear bandits (|S| = H = 1) problem.

• The action set A = {ai = (1; ei) ∈ Rm+1 : i ∈ [m]}.

• The function set F1 = {fθi(a) = a>θi : θi = (1; ei), i ∈ [m]}.

• The reward function is always zero, i.e., r ≡ 0.

Eluder dimension For any ε ∈ (0, 1], a1, . . . , am−1 is an ε-independent sequence of points because:

(a) for any t ∈ [m− 1],
∑t−1
i=1(fθt(ai)− fθt+1(ai))

2 = 0; (b) for any t ∈ [m− 1], fθt(at)− fθt+1(at) =

1 ≥ ε. Therefore, minh∈[H] dimE(Fh, ε) = dimE(F1, ε) ≥ m− 1.

Bellman rank It is direct to see the Bellman residual matrix is E := Θ>Θ ∈ Rm×m with rank m,

where Θ = [θ1, θ2, . . . , θm]. As a result, the Bellman rank is at least m.

BE dimension First, note in this setting (I − T1)F is simply F1 (because F2 = {0} and r ≡ 0),

and DF coincides with D∆, so it suffices to show dimDE(F1,D∆, ε) ≤ 5.

Assume dimDE(F1,D∆, ε) = k. Then there exist q1, . . . , qk ∈ A and w1, . . . , wk ∈ A such that for

all t ∈ [k],
√∑t−1

i=1(〈qt, wi〉)2 ≤ ε and |〈qt, wt〉| > ε. By simple calculation, we have q>i wj ∈ [1, 2] for
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all i, j ∈ [k]. Therefore, if ε > 2, then k = 0 because |〈qt, wt〉| ≤ 2; if ε ≤ 2, then k ≤ 5 because
√
k − 1 ≤

√∑k−1
i=1 (〈qk, wi〉)2 ≤ ε.

D.5 Proofs for Golf

In this section, we provide formal proofs for the results stated in Section 5.4.

D.5.1 Proof of Theorem 5.4.2

We start the proof with the following two lemmas. The first lemma shows that with high probability

any function in the confidence set has low Bellman-error over the collected datasets D1, . . . ,DH as

well as the distributions from which D1, . . . ,DH are sampled.

Lemma D.5.1. Let ρ > 0 be an arbitrary fixed number. If we choose β = c
(

log[KHNF∪G(ρ)/δ] +

Kρ
)

with some large absolute constant c in Algorithm 5, then with probability at least 1− δ, for all

(k, h) ∈ [K]× [H], we have

(a)
∑k−1
i=1 E[

(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh, ah ∼ πi]≤O(β).

(b)
∑k−1
i=1

(
fkh (sih, a

i
h)− (T fkh+1)(sih, a

i
h)
)2≤O(β),

where (si1, a
i
1, . . . , s

i
H , a

i
H , s

i
H+1) denotes the trajectory sampled by following πi in the ith episode.

The second lemma guarantees that the optimal value function is inside the confidence with high

probability. As a result, the selected value function fk in each iteration shall be an upper bound of

Q? with high probability.

Lemma D.5.2. Under the same condition of Lemma D.5.1, with probability at least 1− δ, we have

Q? ∈ Bk for all k ∈ [K].

The proof of Lemma D.5.1 and D.5.2 relies on standard martingale concentration (e.g. Freedman’s

inequality) and can be found in Appendix D.5.3.
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Step 1. Bounding the regret by Bellman error By Lemma D.5.2, we can upper bound the

cumulative regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (D.2)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a

fixed step h and bound the cumulative Bellman error
∑K
k=1 E(fk, πk, h) using Lemma D.5.1. To

proceed, we need the following lemma to control the accumulating rate of Bellman error.

Lemma D.5.3. Given a function class Φ defined on X with |φ(x)| ≤ C for all (g, x) ∈ Φ×X , and

a family of probability measures Π over X . Suppose sequence {φk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy

that for all k ∈ [K],
∑k−1
t=1 (Eµt [φk])2 ≤ β. Then for all k ∈ [K] and ω > 0,

k∑
t=1

|Eµt [φt]| ≤ O
(√

dimDE(Φ,Π, ω)βk + min{k,dimDE(Φ,Π, ω)}C + kω
)
.

Lemma D.5.3 is a simple modification of Lemma 2 in Russo and Van Roy (2013) and its proof can

be found in Appendix D.5.4. We provide two ways to apply Lemma D.5.3, which can produce regret

bounds in term of two different complexity measures. If we invoke Lemma D.5.1 (a) and Lemma

D.5.3 with 
ρ =

1

K
, ω =

√
1

K
, C = 1,

X = S ×A, Φ = (I − Th)F , Π = DF,h,

φk = fkh − Thfkh+1 and µk = Pπ
k

(sh = ·, ah = ·),

we obtain

k∑
t=1

E(f t, πt, h) ≤ O
(√

k · dimBE(F ,DF ,
√

1/K) log[KHNF∪G(1/K)/δ]

)
. (D.3)
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We can also invoke Lemma D.5.1 (b) and Lemma D.5.3 with


ρ =

1

K
, ω =

√
1

K
, C = 1,

X = S ×A, Φ = (I − Th)F , and Π = D∆,h,

φk = fkh − Thfkh+1 and µk = 1{· = (skh, a
k
h)},

and obtain

k∑
t=1

E(f t, πt, h) ≤
k∑
t=1

(f th − T f th+1)(sth, a
t
h) +O

(√
k log(k)

)
≤O

(√
k · dimBE(F ,D∆,

√
1/K) log[KHNF∪G(1/K)/δ]

)
,

(D.4)

where the first inequality follows from standard martingale concentration.

Plugging either equation Eq. (D.3) or Eq. (D.4) back into equation Eq. (D.2) completes the proof.

D.5.2 Proof of Corollary 5.4.3

Step 1. Bounding the regret by Bellman error By Lemma D.5.2, we can upper bound the

cumulative regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (D.5)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a

fixed step h and bound the cumulative Bellman error
∑K
k=1 E(fk, πk, h) using Lemma D.5.1.

If we invoke Lemma D.5.1 (a) with

ρ =
ε2

H2 · dimBE(F ,DF , ε/H)
,
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and Lemma D.5.3 with 
ω =

ε

H
, C = 1,

X = S ×A, Φ = (I − Th)F , Π = DF,h,

φk = fkh − Thfkh+1 and µk = Pπ
k

(sh = ·, ah = ·),

we obtain with probability at least 1− 10−3,

1

K

K∑
k=1

E(fk, πk, h) ≤O

(√
dimBE(F ,DF , ε/H)[

log[KHNF∪G(ρ)]

K
+ ρ] +

ε

H

)

≤O

(
ε

H
+

√
d log[KHNF∪G(ρ)]

K

)
,

(D.6)

where the second inequality follows from the choice of ρ and d := dimBE(F ,DF , ε/H). Now we need

to choose K such that √
d log[KHNF∪G(ρ)]

K
≤ ε

H
. (D.7)

By simple calculation, one can verify it suffices to choose

K =
H2d log(HdNF∪G(ρ)/ε)

ε2
. (D.8)

Plugging equation Eq. (D.6) back into equation Eq. (D.5) completes the proof. We can similarly

prove the bound in terms of the BE dimension with respect to D∆.

D.5.3 Proofs of concentration lemmas

To begin with, recall the Freedman’s inequality that controls the sum of martingale difference by

the sum of their predicted variance.

Lemma D.5.4 (Freedman’s inequality (e.g., Agarwal et al., 2014)). Let (Zt)t≤T be a real-valued

martingale difference sequence adapted to filtration Ft, and let Et[·] = E[· | Ft]. If |Zt| ≤ R almost
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surely, then for any η ∈ (0, 1
R ) it holds that with probability at least 1− δ,

T∑
t=1

Zt ≤ O

(
η

T∑
t=1

Et−1[Z2
t ] +

log(δ−1)

η

)
.

Proof of Lemma D.5.1

Proof. We prove inequality (b) first.

Consider a fixed (k, h, f) tuple. Let

Xt(h, f) := (fh(sth, a
t
h)−rth−fh+1(sth+1, πf (sth+1)))2−((T fh+1)(sth, a

t
h)−rth−fh+1(sth+1, πf (sth+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Xt(h, f) | Ft,h] = [(fh − T fh+1)(sth, a
t
h)]2

and

Var[Xt(h, f) | Ft,h] ≤ E[(Xt(h, f))2 | Ft,h] ≤ 36[(fh − T fh+1)(sth, a
t
h)]2 = 36E[Xt(h, f) | Ft,h].

By Freedman’s inequality, we have, with probability at least 1− δ,

∣∣∣∣∣
k∑
t=1

Xt(h, f)−
k∑
t=1

E[Xt(h, f) | Ft,h]

∣∣∣∣∣ ≤ O

√√√√log(1/δ)

k∑
t=1

E[Xt | Ft,h] + log(1/δ)

.
Let Zρ be a ρ-cover of F . Now taking a union bound for all (k, h, φ) ∈ [K]× [H]×Zρ, we obtain

that with probability at least 1− δ, for all (k, h, φ) ∈ [K]× [H]×Zρ

∣∣∣∣∣
k∑
t=1

Xt(h, φ)−
k∑
t=1

[(φh − T φh+1)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√ι

k∑
t=1

[(φh − T φh+1)(sth, a
t
h)]2 + ι

, (D.9)

where ι = log(HK|Zρ|/δ). From now on, we will do all the analysis conditioning on this event being
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true.

Consider an arbitrary (h, k) ∈ [H]× [K] pair. By the definition of Bk and Assumption 5.4.1

k−1∑
t=1

Xt(h, f
k) =

k−1∑
t=1

[fkh (sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

−
k−1∑
t=1

[(T fkh+1)(sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

≤
k−1∑
t=1

[fkh (sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2

− inf
g∈G

k−1∑
t=1

[gh(sth, a
t
h)− rth − fkh+1(sth+1, πfk(sth+1))]2 ≤ β.

Define φk = argminφ∈Zρ maxh∈[H] ‖fkh − φkh‖∞. By the definition of Zρ, we have

∣∣∣∣∣
k−1∑
t=1

Xt(h, f
k)−

k−1∑
t=1

Xt(h, φ
k)

∣∣∣∣∣ ≤ O(kρ).

Therefore,
k−1∑
t=1

Xt(h, φ
k) ≤ O(kρ) + β. (D.10)

Recall inequality Eq. (D.9) implies

∣∣∣∣∣
k−1∑
t=1

Xt(h, φ
k)−

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√ι

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2 + ι

. (D.11)

Putting Eq. (D.10) and Eq. (D.11) together, we obtain

k−1∑
t=1

[(φkh − T φkh+1)(sth, a
t
h)]2 ≤ O(ι+ kρ+ β).
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Because φk is an ρ-approximation to fk, we conclude

k−1∑
t=1

[(fkh − T fkh+1)(sth, a
t
h)]2 ≤ O(ι+ kρ+ β).

Therefore, we prove inequality (b) in Lemma D.5.1.

To prove inequality (a), we only need to redefine Ft,h to be the filtration induced by

{si1, ai1, ri1, . . . , siH}
t−1
i=1 and then repeat the arguments above verbatim.

Proof of Lemma D.5.2

Proof. Let Vρ be a ρ-cover of G.

Consider an arbitrary fixed tuple (k, h, g) ∈ [K]× [H]× G. Let

Wt(h, g) := (gh(sth, a
t
h)−rth−Q?h+1(sth+1, πQ?(sth+1)))2−(Q?h(sth, a

t
h)−rth−Q?h+1(sth+1, πQ?(sth+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Wt(h, g) | Ft,h] = [(gh −Q?h)(sth, a
t
h)]2

and

Var[Wt(h, g) | Ft,h] ≤ E[(Wt(h, g))2 | Ft,h] ≤ 36((gh −Q?h)(sth, a
t
h))2 = 36E[Wt(h, g) | Ft,h].

By Freedman’s inequality, with probability at least 1− δ,

∣∣∣∣∣
k∑
t=1

Wt(h, g)−
k∑
t=1

[(gh −Q?h)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√log(1/δ)

k∑
t=1

[(gh −Q?h)(sth, a
t
h)]2 + log(1/δ)

.
By taking a union bound over [K]× [H]× Vρ and the non-negativity of

∑k
t=1[(gh −Q?h)(sth, a

t
h)]2,
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we obtain that with probability at least 1− δ, for all (k, h, ψ) ∈ [K]× [H]× Vρ

−
k∑
t=1

Wt(h, ψ) ≤ O(ι),

where ι = log(HK|Vρ|/δ). This directly implies for all (k, h, g) ∈ [K]× [H]× G

k−1∑
t=1

[Q?h(sth, a
t
h)− rth −Q?h+1(sth+1, πQ?(sth+1))]2

≤
k−1∑
t=1

[gh(sth, a
t
h)− rth −Q?h+1(sth+1, πQ?(sth+1))]2 +O(ι+ kρ).

Finally, by recalling the definition of Bk, we conclude that with probability at least 1− δ, Q? ∈ Bk

for all k ∈ [K].

D.5.4 Proof of Lemma D.5.3

The proof in this subsection basically follows the same arguments as in Appendix C of Russo and

Van Roy (2013). We firstly prove the following proposition which bounds the number of times

|Eµt [φt]| can exceed a certain threshold.

Proposition D.5.5. Given a function class Φ defined on X , and a family of probability mea-

sures Π over X . Suppose sequence {φk}Kk=1 ⊂ Φ and {µk}Kk=1 ⊂ Π satisfy that for all k ∈ [K],∑k−1
t=1 (Eµt [φk])2 ≤ β. Then for all k ∈ [K],

k∑
t=1

1
{
|Eµt [φt]| > ε

}
≤ (

β

ε2
+ 1) dimDE(Φ,Π, ε).

Proof of Proposition D.5.5. We first show that if for some k we have |Eµk [φk]| > ε, then µk is

ε-dependent on at most β/ε2 disjoint subsequences in {µ1, . . . , µk−1}. By definition of DE dimension,

if |Eµk [φk]| > ε and µk is ε-dependent on a subsequence {ν1, . . . , ν`} of {µ1, . . . , µk−1}, then we
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should have
∑`
t=1(Eνt [φk])2 ≥ ε2. It implies that if µk is ε-dependent on L disjoint subsequences in

{µ1, . . . , µk−1}, we have

β ≥
k−1∑
t=1

(Eµt [φk])2 ≥ Lε2

resulting in L ≤ β/ε2.

Now we want to show that for any sequence {ν1, . . . , νκ} ⊆ Π, there exists j ∈ [κ] such that νj

is ε-dependent on at least L = d(κ − 1)/dimDE(Φ,Π, ε)e disjoint subsequences in {ν1, . . . , νj−1}.

We argue by the following mental procedure: we start with singleton sequences B1 = {ν1}, . . . , BL

= {νL} and j = L+1. For each j, if νj is ε-dependent on B1, . . . , BL we already achieved our goal so

we stop; otherwise, we pick an i ∈ [L] such that νj is ε-independent of Bi and update Bi = Bi∪{νj}.

Then we increment j by 1 and continue this process. By the definition of DE dimension, the size of

each B1, . . . , BL cannot get bigger than dimDE(Φ,Π, ε) at any point in this process. Therefore, the

process stops before or on j = LdimDE(Φ,Π, ε) + 1 ≤ κ.

Fix k ∈ [K] and let {ν1, . . . , νκ} be subsequence of {µ1, . . . , µk}, consisting of elements for which

|Eµt [φt]| > ε. Using the first claim, we know that each νj is ε-dependent on at most β/ε2 disjoint

subsequences of {ν1, . . . , νj−1}. Using the second claim, we know there exists j ∈ [κ] such that νj is

ε-dependent on at least (κ/dimDE(Φ,Π, ε))− 1 disjoint subsequences of {ν1, . . . , νj−1}. Therefore,

we have κ/dimDE(Φ,Π, ε)− 1 ≤ β/ε2 which results in

κ ≤ (
β

ε2
+ 1) dimDE(Φ,Π, ε)

and completes the proof.

Proof of Lemma D.5.3. Fix k ∈ [K]; let d = dimDE(Φ,Π, ω). Sort the sequence {|Eφ1
[φ1]|, . . . ,

|Eµk [φk]|} in a decreasing order and denote it by {e1, . . . , ek} (e1 ≥ e2 ≥ · · · ≥ ek).

k∑
t=1

|Eµt [φt]| =
k∑
t=1

et =

k∑
t=1

et1
{
et ≤ ω

}
+

k∑
t=1

et1
{
et > ω

}
≤ kω +

k∑
t=1

et1
{
et > ω

}
.
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For t ∈ [k], we want to prove that if et > ω, then we have et ≤ min{
√

dβ
t−d , C}. Assume t ∈ [k]

satisfies et > ω. Then there exists α such that et > α ≥ ω. By Proposition D.5.5, we have

t ≤
k∑
i=1

1
{
ei > α

}
≤
( β
α2

+ 1
)

dimDE(Φ,Π, α) ≤
( β
α2

+ 1
)

dimDE(Φ,Π, ω),

which implies α ≤
√

dβ
t−d . Besides, recall et ≤ C, so we have et ≤ min{

√
dβ
t−d , C}.

Finally, we have

k∑
t=1

et1
{
et > ω

}
≤ min{d, k}C +

k∑
t=d+1

√
dβ

t− d
≤ min{d, k}C +

√
dβ

∫ k

0

1√
t
dt

≤ min{d, k}C + 2
√
dβk,

which completes the proof.

D.6 Proofs for Olive

In this section, we provide the formal proof for the results stated in Appendix D.1.

D.6.1 Full proof of Theorem D.1.1

Proof of Theorem D.1.1. By standard concentration arguments (Hoeffding’s inequality plus union

bound argument), with probability at least 1 − δ, the following events hold for the first dH + 1

phases (please refer to Appendix D.6.2 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then E(fk, πk, h) >

ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 E(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.
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Therefore, if we can show Olive terminates within dH + 1 phases, then with high probability the

output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g. Lemma

1 in Jiang et al. (2017)):

(
V ?1 (s1)− V π

k

1 (s1)
)
≤ max

a
fk(s1, a)− V π

k

(s1)=

H∑
h=1

E(fk, πk, h) ≤ 4ε. (D.12)

In order to prove that Olive terminates within dH + 1 phases, it suffices to show that for each

h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.

For the sake of contradiction, assume that Olive does not terminate in dH + 1 phases. Within

these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated

for at least d+ 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where the

elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d+ 1, we

have |E(fkj , πki , h)| < 2ζelim and for all l ≤ d+ 1, we have E(fkl , πkl , h) > ζact/2. This means for all

l ≤ d+ 1, we have both

√∑l−1
i=1

(
E(fkl , πki , h)

)2
<
√
d× 2ζelim = ε/H and E(fkl , πkl , h) > ζact/2 =

ε/H. Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is an ε/H-independent sequence

of length d+ 1, which contradicts with the definition of BE dimension. So Olive should terminate

within dH + 1 phases.

In sum, with probability at least 1− δ, Algorithm 18 will terminate and output a 4ε-optimal policy

using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2 log(N (F , ζelim/8)) · ι
ε2

episodes.

D.6.2 Concentration arguments for Theorem D.1.1

Recall in Algorithm 18 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

cH2d log(N (F , ζelim/8)) · ι
ε2

,
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where d = maxh∈[H] dimBE

(
F ,DF,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant.Our

goal is to prove with probability at least 1− δ, the following events hold for the first dH + 1 phases

1. If the elimination procedure is activated at the hth step in the kth phase, then E(fk, πk, h) >

ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 E(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

We begin with the activation procedure.

Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1]× [H] pair. By

Azuma-Hoefdding’s inequality, with probability at least 1− δ
8H(dH2+1) , we have

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2 with C being chosen large enough.

Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4, the

following holds for all (k, h) ∈ [dH + 1]× [H]

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ ζact/4.

By Algorithm 18, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 Ê(fk, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

E(fk, πk, h) ≤
H∑
h=1

Ê(fk, πk, h) +
Hζact

4
<

5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then
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Ê(fk, πk, h) > ζact. Again combine it with the concentration argument we just proved,

E(fk, πk, h) ≥ Ê(fk, πk, h)− ζact

4
>

3ζact

4
.

Concentration in the elimination procedure Now, let us turn to the elimination procedure.

First, let Z be an ζelim/8-cover of F with cardinality N (F , ζelim/8). With a little abuse of notation,

for every f ∈ F , define f̂ = argming∈Z maxh∈[H] ‖fh − gh‖∞. By applying Azuma-Hoeffding’s

inequality to all (k, g) ∈ [dH + 1]×Z and taking a union bound, we have with probability at least

1− δ/4, the following holds for all (k, g) ∈ [dH + 1]×Z

|Ê(g, πk, hk)− E(g, πk, hk)| ≤ ζelim/4.

Recall that Algorithm 18 eliminates all f satisfying |Ê(f, πk, hk)| > ζelim when the elimination

procedure is activated at the hth
k step in the kth phase. Therefore, if |E(f, πk, hk)| ≥ 2ζelim, f will

be eliminated because

|Ê(f, πk, hk)| ≥ |Ê(f̂ , πk, hk)| − 2× ζelim

8

≥ |E(f̂ , πk, hk)| − ζelim

2

≥ |E(f, πk, hk)| − ζelim

2
− 2× ζelim

8
> ζelim.

Finally, note that E(Q?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within

the first dH + 1 phases because we can similarly prove

|Ê(Q?, πk, hk)| ≤ |E(Q?, πk, hk)|+ 3ζelim

4
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude that

the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with

probability at least 1− δ/2.
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D.7 Proofs for V-type Variants

In this section, we provide formal proofs for the results stated in Section D.2.

D.7.1 Proof of Theorem D.2.5

The proof is similar to that in Appendix D.6.

Proof of Theorem D.2.5. By standard concentration arguments (Hoeffding’s inequality, Bernstein’s

inequality, and union bound argument), with probability at least 1− δ, the following events hold for

the first dH + 1 phases (please refer to Appendix D.7.1 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then EV(fk, πk, h) >

ζact/2 and all f ∈ F satisfying |EV(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 EV(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

Therefore, if we can show Olive terminates within dH + 1 phases, then with high probability the

output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g., Lemma

1 in Jiang et al. (2017)):

(
V ?1 (s1)− V π

k

1 (s1)
)
≤ max

a
fk(s1, a)− V π

k

(s1)=

H∑
h=1

EV(fk, πk, h) ≤ 4ε. (D.13)

In order to prove that Olive terminates within dH + 1 phases, it suffices to show that for each

h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.

For the sake of contradiction, assume that Olive does not terminate in dH + 1 phases. Within

these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated

for at least d+ 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where the

elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d+ 1, we
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have |EV(fkj , πki , h)| < 2ζelim and for all l ≤ d + 1, we have EV(fkl , πkl , h) > ζact/2. This means

for all l ≤ d+ 1, we have both

√∑l−1
i=1

(
EV(fkl , πki , h)

)2
<
√
d× 2ζelim = ε/H and EV(fkl , πkl , h) >

ζact/2 = ε/H. Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is an ε/H-independent

sequence of length d+ 1 with respect to (I − Th)VF , which contradicts with the definition of BE

dimension. So Olive should terminate within dH + 1 phases.

In sum, with probability at least 1− δ, Algorithm 18 will terminate and output a 4ε-optimal policy

using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2|A| log(|F|) · ι
ε2

episodes.

Concentration arguments for Theorem D.2.5

Recall in Algorithm 20 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

c|A|H2d log(N (F , ζelim/8)) · ι
ε2

,

where d = maxh∈[H] dimVBE

(
F ,DF,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant. Our

goal is to prove with probability at least 1− δ, the following events hold for the first dH + 1 phases

1. If the elimination procedure is activated at the hth step in the kth phase, then EV(fk, πk, h) >

ζact/2 and all f ∈ F satisfying |EV(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H
h=1 EV(fk, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

We begin with the activation procedure.
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Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1]× [H] pair. By

Azuma-Hoefdding’s inequality, with probability at least 1− δ
8H(dH+1) , we have

|ẼV(fk, πk, h)− EV(fk, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2 with C being chosen large enough.

Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4, the

following holds for all (k, h) ∈ [dH + 1]× [H]

|ẼV(fk, πk, h)− EV(fk, πk, h)| ≤ ζact/4.

By Algorithm 20, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 ẼV(fk, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

EV(fk, πk, h) ≤
H∑
h=1

ẼV(fk, πk, h) +
Hζact

4
≤ 5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then

ẼV(fk, πk, h) > ζact. Again combine it with the concentration argument we just proved,

EV(fk, πk, h) ≥ ẼV(fk, πk, h)− ζact

4
>

3ζact

4
.

Concentration in the elimination procedure Now, let us turn to the elimination procedure.

We start by bounding the the second moment of

1[πf (sh) = ah]

1/|A|
(
fh(sh, ah)− rh −max

a′∈A
fh+1(sh+1, a

′)
)
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for all f ∈ F . Let y(sh, ah, rh, sh+1) = fh(sh, ah)− rh −maxa′∈A fh+1(sh+1, a
′) ∈ [−2, 1], then we

have

E[
(
|A|1[πf (sh) = ah]y(sh, ah, rh, sh+1)

)2 | sh ∼ πk, ah ∼ Uniform(A)]

≤4|A|2E[1[πf (sh) = ah] | sh ∼ πk, ah ∼ Uniform(A)] = 4|A|.

For a fixed (k, f) ∈ [dH + 1]× F , by applying Azuma-Bernstein’s inequality, with probability at

least 1− δ
8(dH+1)|F| we have

|ÊV(f, πk, hk)− EV(f, πk, hk)| ≤ O

√ |A|ι′
nelim

+
|A|ι′

nelim

 ≤ O
√ |A|ι′

nelim

 ≤ ζelim/2,

where ι′ = log[8(dH + 1)|F|/δ], and the third inequality follows from nelim = C|A|ι/ζ2
elim with C

being chosen large enough.

Taking a union bound over [dH + 1]×F , we have with probability at least 1− δ/4, the following

holds for all (k, f) ∈ [dH + 1]×F

|ÊV(f, πk, hk)− EV(f, πk, hk)| ≤ ζelim/2.

Recall that Algorithm 20 eliminates all f satisfying |ÊV(f, πk, hk)| > ζelim when the elimination

procedure is activated at the hth
k step in the kth phase. Therefore, if |EV(f, πk, hk)| ≥ 2ζelim, f will

be eliminated because

|ÊV(f, πk, hk)| ≥ |EV(f, πk, hk)| − ζelim

2
> ζelim.

Finally, note that EV(Q?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within

the first dH + 1 phases because we can similarly prove

|ÊV(Q?, πk, hk)| ≤ |EV(Q?, πk, hk)|+ ζelim

2
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude that
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the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with

probability at least 1− δ/2.

D.7.2 Proof of Theorem D.2.4

The proof is basically the same as that of Theorem 5.4.2 in Appendix D.5.

To begin with, we have the following lemma (akin to Lemma D.5.1 and D.5.2) showing that with high

probability: (i) any function in the confidence set has low Bellman-error over the collected Datasets

D1, . . . ,DH as well as the distributions from which D1, . . . ,DH are sampled; (ii) the optimal value

function is inside the confidence set. Its proof is almost identical to that of Lemma D.5.1 and D.5.2

which can be found in Appendix D.5.3.

Lemma D.7.1 (Akin to Lemma D.5.1 and D.5.2). Let ρ > 0 be an arbitrary fixed number. If we

choose β = c
(

log[KHNF∪G(ρ)/δ] +Kρ
)

with some large absolute constant c in Algorithm 19, then

with probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

(a)
∑k−1
i=1 E[

(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh ∼ πi, ah ∼ Uniform(A)]≤O(β),

(b) 1
|A|
∑k−1
i=1

∑
a∈A

(
fkh (sih, a)− (T fkh+1)(sih, a)

)2≤O(β),

(c) Q? ∈ Bk,

where sih denotes the state at step h collected according to Line 5 in Algorithm 19 following πi.

Proof of Lemma D.7.1. To prove inequality (a), we only need to redefine the filtration Ft,h in

Appendix D.5.3 to be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1 and repeat the arguments

there verbatim.

To prove inequality (b), we only need to redefine the filtration Ft,h in Appendix D.5.3 to be the

filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth} and repeat the arguments there

verbatim.

The proof of (c) is the same as that of Lemma D.5.2 in Appendix D.5.3.
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Step 1. Bounding the regret by Bellman error By Lemma D.7.1 (c), we can upper bound

the cumulative regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?1 (s1)− V π

k

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V π
k

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

EV(fk, πk, h), (D.14)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a

fixed step h and bound the cumulative Bellman error
∑K
k=1 EV(fk, πk, h) using Lemma D.7.1.

Invoking Lemma D.7.1 (a) with

ρ =
ε2

H2 · dimVBE(F ,DF , ε/H) · |A|

implies that with probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

k−1∑
i=1

E
[(
fkh (sh, πfkh (sh))− (T fkh+1)(sh, πfkh (sh))

)2

| sh ∼ πi
]
≤O(|A|β).

Further invoking Lemma D.5.3 with


ω =

ε

H
, C = 1,

X = S, Φ = (I − Th)VF , Π = DF,h,

φk(s) := (fkh − Thfkh+1)(s, πfkh (s)) and µk = Pπ
k

(sh = ·),

we obtain

1

K

K∑
t=1

EV(f t, πt, h) ≤ O

(√
dimVBE(F ,DF , ε/H)|A| log[KHNF∪G(ρ)/δ]

K
+

ε

H

)
.

Plugging in the choice of K completes the proof.
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Similarly, for D∆, we can invoke Lemma D.7.1 (b) witht

ρ =
ε2

H2 · dimVBE(F ,D∆, ε/H) · |A|
,

and Lemma D.5.3 with
ω =

ε

H
, C = 1,

X = S, Φ = (I − Th)VF , Π = D∆,h,

φk(s) := (fkh − Thfkh+1)(s, πfkh (s)) and µk = 1{· = skh},

and obtain

1

K

K∑
t=1

EV(f t, πt, h) ≤ 1

K

K∑
t=1

(f th − T f th+1)(sth, πfth(sth)) +O

(√
logK

K

)

≤O

(√
dimVBE(F ,D∆, ε/H)|A| log[KHNF∪G(ρ)/δ]

K
+

ε

H
+

√
logK

K

)
,

where the first inequality follows from standard martingale concentration.

Plugging in the choice of K completes the proof.

D.8 Proofs for Examples

D.8.1 Proof of Proposition D.3.6

Proof. Suppose F has finite ε-effective dimension and denote the corresponding mapping by φ. Then

we can rewrite F in the form of F = {fθ(·) = 〈φ(·), θ〉H | θ ∈ Θ}, where Θ ⊂ BH(1).

Suppose there exists an ε′-independent sequence x′1, . . . , x
′
n ∈ X with respect to F where ε′ ≥ ε. By

the definition of independent sequence, this is equivalent to the existence of θ1, . . . , θn ∈ (Θ−Θ)
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and x1, . . . , xn ∈ φ(X ) such that


t−1∑
i=1

(x>i θt)
2 ≤ ε′2, t ∈ [n]

|x>t θt| ≥ ε′, t ∈ [n].

(D.15)

Define Σt =
∑t−1
i=1 xix

>
i + ε′2

4 · I. We have

‖θt‖Σt ≤
√

2ε′ =⇒ ε′ ≤ |x>t θt| ≤ ‖θt‖Σt · ‖xt‖Σ−1
t
≤
√

2ε′‖xt‖Σ−1
t
, t ∈ [n]. (D.16)

As a result, we should have ‖xt‖2Σ−1
t

≥ 1/2 for all t ∈ [n]. Now we can apply the standard

log-determinant argument,

n∑
t=1

log(1 + ‖xt‖2Σ−1
t

) = log

(
det(Σn+1)

det(Σ1)

)
= log det

(
I +

4

ε′2

n∑
i=1

xix
>
i

)
,

which implies

0.5 ≤ min
t∈[n]
‖xt‖2Σ−1

t
≤ exp

(
1

n
log det

(
I +

4

ε′2

n∑
i=1

xix
>
i

))
− 1. (D.17)

Choose n = deff(F , ε/2) that is the minimum positive integer satisfying

sup
x1,...,xn∈φ(X )

1

n
log det

(
I +

4

ε2

n∑
i=1

xix
>
i

)
≤ e−1. (D.18)

This leads to a contradiction because ε′ ≥ ε and 0.5 > ee
−1 − 1. So we must have

dimE(F , ε) ≤ deff(F , ε/2).
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D.8.2 Proof of Proposition D.3.9

Proof. Consider fixed ε ∈ R+ and h ∈ [H], and denote n = dimE(F , ε). Then by the definition of

Eluder dimension, there must exist x1, . . . , xn ∈ Xh where Xh = {φh(s, a) : (s, a) ∈ S ×A} so that

for any θ, θ′ ∈ BH(H + 1− h), if
∑n
i=1(〈xi, θ − θ′〉H)2 ≤ ε2, then |〈z, θ − θ′〉H| ≤ ε for any z ∈ Xh.

In other words, x1, . . . , xn is one of the longest independent subsequences. Therefore, in order to

cover Fh, we only need cover the projection of BH(H + 1− h) onto the linear subspace spanned by

x1, . . . , xn, which is at most n dimensional.

By standard ε-net argument, there exists C ⊂ BH(H + 1− h) such that: (a) log |C| ≤ O(n · log(1 +

nH/ε)), (b) for any θ ∈ BH(H + 1− h), there exists θ̂ ∈ C satisfying
∑n
i=1(〈xi, θ − θ̂〉H)2 ≤ ε2. By

the property of x1, . . . , xn, {φh(·, ·)>θ̂ | θ̂ ∈ C} is an ε-cover of Fh. Since F = F1 × · · · × FH , we

obtain logNF (ε) ≤ O
(
Hn · log(1 +nH/ε)

)
. Finally, by Proposition D.3.8, n ≤ d(ε), which concludes

the proof.

D.8.3 Proof of Proposition D.3.11

Proof. Assume there exists h ∈ [H] such that dimDE((I−Th)F ,DF,h, ε) ≥ m. Let µ1, . . . , µn ∈ DF,h

be a an ε-independent sequence with respect to (I−Th)F . By Definition 5.3.1, there exist f1, . . . , fn

such that for all t ∈ [n],
√∑t−1

i=1(Eµi [f th − Thf th+1])2 ≤ ε and |Eµt [f th − Thf th+1]| > ε. Since

µ1, . . . , µn ∈ DF,h, there exist g1, . . . , gn ∈ F so that µi is generated by executing πgi , for all i ∈ [n].

By the definition of effective Bellman rank, this is equivalent to:
√∑t−1

i=1(〈φh(f t), ψh(gi)〉)2 ≤ ε and

|〈φh(f t), ψh(gt)〉| > ε for all t ∈ [n]. For notational simplicity, define xi = ψh(gi) and θi = φh(f i).

Then 
t−1∑
i=1

(x>i θt)
2 ≤ ε2, t ∈ [n]

|x>t θt| ≥ ε, t ∈ [n].

(D.19)

The remaining arguments follow the same as in the proof of Proposition D.3.6 except that we replace

ε by ε/ζ.
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D.8.4 Proof of Proposition D.3.15

Proof. Note that the case h = 1 is trivial because each episode always starts from a fixed initial

state independent of the policy. For any policy π, function f ∈ F , and step h ≥ 2

EV(f, π, h) =E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh ∼ π, ah:h+1 ∼ πf ]

=E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | (sh−1, ah−1) ∼ π, ah:h+1 ∼ πf ]

=
∑
s,a∈S

∑
s′∈S

Pπ(sh−1 = s, ah−1 = a) · 〈φh−1(s, a), ψh−1(s′)〉H · V(s′),

where

V(s′) = E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh = s′, ah:h+1 ∼ πf ].

As a result, we obtain

E[fh(oh, ah)− rh(oh, ah)− fh+1(oh+1, ah+1) | sh ∼ π, ah:h+1 ∼ πf ]

=

〈
Eπ[φh−1(sh−1, ah−1)],

∑
s′∈S

ψh−1(s′)V(s′)

〉
H
.

Notice that the left hand side of the inner product only depends on π while the right hand side only

depends on f . Moreover, by the definition of kernel reactive POMDPs, the RHS has norm at most

2. Therefore, we conclude the proof by revoking Proposition D.3.13 with ζ = 2.

D.9 Discussions on DF versus D∆ in BE Dimension

In this work, we have mainly focused on the BE dimension induced by two special distribution

families: (a) DF — the roll-in distributions produced by executing the greedy policies induced by

the functions in F , (b) D∆ — the collection of all Dirac distributions. And we prove that both low

dimBE

(
F ,DF , ε

)
and low dimBE

(
F ,D∆, ε

)
can imply sample-efficient learning. As a result, it is

natural to ask what is the relation between dimBE

(
F ,DF , ε

)
and dimBE

(
F ,D∆, ε

)
? Is it possible

that one of them is always no larger than the other so that we only need to use the smaller one? We
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answer this question with the following proposition, showing that either of them can be arbitrarily

larger than the other.

Proposition D.9.1. There exists absolute constant c such that for any m ∈ N+,

(a) there exist an MDP and a function class F satisfying for all ε ∈ (0, 1/2], dimBE(F ,DF , ε) ≤ c

while dimBE(F ,D∆, ε) ≥ m.

(b) there exist an MDP and a function class F satisfying for all ε ∈ (0, 1/2], dimBE(F ,D∆, ε) ≤ c

while dimBE(F ,DF , ε) ≥ m.

Proof. We prove (a) first. Consider the following contextual bandits problem (H = 1).

• There are m states s1, . . . , sm but the agent always starts at s1. This means the agent can

never visit other states because each episode contains only one step (H = 1).

• There are two actions a1 and a2. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = 1(s = si) + 1(a = a1) : i ∈ [m]}.

First of all, note in this setting D∆ is the collection of all Dirac distributions over S ×A, DF,1 is a

singleton containing only δ(s1,a1), and (I − T1)F is simply F1 because H = 1 and r ≡ 0. Since DF,1

has cardinality one, it follows directly from definition that dimBE(F ,D∆, ε) is at most 1. Moreover,

it is easy to verify that (s1, a2), (s2, a2), . . . , (sm, am) is a 1-independent sequence with respect to F

because we have fi(sj , a2) = 1(i = j) for all i, j ∈ [m]. As a result, we have dimBE(F ,D∆, ε) ≥ m

for all ε ∈ (0, 1].

Now we come to the proof of (b). Consider the following contextual bandits problem (H = 1).

• There are 2 states s1 and s2. In each episode, the agent starts at s1 or s2 uniformly at random.

• There are m actions a1, . . . , am. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = (2 · 1(s = s1)− 1) + 0.5 · 1(a = ai) : i ∈ [m]}.
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First of all, note in this setting (I − T1)F is simply F1 and the roll-in distribution induced by

the greedy policy of fi is the uniform distribution over (s1, ai) and (s2, ai), which we denote as

µi. It is easy to verify that µ1, . . . , µm is a 0.5-independent sequence with respect to F because

E(s,a)∼µi [fj(s, a)] = 0.5 · 1(i = j). Therefore, for all ε ∈ (0, 0.5], dimBE(F ,DF , ε) ≥ m.

Next, we upper bound dimBE(F ,D∆, ε) which is equivalent to dimDE(F1,D∆, ε) in this problem.

Assume dimDE(F1,D∆, ε) = k. Then there exist g1, . . . , gk ∈ F1 and w1, . . . , wk ∈ S × A such

that for all i ∈ [k],
√∑i−1

t=1(gi(wi))2 ≤ ε and |gi(wi)| > ε. Note that we have |f(s, a)| ∈ [0.5, 1.5]

for all (s, a, f) ∈ S × A × F1. Therefore, if ε > 1.5, then k = 0; if ε ≤ 1.5, then k ≤ 10 because

0.5×
√
k − 1 ≤

√∑k−1
t=1 (gk(wt))2 ≤ ε ≤ 1.5.
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Appendix E

Remaining Proofs of Chapter 6

E.1 Proofs for Section 6.3

In this section we provide formal proofs for the results stated in Section 6.3.

Proof of Proposition 6.3.1. We need to verify that Mm is an MDP. To do so, we check that the

state space induces a Markovian dynamics and that the expected reward is also a function of the

state. These two properties follow from the m-step decodability assumption.

• Reward depends on the states. This holds since the reward is assumed to depend only on the

current observation oh and the current observation is included in the megastate. Formally, for

any sm,h =
(
oh, oh−1, ah−1, . . . , omin(h−m,1), amin(h−m,1)

)
∈ Sm,h, any history H, and policy

π, it holds that

Eπ
[
r|sm,h,H

]
= Eπ

[
r|sm,h

]
= r(oh)

where oh ∈ sm,h due to the assumption on the reward generation process of m-step decodable

POMDP.
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• Transition model is Markov. For any sm,h =
(
ohh, o

h
h−1, a

h
h−1, . . . , o

h
min(h−m,1), a

h
min(h−m,1)

)
∈

Sm,h and snh+1 =
(
oh+1
h+1, o

h+1
h , ah+1

h , . . . , oh+1
min(h+1−m,1), a

h+1+1
min(h+1−m,1)

)
∈ Smh+1, any action

ahh ∈ A, any history H and any policy π it holds that

Pπ
(
sm,h+1 | sm,h, ah,H

)
= Pπ

(
oh+1 | sm,h, ah,H

)
·

h∏
j=min(h+1−m,1)

δ
(
oh+1
j = ohj , a

h+1
j = ahj

)

Finally, observe that by the m-step decodability assumption it holds that

Pπ
(
oh+1 | φ?(sm,h) = s, ah,H

)
= Oh+1 (oh+1 | sh+1)P

(
sh+1 | φ?(sm,h) = s, ah

)
,

where the last relation holds by the Markov assumption of the latent model. This shows that

Pπ
(
sm,h+1 | sm,h, ah,H

)
= P

(
sm,h+1 | sm,h, ah

)
,

and hence the dynamics are Markovian.

Lastly, we elaborate on the optimality of any optimal policy of Mm; that is, any optimal policy of

Mm is an optimal policy of the m-step decodable POMDP. First, observe that the optimal policy

of the latent MDP that underlies the m-step decodable POMDP is also the optimal policy of the

m-step decodable POMDP.

Further, since the latent state is decodable from a suffix of length m of the history, any state in

Sm,h (that represents a reachable suffix) can decode the latent state. Hence, the optimal policy on

the latent MDP can be executed based on the states in Sm,h. Thus, an optimal policy of Mm is

also an optimal policy of the m-step decodable POMDP; otherwise, an optimal policy of the latent

MDP is not optimal for the m-step decodable POMDP.

Proof of Corollary 6.3.2. The sample complexity follows immediately from a standard online-to-

batch conversion of the minimax optimal regret bound in Azar et al. (2017), combined with
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Proposition 6.3.1. In particular, the online-to-batch conversion gives Õ(HSA log2(1/δ)/ε2) sample

complexity in an MDP with S states and A actions. By Proposition 6.3.1 we have an MDP with

OmAm−1 states, so the result follows.

Proof sketch of Proposition 6.3.3. We construct a simple m-step decodable POMDP with horizon

m, two states per layer and two actions. The construction and argument are identical to the one

in Krishnamurthy et al. (2016), so we only sketch the construction here. It is a standard “combination

lock” construction, with A actions and no observations, but where the state is decodable from the

past actions.

In particular, the agent starts in the “good state” g1 and at each time step h can be either in the

good state gh or the “bad state” bh. From the good state, a special action a?h transits to the next

good state, while all other actions (from both good or bad state) transit to the next bad state bh+1.

At the last time step the agent gets reward for being in state gm. There are no observations (or

there is a trivial observation), but note that the latent state is decodable using the history of actions.

Thus provided the horizon H ≤ m the process is m-step decodable.

Intuitively, the construction requires the agent to try all Am action sequences before finding the

reward. More formally this construction embeds an Ω(Am) armed bandit problem resulting in a

sample complexity lower bound of Ω(Am/ε2). We refer the reader to Krishnamurthy et al. (2016)

for more details.

E.2 Proof for Section 6.4 and 6.5

In this section we provide formal proofs for the results stated in Section 6.4 and 6.5.
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E.2.1 Properties of Moment Matching Policy

We start with formal definition of moment matching policy. For a policy π, we construct νπ,hh′ for

h′ ≥ h−m such that it matches the distribution of the action ah′ conditioning on latent states and

observations from time step h −m + 1 to time step h under the sampling process of π. For this

reason we refer to νπ as the moment matching policy for π (see Fig. 6.2 for illustration). Formally,

we define it as follows:

Definition E.2.1 (Moment-Matching Policy for π). Denote m(h) = h−m+ 1; Fix h ∈ [H] and

for h′ ∈ [m(h), h] we define

xh′ =
(
sm(h):h′ , om(h):h′ , am(h):h′−1

)
∈ Xl,

where Xl = Sl ×Ol ×Al−1 and l = h′ −m(h). For a m-step policy π and h ∈ [H], we define the

moment matching policy µπ,h = {µπ,hh′ : Xl → ∆(A)}hh′=m(h) as following:

µπ,hh′ (ah′ | xh′) := Eπ[πh′(ah′ | zh′) | xh′ ].

By Assumption 6.2.2, states and therefore x′h is decodable by the history of actions and observations,

therefore we let

νπ,hh′ (ah′ | o1:h′ , a1:h′−1) := µπ,hh′ (ah′ | x′h).

As we discussed in Section 6.5, we prove the following lemma that establishes two important

properties of the moment matching policy.

Lemma E.2.2. For a fixed h ∈ [H] and fixed m-step policies π, π̄, define policy π̃h which takes first

m(h)− 1 actions from π and remaining actions from νπ̄,h, i.e. π̃h = π ◦m(h) ν
π,h. Then we have,

1. If π = π̄, for any zh ∈ Zh, Pπ(zh) = Pπ̃h(zh)
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2. For any function g : Zh → [0, 1],

Eπ̃h [g(zh)] = 〈ζh(π), ξh(g, π̄)〉,

where ζh(π), ξh(g, π̄) ∈ RS satisfying ‖ζh(π)‖ ≤ 1 and ‖ξh(g, π̄)‖ ≤
√
S.

Recall that we use the notationm(h) = min{h−m+1, 1} and that we define xh′ = (sm(h):h′ , om(h):h′ , am(h):h′−1)

for h′ ∈ [m(h), h]. By definition of µπ,h (as in Definition E.2.1), for h′ ∈ [m(h), h] we have

µπ,hh′ (ah′ | xh′)Pπ
[
xh′
]

=
∑

(o,a)m(h′):m(h)−1

π(ah′ | zh′)Pπ
[
(o, a)m(h′):m(h)−1, xh′

]
(E.1)

We will this identity below.

Proof of Lemma E.2.2. Recall that we define π̃h to take actions a1:m(h)−1 according to π and take

actions am(h):h−1 according to the moment matching policy νπ,h.

Item 1. We prove the first item by induction on h′ ∈ {m(h), . . . , h}, where the induction hypothesis

is

∀xh′ : Pπ
[
xh′
]

= Pπ̃h
[
xh′
]

• Base case: The base case is when h′ = m(h). In this case, Pπ
[
(s, o)m(h)

]
= Pπ̃h

[
(s, o)m(h)

]
since all actions up to am(h)−1 are taken by the same policy.

• Induction step: Let h′ ∈ {m(h), . . . , h} and assume Pπ
[
xh′−1

]
= Pπ̃h

[
xh′−1

]
. We have

Pπ(xh′+1) = Pπ
[
(s, o, a)m(h):h′ , (s, o)h′+1

]
=

∑
(o,a)m(h′):m(h)−1

Pπ
[
(o, a)m(h′):m(h)−1, xh′ , ah′ , (s, o)h′+1

]
=

∑
(o,a)m(h′):m(h)−1

O(oh′+1 | sh′+1)P(sh′+1 | sh′ , ah′)π(ah′ | zh′)Pπ
[
(o, a)m(h′):m(h)−1, xh′

]
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Similarly we have,

Pπ̃h(xh′+1) = Pπ̃h
[
(s, o, a)m(h):h′ , (s, o)h′+1

]
= Pπ̃h

[
xh′ , ah′ , (s, o)h′+1

]
= O(oh′+1 | sh′+1)P(sh′+1 | sh′ , ah′)µπ,hh′ (ah′ | xh′)Pπ̃h

[
xh′
]

(i)
= O(oh′+1 | sh′+1)P(sh′+1 | sh′ , ah′)µπ,hh′ (ah′ | xh′)Pπ

[
xh′
]
,

where (i) uses the induction hypothesis. Eq. (E.1) implies that right-hand side of the two

above expressions are equal, which completes the proof of induction step.

Now item 1 is immediate since the variables in zh are contained within xh, in particular

Pπ(zh) =
∑

sm(h):h

Pπ(xh) =
∑

sm(h):h

Pπ̃h(xh) = Pπ̃h(zh).

Item 2. Recall that here π̃h is defined to take actions a1:m(h)−1 ∼ π and am(h):h−1 ∼ νπ̄,h where

π and π̄ may not be equal. Since µπ̄,h is defined to be independent of the past give sm(h) we have

the factorization

Eπ̃h [g(zh)] =
∑

sm(h)∈S
Pπ(sm(h)) · Eam(h):h−1∼µπ̄,h [g(zh) | sm(h)].

We note that µπ̄,h only depends on (s, o)m(h):h−1 and am(h):h−2, thus the second term is independent

of π and only depends g and π̄. Defining

ζh(π) :=
(
Pπ(sm(h))

)
sm(h)∈S

∈ RS and ξh(g, π̄) =
(
Eam(h):h−1∼µπ̄,h [g(zh) | sm(h)]

)
sm(h)∈S

∈ RS ,

completes the proof.
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E.2.2 Concentration lemmas

We start with the following lemma, which is quite similar to Lemmas 39 and 40 in Jin et al. 2021.

The lemma shows that: (1) with high probability any function in the confidence set at the kth

iteration has low Bellman error over the data distributions from visited in the previous iterations at

all layers h ∈ [H] and (2) the optimal value function is inside the confidence set with high probability.

Lemma E.2.3. For any ρ > 0 and δ ∈ (0, 1), if we run Algorithm 6 with β = c
(

log
[
KHNG(ρ)/δ

]
+

Kρ
)

where c > 0 is an absolute constant, then with probability at least 1− δ, we have

1.
∑k−1
i=1 E

[(
fkh (zh, ah) − (Thfkh )(zh, ah)

)2 | a1:h−m ∼ πi, ah−m+1:h ∼ unif(A)
]
≤ O(β) for all

(k, h) ∈ [K]× [H],

2. Q? ∈ Bk for all k ∈ [K].

Proof of Lemma E.2.3. The proof relies on a standard martingale concentration inequality (e.g.,

Freedman’s inequality), the construction of our confidence set, and our generalized completeness

assumption (Assumption 6.2.4). The argument is almost identical to the proofs of Lemma 39 and

40 in Jin et al. 2021 and therefore omitted for brevity.

Lemma E.2.4. For any δ ∈ (0, 1), if we choose Kest = c ·
(

log[NF (ρest)/δ]/ρ
2
est

)
where c > 0 is

some absolute constant; then, with probability at least 1− δ for any f ∈ F , we have

|f̂1 − Es1
[
f1(o1, πf (o1))

]
| ≤ O(ρest).

Proof. The proof follows from applying uniform concentration argument over a ρest-cover of F ; then,

a covering argument finishes the proof.

E.2.3 Eluder Dimension

In this section we describe complexity measure Eluder dimension proposed by Russo and Van Roy

(2013) since it has been used in the analysis of the original Golf algorithm Jin et al. (2021).
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Definition E.2.5 (ε-Independence). Let W be a function class defined over domain Y and

y1, . . . , yn, ȳ be elements in Y. We say ȳ is ε-independent with respect to W, if there exists

w ∈ W such that
√∑n

i=1[w(yi)]2 ≤ ε, but |w(ȳ)| > ε.

Definition E.2.6 (Eluder Dimension). The Eluder dimension dimE(W, ε), is the length of the

longest sequence of {y1, . . . , yn} in Y, such that there exists ε′ ≥ ε where yi is ε′-independent of

{yi, . . . , yi−1} with respect to W for all i ∈ [n].

The following proposition shows that if W has a low rank structure with rank d, then the Eluder

dimension can be upper bounded by Õ(d).

Proposition E.2.7 (Proposition 6 in Russo and Van Roy 2013). Suppose for any w ∈ W and any

y ∈ Y, we have w(y) = 〈ζ(y), ξ(w)〉, where ζ(y), ξ(w) ∈ Rd satisfying ‖ζ(y)‖ · ‖ξ(w)‖ ≤ γ. Then we

have,

dimE(W, ε) ≤ O
(
1 + d log[1 + γ/ε2]

)
.

The following lemma could be seen as an analogue to the standard elliptical potential argument for

Eluder dimension that was proposed by Russo and Van Roy (2013) and been used in analysis of

Golf. The following lemma could be obtained from Lemma 41 in Jin et al. (2021) by setting the

family of probability measures used in that lemma to be {δy | y ∈ Y}, where δy is the dirac measure

centered at y.

Lemma E.2.8 (Simplification of Lemma 41 in Jin et al. 2021). Given a function class W defined

over Y with w(y) ≤ C for all (w, y) ∈ W × Y; Suppose {yi}Ki=1 ⊆ Y and {wi}Ki=1 ⊆ W satisfy that

for all k ∈ K,
∑k−1
i=1 [wk(yi)]2 ≤ α. Then for all k ∈ [K] and ω > 0, we have

k∑
i=1

|wi(yi)| ≤ O
(√

dimE(W, ω)αk + min{k,dimE(W, ω)} · C + kω).
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E.2.4 Proof of Theorem 6.4.1

We use Eh(π, f) to denote the Bellman error of function f ∈ F at step h using roll-in policy π, which

is defined as

Eh(π, f) = E[(fh − Thfh+1)(zh, πf (zh)) | a1:h−1 ∼ π].

In addition, we use E?h(π, f) to denote the Bellman error of function f at step h using roll-in policy

π for the first h−m steps and νπf ,h (the moment matching policy for πf ) for am(h):h−1; namely,

E?h(π, f) = E[(fh − Thfh+1)(zh, πf (zh)) | a1:h−m ∼ π, am(h):h−1 ∼ νπf ,h].

The next lemma shows that E?h satisfies two important properties that are critical to the rest of the

proof. The first property is that when π = πf , Eh and E? coincide. The second property shows that

E?h has low rank or bilinear structure.

Lemma E.2.9. For any policy π, any function f ∈ F , and any h ∈ [H], we have

1. Eh(πf , f) = E?h(πf , f)

2. E?h(π, f) = 〈ζh(π), ξh(f)〉 where ζh(π), ξh(f) ∈ RS satisfy ‖ζh(π)‖ ≤ 1 and ‖ξh(f)‖ ≤ 2
√
S.

Proof of Lemma E.2.9. For item (1) define π̃hf to be the policy that takes actions a1:h−m ∼ πf and

am(h):h−1 ∼ νπf ,h, and let g : Zh → [0, 2] be defined as g(zh) = (fh − Thfh+1)(zh, πf (zh)). Then by

item (1) of Lemma E.2.2 we have

E?h(π, f) = E[(fh − Thfh+1)(zh, πf (zh))) | a1:h−m ∼ π, am(h):h ∼ νπf ,h]

=
∑
zh∈Zh

Pπ̃hf (zh) · g(zh) =
∑
zh∈Zh

Pπf (zh) · g(zh)

= E[(fh − Thfh+1)(zh, πf (zh))) | a1:h−1 ∼ π] = Eh(πf , f),

Item (2) immediately follows from item (2) of Lemma E.2.2 by selecting g as g(zh) = (fh −

Thfh+1)(zh, πf (zh)) and π̄ = πg.
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The following corollary shows that Eluder dimension with respect to E? is upper bounded by Õ(S).

The proof immediately follows from Lemma E.2.9 and Proposition E.2.7.

Corollary E.2.10. Let Π to be set of all m-step policies, and define W?
F = {E?(·, f) : Π→ [0, 2] |

f ∈ F}, then

dimE(W?
F , e) ≤ O

(
S log[S/ε]

)
.

Now we are ready to prove Theorem 6.4.3.

Proof of Theorem 6.4.1. With probability at least 1−2δ the events in Lemma E.2.3 and Lemma E.2.4

holds. Under this good event, we proceed in several steps.

Step 1. Bounding the optimality gap by the Bellman error. Lemma E.2.3 guarantees

that ∀k ∈ [K] : Q? ∈ Bk, this together with optimistic choice of fk (Line 4 in Algorithm 6), for all

k ∈ [K], we have:

V ? ≤ Q̂?1 +O(ρest) ≤ f̂k1 +O(ρest) ≤ Es1
[
fk1 (o1, πfk(o1))

]
+ 2 · O(ρest).

It implies that
∑K
k=1

(
V ? − V πk

)
≤
∑K
k=1 Es1

[
fk1 (o1, πfk(o1))

]
− V πk +O(Kρest). We also have

Es1
[
fk1 (o1, πfk(o1))

]
− V π

k (i)
=

K∑
k=1

H∑
h=1

Eh(πk, fk)
(ii)
=

H∑
h=1

K∑
k=1

E?h(πk, fk),

where (i) is by standard policy loss decomposition (e.g., Lemma 1 in Jiang et al. 2017) and (ii) is

due to part (1) of Lemma E.2.9 since we have πk = πfk . Therefore, we showed

K∑
k=1

(
V ? − V π

k)
≤

H∑
h=1

K∑
k=1

E?h(πk, fk) +O(Kρest)
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Step 2: Utilizing the confidence set. By Lemma E.2.3, we have

k−1∑
i=1

E
[(

(fkh − Thfkh+1)(zh, ah)
)2 | a1:h−m ∼ πi, ah−m+1:h ∼ unif(A)

]
≤ O(β) ∀(k, h) ∈ [K]× [H].

It implies that

k−1∑
i=1

[E?h(πi, fk)]2 ≤
k−1∑
i=1

E
[(

(fkh − Thfkh+1)(zh, πf (zh))
)2 | a1:h−m ∼ πi, ah−m+1:h ∼ νπfk ,h

]
≤ Am

k−1∑
i=1

E
[(

(fkh − Thfkh+1)(zh, ah)
)2 | a1:h−m ∼ πi, ah−m+1:h ∼ unif(A)

]
≤ O(Amβ).

Here the Am factor arises to change measure from νπfk ,h to the uniform distribution over actions

ah−m+1:h.

Step 3: Utilizing Low-rank Structure. From previous step, we know that
∑k−1
i=1 [E?h(πi, fk)]2 ≤

Amβ, Therefore if we invoke Lemma E.2.8 and Corollary E.2.10 with


Y = Π, W =W?

F = {E?(·, f) : Π→ [0, 2] | f ∈ F},

ω = ε/H, α = O(Amβ), C = 2,

we obtain

1

K

K∑
k=1

E?h(πk, fk) ≤ O
(√AmS log[S/ε]β

K
+ ε/H

)
Step 4: Putting everything together Choosing ρest = O(ε) and combining the conclusion of

step 1 and step 3, we have

1

K

K∑
k=1

(
V ? − V π

k)
≤ 1

K

H∑
h=1

K∑
k=1

E?h(πk, fk) ≤ O
(√H2AmS log[S/ε]β

K
+ ε
)

+O(ε).
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By definition of πout, we have

V ? − V π
out

=
1

K

K∑
k=1

(
V ? − V π

k)
≤ O

(√H2AmS log[S/ε]β

K

)
+O(ε)

(i)

≤ O
(√H2AmS log[S/ε] log[KHNG(ρ)/δ]

K
+H2AmS log[S/ε]ρ

)
+O(ε)

(ii)

≤ O
(√H2AmS log[S/ε] log[KHNG(ρ)/δ]

K

)
+O(ε),

where (i) is follows from β = c
(

log
[
KHNG(ρ)/δ

]
+Kρ

)
as in Lemma E.2.3 and (ii) is by picking

ρ =
ε2

(H2AmS log[S/ε])
.

We need to pick K such that

√
H2AmS log[S/ε] log[KHNG(ρ)/δ]

K
≤ O(ε).

By simple calculations, one can verify that it suffices to pick

K ≥ Ω(
H2SAm

ε2
· log[HSAmNG(ρ)/(δε)] · log[S/ε]),

which completes the proof.

E.2.5 Proof for Theorem 6.4.3

The following lemma (akin to part (2) of Lemma E.2.9) shows that E∗ has low rank structure with

rank dlin. The proof of Theorem 6.4.3 is almost identical to proof of Theorem 6.4.1 where the only

difference is to use Lemma E.2.11 instead of part (2) of Lemma E.2.9 resulting in S being replaced

by dlin wherever it has been used.

Lemma E.2.11 (akin to part (2) of Lemma E.2.9). Under Definition 6.4.2; for any policy π and

any function f ∈ F , and any h ∈ [H], we have E?h(π, f) = 〈ζh(π), ξh(f)〉 where ζh(π), ξh(f) ∈ Rdlin
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Algorithm 21 IS-RL: Importance sampling for Reinforcement Learning

1: Initialize: N number of samples, policy class Π,

2: Collect: N trajectories {o(t)
h , a

(t)
h , r

(t)
h }Hh=1 for t ∈ [N ] by executing the uniform policy a

(t)
h ∼

Uniform(A).
3: For any π ∈ Π calculate its empirical value

V̂ π =
1

N

N∑
t=1

H∏
h=1

(
π(a

(t)
h | z

(t)
h )

1/A

)
·

(
H∑
h=1

r
(t)
h

)

4: Output π̂ ∈ arg maxπ∈Π V̂
π.

satisfy ‖ζh(π)‖ ≤ 1 and ‖ξh(f)‖ ≤ 2
√
dlin.

Proof of Lemma E.2.11. Let g be a function g : Zh → [0, 1] and π̃h = π ◦m(h) π̄. Recall that here

π̃h is defined to take actions a1:m(h)−1 ∼ π and am(h):h−1 ∼ νπ̄,h where π and π̄ may not be equal.

Since µπ̄,h is defined to be independent of the past given sm(h) we have the factorization

Eπ̃h [g(zh)] = Eπ
[ ∫

sm(h)∈S
〈ψπ(sm(h)−1, am(h)−1),µ(sm(h)) · Eam(h):h−1∼µπ̄,h [g(zh) | sm(h)]

]
=
〈
Eπψπ(sm(h)−1, am(h)−1),

∫
sm(h)∈S

µ(sm(h)) · Eam(h):h−1∼µπ̄,h [g(zh) | sm(h)]
〉

We note that µπ̄,h only depends on (s, o)m(h):h−1 and am(h):h−2, thus the second term is independent

of π and only depends g and π̄. Define

ζh(π) := Eπψπ(sm(h)−1, am(h)−1) ∈ Rdlin

ξh(g, π̄) =

∫
sm(h)∈S

µ(sm(h)) · Eam(h):h−1∼µπ̄,h [g(zh) | sm(h)] ∈ Rdlin.

Picking g as g(zh) = (fh − Thfh+1)(zh, πf (zh)) and π̄ = πg completes the proof.

E.3 On H-Step Decodable POMDPs

In this section, we show that there exists an algorithm that returns an ε optimal policy for any

H-step decodable POMDP with sample complexity which is only polynomial in |O|, the cardinality
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of the observation space. To do so, we construct a policy class Π that contains the optimal

policy and has cardinality bounded by |Π| ≤ O
(
H(SA)2HSOA

)
and we use this policy class in

a standard importance-sampling procedure. The procedure is formally specified Algorithm 21,

and Proposition 6.6.1 follows immediately from Corollary E.3.2 and Lemma E.3.3.

Constructing the policy class Π via recurrent function class. Let Bh denote the set of all

mappings of the form bh : Sh−1 ×Ah−1 ×Oh → Sh. This class represents all mappings from the

latent state at the previous time step, action at the previous time step, and current observation to

the latent state at the current time step. We call them belief operators.

We show that the latent state at time step h is decodable from the tuple (oh, sh−1, ah−1). In other

words, we can write φ?(zh) = b?h(φ?(zh−1), ah−1, oh) for some belief operator b?h ∈ Bh. This relation

is established in the following lemma.

Lemma E.3.1. For each h ∈ [H] there exists b?h ∈ Bh such that for all reachable histories zh we

have φ?(zh) = b?h(φ?(zh−1), ah−1, oh).

Using the belief operator class we can design a policy class that contains the optimal policy

for any H-step decodable POMDP. Given a decoder ~b := (b1, . . . , bH) ∈ B1 × . . . × BH and a

trajectory zH (or a partial trajectory zh), the predicted state is updated recursively as ŝ1 = b1(o1),

ŝh = bh(ŝh−1, ah−1, oh). Then we can define Π~b := {π : π(ah | zh) = πh(ah | ŝh)}, where here

implicitly we are updated ŝh using ~b. Then we can take Π =
⋃
~b∈~B Πb. For this class we have the

following corollary.

Corollary E.3.2. We have |Π| ≤ (SA)2SHOA and for any H-step decodable POMDP π? ∈ Π.

Importance Sampling Procedure for H-step POMDPs. Algorithm 21 describes a standard

importance sampling approach for policy learning in POMDPs, which is essentially the same as the

trajectory tree method of Kearns et al. (1999). A standard analysis of importance weighting using
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Bernstein’s inequality and a uniform convergence argument yield the following lemma. As the result

is quite standard, we omit the proof here.

Lemma E.3.3. Fix any ε, δ > 0 and let N = Ω
(
HAH log (|Π| /δ) /ε2

)
. Then with probability at

least 1− δ, Algorithm 21 returns a policy π̂ ∈ Π such that

max
π∈Π

V π ≤ V π̂ + ε.

E.3.1 Proofs

We now turn to the proofs of Lemma E.3.1 and Corollary E.3.2.

Proof of Lemma E.3.1. By the decodability assumption, for any zh = (o1:h, a1:h−1) such that

supπ Pπ[zh] > 0, it holds that

P(sh | zh) = δ (φ?(zh)) .

On the other hand, it holds that

P(sh | zh) =

∑
sh−1

P(sh, oh, sh−1 | oh−1:1, ah−1:1)∑
sh−1

P(oh, sh−1 | oh−1:1, ah−1:1)
. (E.2)

By the POMDP model assumption and decodability the numerator is also given by,

P(sh, oh, sh−1 | oh−1:1, ah−1:1) = P(sh, oh | sh−1, ah−1)δ(sh−1 = φ?(zh−1)).

Similarly, the denominator is given by

P(oh, sh−1 | oh−1:1, ah−1:1)P(sh | sh−1, ah−1) =
∑
s̄h

P(s̄h, oh | sh−1, ah−1)δ(sh−1 = φ?(zh−1)).
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Plugging this back into equation Eq. (E.2) we obtain

P(sh | zh) =

∑
sh−1

P(sh, oh | sh−1, ah−1)δ(sh−1 = φ?(zh−1))∑
sh−1

∑
s̄h

P(s̄h, oh | sh−1, ah−1)δ(sh−1 = φ?(zh−1))

=
P(sh, oh | φ?(zh−1), ah−1)∑
s̄h

P(s̄h, oh | φ?(zh−1), ah−1)

=
P(sh | oh, φ?(zh−1), ah−1)P(oh | φ?(zh−1), ah−1)∑
s̄h

P(s̄h | φ?(zh−1), ah−1)P(oh | φ?(zh−1), ah−1)

=
P(sh | oh, φ?(zh−1), ah−1)∑
s̄h

P(s̄h | φ?(zh−1), ah−1)

= P(sh | oh, φ?(zh−1), ah−1).

Recall that P(sh | zh) = δ (sh = φ?(zh)) by the decodability assumption. Hence, it holds that

P(sh | oh, φ?(zh−1), ah−1) = δ(sh = φ?(zh)).

Therefore for any reachable zh, with sh−1 = φ?(zh−1) we take b?h(sh−1, ah−1, oh) to be the unique

sh for which P(sh | oh, sh−1, ah−1) 6= 0 and if this does not completely specify b?h, we complete can

complete it arbitrarily.

Proof of Corollary E.3.2. The fact that π? ∈ Π follows directly from Lemma E.3.1, since ~b? ∈ B

and for any H-step POMDP the optimal action depends only on the state. As for the size of Π

observe that for each h we have |Bh| ≤ SSOA and so | ~B| ≤ SHSOA. Finally, for each ~b ∈ ~B we have

|Π~b| = ASH . Taken together we have |Π| ≤ (SA)HSOA as desired.

E.4 Proof for Proposition 6.5.1

Here we construct an instance of a 2-step decodable POMDP in which the bellmank rank scales with

the number of observations O. We further show that the OLIVE algorithm has sample complexity

that scales polynomially with O, thus motivating our new algorithmic techniques. We believe a

similer construction will also show that this model does not fall into either the bilinear class or

Bellman-Eluder frameworks (Du et al., 2021; Jin et al., 2021).
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The key idea is to use a construction inspired by the Hadamard matrix. Let O = 2s for some natural

number s and O = {1, . . . , O}. Then, there exist sets S1, . . . , SO−1 ⊂ O such that:

∀i : |Si| = O/2, and ∀i 6= j : |Si ∩ Sj | = |Si ∩ S̄j | = O/4 (E.3)

The existence of these can be verified by the existence and orthogonality of Hadamard matrices in

dimension O = 2s. Indeed, if we define {vi}Oi=0 ⊂ {±1}O such that v0 = 1 and vi is the ±1 indicator

vector for set Si. Then the first property above is equivalent to v>i v0 = 0 for all i 6= 0 while the

second property is equivalent to

∀i 6= j ∈ {1, . . . , O}
∑
k

1{vi[k] = +1}vj [k] = 0

We claim that these two properties are satisfied if the vectors v are the columns of a Hadamard

matrix. The first follows directly from orthogonality. For the second, since v>i vj = 0 and v>j v0 = 0

both by orthogonality, we have

v>i vj = 0⇒
∑
k

1{vi[k] = +1}vj [k]︸ ︷︷ ︸
=:Aij

−
∑
k

1{vi[k] = −1}vj [k]︸ ︷︷ ︸
=:Bij

= 0

v>j v0 = 0⇒
∑
k

1{vi[k] = +1}vj [k] +
∑
k

1{vi[k] = −1}vj [k] = 0.

Thus we have Aij + Bij = Aij − Bij = 0 which implies that Aij = 0. So we have established the

existence of O − 1 sets satisfying Eq. (E.3).

Let us now put this construction to use in a 2-step decodable POMDP. We consider a H = 2,

three state POMDP with initial state s0 and two states s1, s2 reachable at time h = 2. We have:

O(· | s0) = Unif({1, . . . , O}) while O(· | s1) = O(· | s2) = δ({⊥}). In words, from the initial state we

see an observation uniformly at random, while from s1 or s2 we see no observation. The dynamics

are such that taking a1 from s0 reaches s1 and taking a2 from s0 reaches s2. Only a single action

a1 is available from s1 or s2 and it enjoys reward R(s1, a1) = 1/2, R(s2, a1) = 3/4. Clearly this
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POMDP is 2-step decodable since the first state is always decodable and the previous action uniquely

determines the second state.

We have a function class F of 2-step candidate Q functions. The functions are F := {Q?}∪ {fi}O−1
i=1

where each fi is associated with a set Si from the above Hadamard construction. These functions

are defined as

fi(oa1) = 1{o ∈ Si}, fi(oa2) = 3/4, fi(oa1⊥a1) = 1{o ∈ Si}, fi(oa2⊥a1) = 3/4

It is easy to very that these functions have zero bellman error at the first time step, that is

∀(o, a) : fi(oa) = fi(oa⊥a1)

On the other hand, fi has very high bellman error at the second time step, since it never correctly

predicts the reward for state s1. In particular we have E
d
πfi
2

[fi(oa⊥a1)− r] = 1/4, since πfi visits

states s1 on half of the observations and every time it does it overpredicts the reward by 1/2.

However, observe that

E
d
πfi
2

[fj(oa⊥a1)− r] =
1

O

∑
o∈Si

1{o ∈ Sj}(1− 1/2) + 1{o /∈ Sj}(0− 1/2) = 0,

where the last identity uses Eq. (E.3). Thus we see that we have embedded an (O−1)× (O−1)-sized

identity matrix inside of the Bellman error matrix at time 2, which shows that the Bellman rank is

Ω(O).

Note that the Olive algorithm itself will also incur poly(O) sample complexity in this instance.

This is because the value predicted by fi at the starting state, namely E[maxa f(oa)], is 1/2 + 3/8

which is greater than V ? = 3/4. Thus Olive will enumerate over the fi functions, eliminating one

at a time and incurring a poly(O) sample complexity.
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