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Abstract 
In this paper, a robust adaptive neural network sliding mode controller for robotic manipulators with uncertain 

load is presented. The proposed approach remedies the previous problems met in practical implementation of 

classical sliding mode controllers. An adaptive General Regression Neural Network (GRNN) is used to 

calculate each element of the control gain vector, discontinuous part of control signal, in a classical sliding 

mode controller. The key feature of this scheme is that prior knowledge of the system uncertainties is not 

required to guarantee the stability. Also the chattering phenomenon is completely eliminated. To demonstrate 

the effectiveness of the proposed approach, a three link Scara robot is simulated in the presence of 

uncertainties. 
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I. INTRODUCTION 

The problem of motion control for robotic manipulators has attracted the attention of many researchers 

over the past decade. Two basic facts about the robot manipulator dynamics make the control problem a 

challenging one. First, the dynamics are described by a set of second order, nonlinear, and coupled differential 

equations. Second, the parameters of the model are partially unknown, due to errors in modeling, and varying 

payload.The typical structure of a robust controller is composed of a nominal part, similar to a feedback 

linearization or inverse control law, and additional terms aimed at dealing with uncertainties. Almost all kinds 

of robust control schemes, including the classical sliding mode control [2], have been proposed in the field of 

robotic control during the past decades. Classical sliding mode controller design provides a systematic approach 

to the problem of maintaining stability in the face of modeling imprecision and uncertainty. Although classical 

sliding mode control is a powerful scheme for nonlinear systems with uncertainty, such asrobotic manipulators 

[1], this control scheme has important drawbacks limiting its practical applicability, such as chattering and large 

control authority. Moreover, in order to guarantee the stability of the sliding mode control systems, the 

boundary of the uncertainty has to be estimated. Recently, much research works have been done to use soft-

computing methodologies such as artificial neural networks in order to improve the performance and remedy 

the problems met in practical implementation of sliding mode controllers [6].  

The use of neural network (NN) for calculation of the equivalent term of a sliding mode controller 

(SMC) is proposed in [7]. In [8] two NNs in parallel are used to realize the equivalent control and corrective 

control terms of an SMC. This scheme is based on the fact that if the NN learns the equivalent control, the 

corrective term goes to zero and any difference between them is reflected as a nonzero corrective term. In [9] 

the gains of an SMC are accepted as the weights of the NN and the weights are updated to minimize the defined 

cost function. The proposed adaptation scheme is MIT rule and there is no guarantee for convergence and 

stability.  

In this paper, the combination of neural network and sliding mode control are used for controlling the 

robotic manipulator with robust characteristics. The discontinuous part of the control signals in the classical 

sliding mode controllers are substituted by the output of General Regression Neural Network (GRNN), which 

are nonlinear and continuous, to eliminate the chattering phenomenon. 

The data available from measurements of an operating system is generally never enough for a 

backpropagation neural network [11]. Therefore, the use of a probabilistic neural network is especially 

advantageous due to its ability to converge to the underlying function of the data with only few training samples 

available. The additional knowledge needed to get the fit in a satisfying way is relatively small and can be done 

without additional input by the user. This makes GRNN a very useful tool to perform predictions and 

comparisons of system performance in practice. 
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1.Preliminaries 

The dynamic equation of an n-link rigid robotic manipulator system can be described by the following 

second-order nonlinear vector differential equation 

 

( ) ( , ) ( ) ( , ) ( )M q q C q q q G q F q q u t       (1) 

where , ,
n

q q q R  are joint position, velocity and acceleration vectors respectively, ( )
n n

M q R


 denotes the 

inertia matrix, ( , )
n n

C q q R


 expresses the coriolis and centrifugal torques, ( , )
n n

F q q R


 is the unstructured 

uncertainties of the dynamics including friction and other disturbances, ( ) nG q R is the gravity vector and 

1( ) nu t R   is the actuator torque vector acting on joints.It is assumed that a robotic manipulator, as described in 

(1), has some known and some unknown parts. These unknown parts include uncertainty in robot parameters 

due to the unknown load. Thus 
.

( ), ( , )M q C q q and ( )G q respectively, can be described as 

 

ˆ( ) ( ) ( )M q M q M q   

. . .
ˆ( , ) ( , ) ( , )C q q C q q C q q   

ˆ( ) ( ) ( )G q G q G q  (2) 

where ˆ ˆˆ ( ), ( , ), ( )M q C q q G q are the known parts or the estimated parameters and
.

( ), ( , ), ( )M q C q q G q   are 

the unknown parts. For the simplification of notations, from now on we avoid writing the variables in the 

parentheses of the above matrices and vectors. 

 

II. Classical sliding mode control (SMC) 

In the design of SMC for a robotic manipulator, the control objective is to drive the joint position q to the 

desired position dq . So by defining the tracking error to be in the following form: 

de q q                             (3) 

                                                                                                                                                                                                                                             

The siding surface can be written as  

s e e  (4) 

 

Where 1[ ,......., ,....., ]i ndiag     and i is a positive constant. The control objective can now be 

achieved by choosing the control input so that the sliding surface satisfies the following sufficient condition: 
2

1
| |

2

i
i i

ds
s

dt
  (5) 

where i  is a positive constant. Eq. (5) indicates that the energy of s should decay as long as s is not zero. Now 

to set up the control input u , we can define the reference states to be in the following forms: 

 

r dq q s q e       

r dq q s q e        (6) 

 

The control input u can now be chosen as  

ˆ sgn( )u u As K s   (7) 

Where ˆ ˆˆˆ
r ru M q Cq G   

11[ ,...., ,.... ]ii nnK diag k k k  is a diagonal positive definite matrix in which iik

s are positive constants and 1[ ,......, ,...... ]i nA diag a a a  is a diagonal positive definite matrix in which ia s 

are also positive constants.           Now, substituting (7) into (1) yields                                                                                                                                                       
.

( ) sgn( )M s C A s f K s        (8) 
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where 
.. .

r rf M q C q G F      . It has been proven [10] that by considering the Lyapunov function 

candidate as 

 

1
2

TV s Ms                                                               (9) 

And choosing K  such that 

 

| |ii i boundk f                                                           (10) 

 

where | |i boundf is the boundary of | |if , the overall system is asymptotically stable. Therefore, the decay of 

the energy of s , as long as 0s  , is guaranteed and the sufficient condition in (5) issatisfied. 

 

III. Adaptive sliding mode control using GRNN 

There are major disadvantages in designing the classical SMCs. First, because of the control actions which are 

discontinuous across s , there is chattering in a boundary of the surface s . Such high-frequency switching 

(chattering) might excite unmodeled dynamics and impose undue wear and tear on the actuators, so the control 

law would not be considered acceptable. Second, the prior knowledge of the boundary of uncertainty is required 

in compensators. If boundary is unknown, a large value has to be applied to the gain of discontinuous part of 

control signal and this large control gain may intensify the chattering on the sliding surface. 

In the following section, an adaptive SMC using soft computing, to avoid the aforementioned problems, has 

been proposed. General regression neural network (GRNN) is applied to construct the control gain. 

Since the chattering is caused by the constant value of K  and the discontinuous function sgn( )s , let the control 

gain sgn( )K s  be replaced by a gain K  which is constructed by GRNN, as described in the following sections. 

The new control input is then can be written as 

 

ˆu u As K                                                         (11) 

 

where 1[ ,...., ,..., ]T

i nK k k k  is an 1n  vector in which ik  is the output of the GRNN. 

 

IV. Compensation of uncertainties using General Regression Neural Network (GRNN) 

The GRNN paradigm has been proposed [11] as an alternative to the popular back-propagation training 

algorithm for feedforward neural networks. It is closely related to the probabilistic neural network [12]. 

Regression can be thought of as the least-mean-squares estimation of the value of a variable based on available 

data. The GRNN is based on the estimation of a probability density function from observed samples using 

Parzen window estimation [13]. It utilizes a probabilistic model between the independent vector random 

variable X with dimension D, and dependent scalar random variable Y. Assume that x and y are the measured 

values for X and Y variables, respectively. If ( , )f X Y represents the known joint continuous probability 

density function, and if ( , )f X Y is known, the expected value of Y given x (the regression of Y on x) can be 

estimated as 

( , )

[ | ]

( , )

Yf x Y dY

E Y x

f x Y dY














                            (12) 

based on p sample observations that are available, i.e., on the training set given by x and y, further assuming that 

the underlying density is continuous and the first partial derivatives of thefunction evaluated at any x are small, 

the probability estimator ˆ( , )f x y can be written as  

1/2 1

1 1ˆ( , )
(2 )D D

f x y
p  

 
2

2 2
1

( ) ( ) ( )
exp exp

2 2

Tp

i i i

i

x x x x y y

 

      
     
    

 (13) 
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where ix and iy are the ith training set data, and ix denotes the vector form of variable x. A physical 

interpretation of the probability estimate ˆ( , )f x y is that it assigns a sample probability of width  for sample

ix and iy , after that, the probability estimate is the sum of those sample probabilities.Substituting Equation (13) 

into Equation (12), the desired conditional mean of Y given x, ŷ , can be calculated as 

 

ˆ( ) [ | ]y x E Y x  

1 1

[ exp( )] / exp( )
n n

i i i

i i

y d d
 

                     (14) 

where id is given by the distance function of the input space. Now let us consider each element of the vector K

, namely ik , to be estimated by an individual GRNN. If the weighted average approach is used to construct the 

output of GRNN, then each ik  

Can be written as 

1

1

[ exp( )]

ˆ

exp( )

m

j j

j

i m

j

j

k d

k

d










(15) 

where jd , the distance function and here can be written as 

2

j

j

s s
d



  
   
   

                                            (16) 

In the above expression s  is the new input and js  is the stored input,  is the spread factor. In equation (15) 

jk is the stored output corresponding to js and ˆ
ik  implies the estimated value of true ik .In continuation, an 

adaptive law is designed to guarantee that ik can compensate the system uncertainties. According to the 

property of universal approximation, there exists 0i   such that 

ˆ| |i i if k                                                            (17) 

where ˆ
ik  is the output of the GRNN and i can be chosen as small as possible. A good estimation of ik

depends on the selection of spread factor . 
 

V. Simulation 

Simulation results shows that the proposed method working considerably well for different trajectories. In this 

section, the proposed adaptive SMC is used on a two-link scara robot, with parameter matrices given by  

 

11 12

21 22

11 12

21 22

1

2

( )

( , )

( )

M M
M q

M M

C C
C q q

C C

G
G q

G

 
  
 

 
  
 

 
  
 

  ,
11 12

21 22

( , )
C C

C q q
C C

 
  
 

  

 

Where 
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 

 
1

2

11 1 1 2

12 2 2 1 1 2 2

21 12

2

22 2 2

sin( )sin( ) cos( )cos( )

M l m m

M m l l q q q q

M M

M m l

 

 





 

11 2 2 1 2

12

21

22 11

0

0

c m l l q

c

c

c c









 

 

1 2 1 2

2 1 2

1.8cos( ) 0.64cos( )

0.64cos( )

G q q q g

G q q g

   

  
 

 

In which 1 2,q q  are the angle of joints 1,2; 1 2,m m  are the mass of the links 1,2; 1 2,l l  are the length of links 1,2 

; g is the gravity acceleration.The system parameters of the scara robot are selected: 

 

1 2

1 2

1.0 ; 0.8 ;

1.0 ; 0.8 ;

9.8

l m l m

m kg m kg

g

 

 



 

 

The desired trajectories for the twojoint to be tracked are given: 
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In which 1 2,q q  are the angle of joints 1,2; 1 2,m m  are the mass of the links 1,2; 1 2,l l  are the length of links 1,2 

; g is the gravity acceleration.The system parameters of the scara robot are selected: 

1 2

1 2

1.0 ; 0.8 ;

1.0 ; 0.8 ;

9.8

l m l m

m kg m kg
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 



 

The desired trajectories for the twojoint to be tracked are given: 
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(f) 

 
   (g)      (h) 

 

Fig 1.  (a) position of joint 1 (b) position of joint 2(c) position error of joint 1 and 2 (d) control input of joint 1 

(e) control input of joint 2 (f) control input of joint 1 by classical sliding mode control with sign function (h) 

control input of joint 1 by classical sliding mode control with saturation function (i) position error of joint 1 and 

2 by classical sliding mode control with saturation function. 

 

VI. Conclusion 
The simulation results are shown in Figs 1. In this paper an adaptive sliding mode controller using 

GRNN neural network is proposed for robotic manipulators. The discontinuous parts of the classical sliding 

mode controller are replaced by GRNN neural networks, which are nonlinear and continuous, to avoid the 

chattering. As shown in simulation the proposed GRNN neural network can compensate the system. 
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