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I Introduction :
Let A denote the family of functions of the type

f(@)=z+ Zan z"(1.1)

n=2
regular in the unit disc E = {zJz|< 1|}. Let the family of functions of the form (1.1)which are analytic and
univalent in E be denoted by §,.
Bieber Bach ( [7], [8] ) proved in 1916,that |a,| < 2 for the functions f(z)eS.Lowner [5] proved in
1923,that|a;| < 3 for the functions f(z) §..
With the recognized estimates |a,| < 2and |a;| < 3, naturally some relation was to be sought between a; and
a,? for the class §,Lowner’s methodwas used by Fekete and Szegd[9] to prove the following well known result
for the class §.
Let f(z) €8, then

—20

[3—4,ifS0;

|a3—a§|S|1+2exp( ),ifO <B<1;(1.2)

1-@
lam—3,ifB > 1.

The inequality (1.2) plays a crucial role in determining approximations of higher order coefficients for some
subclasses § (See Chhichra[1], Babalola[6]).

Let us outline some subclasses of §.

We will denote by S*, the family of univalent and starlike functions

gz)=z+ Z b,z" € A and satisfying the condition
n=2
Z Z
Re ( 9@
9(2)
We denote by X, the class of univalent convex functions

h(z) = Z+chz”,z EA
n=2

) >0,z €E. (1.3)

and satisfying the condition
R ((zh (2))

ew>0,ZEIE. (1.4)
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A function f(z) € A is known as close to convex function if there exists g(z) € S$* such that

zf (2)
e (m) > O,Z € E. (15)

Kaplan [3] familiarizedus with the class of close to convex functions and denoted it by C and proved that all
close to convex functions are univalent.
We introduced a new subclass

{f(Z) € A;

and we will denote it asS*(f,f,f ,A, B, 8).
Symbol < stands for subordination, which we describe as follows:

2A(f @) +fF@f' @] (1+4z\°
Ff (2 = (1 + Bz) z€E

Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate
to F(z) in E if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0 and |w(z)| < 1 such
that f(z) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form

W) = ) dyz,w(0) = 0,Iw()]| < 1. 18)
n=1
It is known that
ldi| < 1,1d,] < 1= |d % (1.9)

1. PRELIMINARY LEMMAS:

For0 < ¢ < 1, we write

c+z
w) = <1 + cz)
so that
1+4 8
(1 n Bﬁg;) =1+ (A-B)dciz+ (A—B)6(c; —B6cP)z* + — — — (2.1)

1. MAIN RESULTS

THEOREM 3.1: Let f(2) € S*(f.f.f , A, B, &), then

((A—B)S[5(5A—14B)] 8°(A—B)* 56(5A—14B)—9
l 72 g HfBs—ga— g G
5(A—B)  8(GA—14B)-9  8(5A—14B)+9
|a3—ua%|s| 2 82 ;i 8504 —B) <A< 85(A—B) (3.2)
5°(4—B)*  S(A-B)[6(5A—14B)] 8(5A—14B)+9
9 M7 72 Bz —gsa g ¥

The results are sharp.

Proof: By definition of f(z) € S, (4; B), we have
2[(f ()" + F@f' @] _ (1 + Aw(2)
f@f (2) 1+ Bw(z)
Expanding the series (3.4), we get
{1+ 6a, + (6a%, + 12a3)z* + -}
={1+[(A-B)&c; +3a,]z + [6(A— B)(c, — B6¢c?) + 3a,(A — B)Sc; + 4az+2a?,]z>
+---}(3.5)
Identifying terms in (3.5), we get

)
) ;w(z) €U (3.4)

(A—-B)§

a, = Tcl (36)
S(A—B)  62(A—B)(5A — 14B)
a3 =——o—C + 7 c?(3.7)
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From (3.6) and (3.7), we obtain

5(A—B) 52(A-B)((54—14B) (A-B)
az — paz = g ¢t > > g H cf(3.8)
Taking absolute value, (3.8) can be rewritten as
5(A—B) 52(A—B)|(54—14B) (A—B)
— na?l < _ 2
la - naj| < ———lc,| > — 5 H|leil” (39)
Using (1.9) in (3.9), we get
5(A—B) (A-B)|(A-2B) (A-B)
lag — ua3| < ——5— (1 = la) + o~ e H|lal?
5(A—B) (|6%(A—B)(5A—14B) &%(A — B)? 5(A—B) )
= 3 +{ 73 - 5 - g lc114(3.10)
. 9(54—14B)
Case Iy < T8GA-B)
(3.10) can be rewritten as
8(A—=B) (8(A—B)[6(5A—14B)—9] &2%(A — B)?
lag — pa3| < 3 +{ = - 5 pole?(3.11)
. [6(5A—14B)-9]
Subcase | (a):u < W
Using (1.9), (3.11) becomes
5(A—B)[6(5A —14B)] 6%(A—B)?
lag — pa3| < = - g H(312)
. [6(54—14B)—9]
Subcase | (b): u = W
We obtain from (3.11)
, _6(A—B)
laz — paj| < T(3-13)
. 9(54—14B)
Casell:u = w
Preceding as in case I, we get
S(A—B) (8%(A—B)> 8(A—B)[6(5A4—14B) + 9]
lag — pa3| < 3 +{ 5 W= 7 lc11%(3.14)
. §(5A—14B)+9
Subcase Il (a): u < TN
(3.14) takes the form
6(A—B)
lag — pa3| < — G159
Combining the results of subcases I(b) and 11(a), we can write
6(A-B 6(5A—-14B) -9 §(5A—-14B) +9
lag — pa3| < ( ); L9 ) ]ss ( ) (3.16)

8 5.8(A—B)

Ly 3 S6AT14R
Subcase Il (b): u = 85(A—B)

Preceding as in subcase | (a), we get

85(4 — B)

lag — uaj| <

Combining (3.12), (3.16) and (3.17), the theorem is established.
Extremal function for (3.1) and (3.3) is demarcated by

fi@) = Z{l +
Extremal function for (3.2) is defined by

§2(A—B)>  5%(A—B)(54 — 14B)
-

(»? —2q

- (3.17)

)

f2(2) = z(1 + z%)°

5(A—B)
3

_ (A-B)8[6(54—14B)]

Where p = —

and g

Corollary 3.2: Putting A = 1,B = —1 and § = 1in the theorem

, We get
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19 4 5
36 oUH= g
1 5 7
las —pas| <$ = if=<u<-;
4 4

4 19 7
Gt =35 r=7

These approximations were derived by G. Singh [6] and are outcomes for the class of univalent functions.
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