
Efficient and Scalable Algorithms for Control, Filtering,
Learning, and Coordination in Large-Scale Models of

Graph-Based Markov Decision Processes: Applications to
Anonymous Influence, Cooperative Multi-Agent

Optimization, Disease Epidemics, Social Networks, and
Forest Wildfires

Junxia Deng
University of Southern California

California, USA

Ceil Hong. Zhang
Massachusetts Institute of Technology

Massachusetts, USA
zhanghongceil@pku.org.cn

International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 10 Issue 8 ǁAugust 2022 ǁPP. 322-482

ii

Disclaimer:
The content of the paper belongs to the original author and is only used

as a handout for the Advanced Intensive Learning course.

http://creativecommons.org/licenses/by-nc/3.0/us/

iii

Abstract

This thesis derives a series of algorithms to enable the use of a class of structured models, known

as graph-based Markov decision processes (GMDPs), for applications involving a collection of inter-

acting processes. Many large-scale dynamic processes of recent interest are described by GMDPs,

including disease epidemics, forest wildfires, robot swarms, and social networks. For the discrete

time and discrete space graph-based models we consider in this thesis, each vertex in the graph cor-

responds to a standard Markov decision process (MDP) and edges between vertices correspond to

the coupling interactions which influence the state transitions of the MDP. For example, in a forest

wildfire, each vertex corresponds to a tree and edges define the surrounding trees which influence

the probability of a tree catching on fire. Similarly, in a disease epidemic, each vertex refers to a

community and edges describe the surrounding communities which influence the probability of an

outbreak occurring based on their infection level. In addition, we consider a property common in

large-scale processes called “Anonymous Influence.” Simply stated, a GMDP contains Anonymous

Influence if the state transitions of the individual MDPs relies on the number of influencing MDPs

in particular states, and not the identity of these MDPs. A consequence of using GMDPs is that the

equivalent standard MDP representation typically has a significantly large state space, observation

space (for the filtering problem), and feasible action space (for the optimal control problem). There-

fore, a major objective of this thesis is to derive suitable algorithms that are efficient and scalable

for arbitrarily large models. Furthermore, we address the necessary aspects of using GMDPs as a

modeling framework: learning model parameters from time series data, optimally allocating a lim-

ited amount of control resources, producing state estimates online given uncertain measurements,

and interacting with a process modeled by a GMDP using a team of cooperative autonomous agents.

We begin by considering the problem of optimally allocating a limited amount of control resources

when the underlying model state is fully observable. We leverage approximate dynamic programming

methods based on linear programs to circumvent enumerating the state and action spaces, which

allows us to build a scalable framework for producing approximate value and state-action function

approximations. From these functions, a constrained policy can be derived which strictly enforces

a capacity constraint. We also propose a novel control framework based on bond percolation on a

lattice to more easily address potentially heterogeneous properties in GMDP models. For both of

iv

these approaches, we develop analysis techniques to evaluate the quality of our approximations and

to determine if the process is controllable. We evaluate our control techniques on simulations of

forest wildfires and disease epidemics, and show that they are effective on considerably large models

and outperform comparable methods.

Next, we relax our assumption of a fully observable state and consider the problem of producing

state estimates online given only noisy measurements. Here, we leverage techniques from variational

inference to derive an approximately optimal message passing scheme which is similar in spirit

to belief propagation methods, and prove that our approach optimizes the evidence lower bound.

We show that our filtering scheme is at least as accurate as other methods while requiring two

orders of magnitude less time to produce an estimate. We further validate the need for a fast and

accurate online filter by developing a certainty-equivalence framework to enable our control methods

in applications with state uncertainty. We show that this framework is able to achieve comparable

results to the case of a fully observable state with only a minimal increase in control effort.

We then turn to the problem of learning the necessary parameters of a GMDP using time

series data, and relax the assumption that the model parameters are specified a priori. We use

the Expectation-Maximization framework to derive a method that approximately optimizes the

likelihood of the data with favorable complexity for large GMDPs. We use publicly available data,

on the daily counts of Novel Coronavirus (COVID-19) in California by county and twitter interactions

on a topic, to train GMDP models and show that they better explain the observed data compared

to a completely independent process model assumption.

Lastly, we develop three agent-based frameworks based on a team of cooperative autonomous

aerial vehicles which we apply to the example of forest wildfires. We relax various assumptions

that we used in our control and state estimation methods. In the control problem, we no longer

assume that control actions can be applied arbitrarily in the forest at each time step. Instead, agents

must consider travel time and a limited view of the forest before deciding how to move to quickly

extinguish a wildfire as a team. In the filtering problem, we introduce severe partial observability

and communication constraints, and agents must coordinate meetings to share information and

enable effective coverage of a wildfire. We also pose a general multi-agent cooperative optimization

problem and discuss distributed techniques and conditions required to recover the optimal centralized

solution. We use this class of optimization problems to motivate a more general approach than prior

work to multi-agent coordination strategies.

All of our proposed algorithms have the feature of addressing efficiency and scalability to enable

the use of potentially very large GMDPs. Our methods will enable GMDPs to be used for arbitrarily

complex applications while still allowing for theoretical analysis and justification. Furthermore, while

there are still avenues to investigate, our methods provide the groundwork for continuing to relax

assumptions and address more general modeling cases. We believe our methods will spur further

interest in leveraging GMDPs to address natural phenomena.

v

vi

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Related Work . 3

1.2 Approach . 5

1.3 Applications . 7

1.4 Contributions . 8

1.5 Organization . 9

2 GMDP Model Formulation and Problem Description 12

2.1 Mathematical Preliminaries . 12

2.2 Graph Theory . 13

2.3 Optimization . 13

2.4 Markov Models . 14

2.4.1 Graph-based Markov Models . 15

2.4.2 Anonymous Influence . 17

2.5 Process Models . 18

2.5.1 Forest Wildfires . 18

2.5.2 Virus Epidemics . 20

2.5.3 Social Networks . 21

2.5.4 Model Complexity . 22

2.6 Model Abstractions . 22

3 Control Policies with Global Capacity Constraints 24

3.1 Introduction . 24

3.2 Related Work . 26

3.3 Constrained Value and State-Action Functions Via Approximate Linear Programming 27

viii

3.3.1 Approximate Constrained Value Functions 27

3.3.2 Approximate Constrained State-Action Functions 30

3.3.3 Deriving the Resulting Constrained Policy . 33

3.3.4 Exploiting Anonymity in Linear Programs . 34

3.4 Rule-based Policies and Analysis with Bond Percolation 34

3.4.1 Heterogeneous Bond Percolation . 35

3.4.2 Galton-Watson Branching Process Model . 37

3.4.3 Defining Control Policies and Stability Analysis 41

3.5 Simulation Experiments . 43

3.5.1 ACSAR Performance . 43

3.5.2 Percolation Framework Performance . 47

3.6 Summary . 49

4 Fast Online Filtering 52

4.1 Introduction . 52

4.2 Related Work . 54

4.3 Variational Message-Passing Filter Scheme . 55

4.3.1 Approximating the ELBO . 57

4.3.2 Message-passing Scheme . 59

4.3.3 Simplifying with Anonymous Influence . 61

4.3.4 Additional Measurement Model Derivation 63

4.4 Constrained Control Under Measurement Uncertainty 64

4.5 Simulation Experiments . 64

4.5.1 Filter Performance . 64

4.5.2 Closed-loop Filter and Controller Performance 66

4.6 Summary . 68

5 Learning Model Parameters with Historical Data 69

5.1 Introduction . 70

5.2 Related Work . 71

5.3 Model Learning Problem . 72

5.4 Approximate Expectation-Maximization Approach 73

5.5 Datasets and Results . 77

5.5.1 Performance Metrics . 77

5.5.2 Novel Coronavirus 2019 (COVID) in California 78

5.5.3 Tweets on a Topic . 80

5.5.4 Data Considerations . 82

5.6 Summary . 83

ix

6 Interacting with GMDPs using Teams of Robots 84

6.1 Distributed Deep Reinforcement Learning for Persistent Control 85

6.1.1 Related Work . 86

6.1.2 Agent Model . 86

6.1.3 Heuristic Approach . 89

6.1.4 Multi-Agent Deep Q Network . 92

6.1.5 Simulation and Hardware Experiments . 93

6.2 Spatial Scheduling of Informative Meetings for Persistent Coverage 96

6.2.1 Related Work . 97

6.2.2 Agent Model . 98

6.2.3 Decentralized Information Gathering Framework 100

6.2.4 Process Filter and Merging Beliefs . 100

6.2.5 Schedule Framework . 102

6.2.6 Individual and Joint Path Planning . 104

6.2.7 Simulation Experiments . 108

6.3 Consensus-based ADMM for Task Assignment . 109

6.3.1 Related Work . 110

6.3.2 Multi-robot Task Assignment . 111

6.3.3 General Cooperative Multi-robot Problems 113

6.3.4 Distributed Primal Problem Approach . 114

6.3.5 Distributed Dual Problem Approach . 117

6.3.6 Simulation Experiments . 120

6.4 Summary . 123

7 Conclusions and Future Directions 125

7.1 Current Feasibility and Technologies . 125

7.2 Summary . 126

7.3 Future Directions . 126

7.3.1 Parameterized Policies . 127

7.3.2 Graph-based POMDPs . 127

7.3.3 Structural Assumptions . 127

7.3.4 Additional Models . 128

7.3.5 Model Abstraction and Validation . 128

7.3.6 Hardware Experiments . 128

Bibliography 129

x

List of Tables

2.1 Linear-type tree transition probabilities for wildfire model. Blank entries are zero. . 19

2.2 Power-type tree transition probabilities for wildfire model. Blank entries are zero. . . 19

2.3 Urban area transition probabilities for wildfire model. Blank entries are zero. 20

2.4 Community transition probabilities for Ebola model. Blank entries are zero. 21

3.1 ACSAR results for different value and state-action function approximations. Data are

the median percent of remaining healthy trees over 100 simulations, with the subscript

and superscript denoting the first and third quartile, respectively. Without control,

the majority of the forest burns down. Our control approach is much more effective

and results in lower approximation error, compared to prior work. 45

3.2 Percolation results for resource limit C = 6 and 1, 000 simulations. The median

fraction of removed urban areas for the UST policy is 3.10%. 49

3.3 Percolation results for resource limit C = 10 and 1, 000 simulations. The median

fraction of removed urban areas for the UST policy is 0.40%. 50

4.1 Filter results for two different measurement accuracies pc in (4.22). Data are the

median simulation accuracy for 10 simulations, and the subscript and superscript

indicate the first and third quartiles, respectively. LBP improves with more iterations

but is slow while RAVI is accurate and fast enough to be used online. 66

4.2 Results for two filter methods and three choices of basis approximations. Data are the

median percent of remaining healthy trees over 100 simulations, with the subscript and

superscript denoting the first and third quartile, respectively. Without control, the

majority of the forest burns down. An accurate filter is required, as otherwise control

effort is wasted on trees that are believed to be on fire but are actually healthy or

burnt. Only our filtering method RAVI and our control approach ACSAR is successful

in preserving the majority of trees in the forest. 67

xi

6.1 MADQN simulation results for three experiments. Data are presented as “loss /

limited / win” percentages for 1,000 episodes. The forest is a square grid of 50 × 50

trees and fires are initialized in a square grid at the center. The shaded cell indicates

the configuration used for network training. When overwhelmed with trees on fire

(e.g. 10 agents, 10 × 10 fires) both methods fail to consistently suppress the fire.

Otherwise, MADQN scales better with more agents and preserves more healthy trees

compared to the heuristic. 95

6.2 Average number of iterations for convergence for the task assignment problem with

20 robots and 20 tasks over 50 trials of randomly generated costs. 120

xii

List of Figures

2.1 A forest wildfire modeled by a graph-based Markov decision process (GMDP), where

green are healthy trees, red are fires, and black are burnt areas. (left) A wildfire

burning down a forest of trees. (right) A wildfire threatening an urban region (light

brown) next to a forest. 18

2.2 A graph-based MDP is useful for describing disease epidemics. (left) A graph-based

model based on the administrative areas of Guinea, Liberia, and Sierra Leone de-

scribes the 2014 West Africa Ebola outbreak. (right) A graph-based model based on

the 58 counties of California, USA describes the 2020 Novel Coronavirus (COVID-19)

pandemic. (both) Gray lines indicate major transportation routes between communities. 20

3.1 Illustration of the boundary for the percolation framework. Example lattice state xt

for the wildfire process where green represents healthy trees, red are on fire, and black

are burnt. The orange line indicates the boundary Bt. The branching process model is

illustrated for nodes i and j where arrows indicate the possible growth of the process

in one and two generations, which is analogous to a prediction of one and two future

time steps. Other node labels contain the boundary node, generation number, and a

unique identifier, e.g., j:1,2 refers to the second node that node j could spread fire

to in one generation. One node has two labels due to the branching process model;

see Fig. 3.2. 38

3.2 Illustration of the Galton-Watson process for the percolation framework. Equivalent

branching process representation for boundary node j in Fig. 3.1. The node with

two labels in Fig. 3.1 is considered two unique nodes (here, j:2,3 and j:2,4) for the

branching model to avoid cycles in the graph. Note that p23 may not equal p24 due to

the different parent nodes as indicated by (3.12). Without control, d1
j = 1

2

∑2
k=1 p1k

and b1j = 2 for generation one and d2
j = 1

6

∑6
k=1 p2k and b2j = 3 for generation two. . 39

xiii

3.3 Comparison of policies from prior work and ACSAR. (both) Policies for a single time

step of a wildfire simulation. Green cells are healthy trees and black are burnt trees.

Fire color indicates control preference: white is low and dark red is high. (left) Policy

using basis from prior work which treats all fires equally. (right) Our policy which

prioritizes fires based on number of neighboring healthy trees. 46

3.4 Example of fitting parameters for the 2014 West Africa Ebola outbreak model. Cu-

mulative Ebola cases for Bomi in Liberia, normalized by population. Data (orange

circles) are used to fit an exponential model (green line) from which we derive the

model parameter αi. 47

3.5 Details for simulation experiments with the percolation framework. (both) Green

nodes are healthy trees, red are on fire, black are burnt, and light brown are healthy

urban areas. (left) Initial condition for simulations. (right) Example snapshot of the

UST policy where purple indicates removed urban areas. By removing urban areas,

the UST policy prevents other urban areas from catching on fire. 48

3.6 Parameter values for simulation experiments with the percolation framework. (left)

Values of αi for all nodes on the lattice. (right) Values of βi for all nodes on the

lattice. These parameter values correspond to a supercritical forest wildfire. 49

3.7 Percolation framework performance, presented as box and whisker plots over 1, 000

simulations with resource limit C = 6 (top) and C = 10 (bottom) for the different

policies. The whiskers represent the minimum and maximum and the box shows the

first quartile, mean, median, and third quartile. Only the UST policy is capable of

reliably preserving the urban areas as other policies show a large variance in their

performance. 51

4.1 (top) An example GMDP consisting of three vertices, each of which represents an

MDP, where arrows indicate the mutual influence between MDPs. (bottom) The

underlying graphical model of the example GMDP, where arrows indicate influence

between time steps. 56

4.2 Example filter results for a single model simulation. The simulation accuracy for a

filter is the median accuracy over the entire time series. Here, LBP is the same as

taking as the measurement as the estimate, as it overlays the measurement accuracy

in the plot. In contrast, RAVI is 9% better. 65

xiv

5.1 (left to right) Comparison of the objective values for the GMDP and nMDP model

learning algorithms, and the plots of the f coupling
i and f influence

i metrics, for the

COVID-19 data set. In the box plots, the orange line is the median, the green tri-

angle is the mean, and the caps refer to the minimum and maximum values. For

the coupling strength, the minimum is 0.00, the mean is 980.72, and the maximum

is 5666.00. For the influence strength, the minimum is 0.00, the mean is 2.35, and

the maximum is 10.94. The GMDP model assumption better explains the data by

explicitly including coupling interactions, as indicated by all of the metrics. 80

5.2 (left to right) Comparison of the objective values for the GMDP and nMDP model

learning algorithms, and the plots of the f coupling
i and f influence

i metrics, for the fake

news Twitter data set. While both methods achieve the same objective value (the

trajectories are overlaid in the plot), the coupling strength and influence strength

metrics indicate that the GMDP model better explains the correlations between dif-

ferent users’ behavior based on their posting activity. In the box plots, the orange

line is the median, the green triangle is the mean, and the caps refer to the minimum

and maximum values. For the coupling strength, the minimum is 0.00, the mean is

111.79, and the maximum is 3779.15. For the influence strength, the minimum is 0.00,

the mean is 0.16, and the maximum is 1.45. We note that it is difficult to extract

sentiment from tweets which limits the insights from the learned models. 83

6.1 (left) Example sensor data for an agent (blue circle): an image (here, h = w =

3) of tree states and the initial fire location qfire (red circle). In the image, color

indicates tree state: green is healthy, red is on fire, black is burnt. (right) Example

communication based on distance for three agents (red, green, and blue circles). Arrow

directions show the flow of information and line color indicates the broadcasting agent. 88

6.2 (left) Example direction vectors vτk,cen, vτk , and wτk for a given agent (gold circle). The

red circle denotes the fire ignition location qfire and the blue circle denotes the nearest

agent to the given agent. (right) In the heuristic, the agent considers left and right

actions (red and blue vectors) relative to an action uτk. 91

6.3 MADQN network architecture. The input is an agent’s feature set sτk (black rectan-

gle). Hidden layers are fully-connected with ReLU activations (blue rectangles). The

output is a vector containing a value for each action uτk (red rectangle). 93

6.4 Details for MADQN simulation experiments. (both) Red cells are trees on fire and

black cells are burnt trees. (left) Sample initial condition with random initial agent

positions (blue circles) and a 4×4 grid of trees on fire. Base station is shown as a gold

square. (right) Comparison of heuristic (blue) and MADQN (green) paths. Agent

number indicates initial position and ×’s are final positions. 93

xv

6.5 Sample distributions of fepisode using (left) heuristic and (right) MADQN for 100

initial fires, 50 agents, and unlimited control capacity. Values used for delineating the

three performance categories are shown by red and green lines. 96

6.6 Still frame taken from hardware experiments using MADQN which were conducted

in the robotarium. An overhead projector displays images to represent healthy, on

fire, and burnt trees. Mobile robots represent firefighting UAVs. 96

6.7 Illustration of persistent coverage of a forest wildfire using autonomous aerial vehicles.

The forest lattice is visualized as a grid of cells. Multiple agents (blue circles) are

tasked with monitoring an aggressive wildfire (red are fires, black are burnt, and green

are healthy trees). Agents schedule meetings (white ×’s) to periodically communicate

and coordinate their efforts. Communication only occurs in meetings. 98

6.8 For C = 5 agents, the schedule is S = {{1, 2}, {3, 4}} and S ′ = {{2, 3}, {4, 5}}. The

set {i, j} indicates agents i and j will meet at the same lattice location and meetings

between the same pair of agents re-occur every 2τ time steps. 102

6.9 Example of scheduling a next meeting. (left) The expected conditional entropy is

visualized as a heatmap. The orange and red agents are meeting (circles) and each

have another meeting to satisfy (orange and red triangles, respectively). (center) The

residual information after each agent adds their stored paths and meeting locations.

(right) The reachable meeting locations and their weights, computed by averaging the

highest weight paths by each agent. The chosen meeting location is denoted by the

white ×. 105

6.10 Example of joint path planning, based on Fig. 6.9. (left) Residual information

heatmap and next meeting location (white ×). (center) The red agent first plans

a path from its position to its next meeting (solid line), then from its next meeting

to its last meeting (dashed line). (right) Given the red agent’s path, the orange agent

plans its path. Each agent then stores the other agent’s nominal path. Note that the

Search heuristic produces backtracking paths. Paths are improved by re-planning

between meetings. 106

6.11 Simulation results for different wildfire scenarios, (left) ρ = 1 with T = 60 and (right)

ρ = 2 with T = 120. The “no communication” baseline is ineffective for all cases,

whereas the “team communication” baseline benefits from additional communication.

Our framework outperforms the no communication baseline and is comparable to the

team communication baseline for many cases. In general, more agents and longer

meeting intervals τ improve the framework performance, with diminishing returns as

τ increases. 109

xvi

6.12 (left) The ADMM-TA estimate converges to the Hungarian solution of the task as-

signment problem within 50 iterations for 50 robots and tasks. (right) Convergence

of the ADMM-TA solution to the centralized solution on different communication

graphs. The slowest rate of convergence is observed on the linear-chain graph. 121

6.13 (left) Comparison of the ADMM-TA method to other distributed methods for task

assignment on a fully-connected graph. The ADMM-TA method produces the optimal

solution after fewer iterations compared to the CBAA (sub-optimal) and market-

consensus methods. (right) Comparison of the ADMM-TA method to the distributed

Hungarian method on randomly-generated connected graphs. 123

6.14 The ADMM-TA method on a surveillance task with ten robots and two surveil-

lance stations. The ADMM-TA method produces the optimal cost at all assignment

episodes and the costs reach a limit cycle after equilibrium is attained. 124

xvii

Chapter 1

Introduction

Structured models with significant representational power have become the tool of choice for environ-

mental and relational modeling due to a wealth of available data. The ability to model large systems

as a collection of interacting subsystems has spurred the development of algorithms to translate data

sets into meaningful decision making strategies for a single autonomous agent as well as large teams

of cooperative autonomous agents. Nevertheless, the development of algorithmic and analysis frame-

works have lagged behind the direct application of structured models to robotics-related problems,

which demonstrate the benefits and value of using these type of models. Furthermore, it has be-

come apparent that a wide range of natural phenomena are well described by structured models,

from large-scale dynamic spatial processes such as forest wildfires and disease epidemics, to infor-

mation based processes such as social networks and computer viruses. Many of the connections

between application domains have only become apparent recently due to the increasing popularity

of data-driven modeling techniques.

The aim of this thesis is to address the lack of a complete suite of algorithms to enable the use

of a class of structured models with discrete time and a discrete state space known as graph-based

Markov decision processes (GMDPs). A GMDP consists of a collection of individual discrete time

and discrete space Markov decision processes (MDPs), which are the subsystems that make up the

larger overall system. A graph, consisting of a vertex set and an edge set, succinctly summarizes

the structure of the system by describing the relationships between the individual MDPs. A unique

identifier is assigned to each MDP, which forms the vertex set, and edges between vertices describe

the coupling interactions in the state transitions of the MDPs. For example, in a forest wildfire,

each tree is a MDP which is affected by neighboring trees. In a disease epidemic, each community

is an MDP affected by neighboring communities, and in a social network, each user is an MDP

influenced by other people in their network. Furthermore, we consider a common property in large

graph-based models called “Anonymous Influence.” A GMDP contains Anonymous Influence when

the MDP state dynamics rely on the number of influencing neighbors in particular states, and not

1

CHAPTER 1. INTRODUCTION 2

the identity of these neighbors. Not only does Anonymous Influence allow us to significantly improve

the computational complexity of our algorithms, it also allows us to propose and validate different

model structures for different applications.

Graph-based Markov models have been studied in a variety of problem settings. Given a reward

function and the assumption that the underlying state is fully observable, the problem is best

described as a GMDP. The task is to solve the optimal control problem and the solution is a

policy mapping states to actions. In the absence of control with only noisy measurements of the

state available, the model is best described as a graph-based hidden Markov model (GHMM). In

this case, the task is to solve the filtering problem by producing a posterior distribution over the

state space given a history of measurements. In addition, we also consider the problem of learning

model parameters from a time history of observations. Finally, considering a reward function and

control actions along with state uncertainty, the problem is best described as a graph-based partially

observable MDP (GPOMDP), for which the task is to determine a policy mapping the belief of the

state to actions. For convenience, we generally refer to the model as a GMDP and specifically note

the problem assumptions and objective when deriving our algorithms.

An equivalent, standard MDP description can be created from a given GMDP, where the state

dynamics is the product space of all of the individual MDPs. Typically, this description results in a

Markov model with significantly large state space, observation space (for the filtering problem), and

feasible action space (for the control problem). In addition, the model structure does not translate

to tractable exact solution methods that are analogous to traditional MDP methods. Therefore, we

turn to established optimization techniques in literature to develop approximate methods to address

different GMDP problems.

To more easily enable the use of GMDPs as a modeling framework, we develop the necessary

algorithms for the traditional Markov model problem formulations: learning model parameters, pro-

ducing constrained control policies, and estimating the underlying state given noisy measurements.

Our algorithms focus on efficiency and scalability to address the potentially large GMDPs with arbi-

trary structure. We note that considering control constraints and model uncertainty are essential for

modeling real phenomena. Without control constraints, the optimal unconstrained policy is often

straightforward to specify. For a forest wildfire, the optimal unconstrained policy is to provide fire

retardant to every tree at every time step, and in a disease epidemic, the optimal unconstrained

policy is to provide medical resources to every community at every time step. Therefore, the control

problem is only meaningful when a constraint is applied to the total control effort available, as we

consider in our control approaches in Chapter 3.

Model uncertainty shows up in two aspects in realistic processes. First, the underlying state

is not directly observable and instead only noisy measurements at each time step are available.

We address this problem in Chapter 4 and develop a fast and efficient online filter to produce

accurate state estimates. A fast online filter is critical in enabling the use of our control schemes

CHAPTER 1. INTRODUCTION 3

with measurement uncertainty, as well as enabling cooperative multi-agent teams to reason about

environmental uncertainty. Therefore, it is critical that an appropriate filtering method is developed

for the GMDP framework. Second, model parameters cannot be known exactly a prior but data can

be used to best fit a GMDP model. In Chapter 5, we develop a learning algorithm based on a time

history of observations for each MDP in the GMDP, thereby enabling us to directly learn models

from data sets.

All of our algorithms are based on established optimization techniques in literature. We for-

mulate problems as an optimization statement to discuss the sources of computational complexity

and intractably. This approach then enables us to consider different types of approximations and

the implications of such approximations, which are necessary as exact methods are tractable only

for trivial models. Furthermore, there is a significant amount of prior work on different optimiza-

tion techniques, their computational complexity, and their solution quality. Therefore, we directly

leverage this foundation to simplify the development of algorithms for GMDPs.

With a suite of effective algorithms for GMDPs in hand, we present frameworks based on coop-

erative multi-agent teams consisting of autonomous aerial vehicles in Chapter 6. Adding realistic

agent models in combination with an environmental model represented by a GMDP results in a

GPOMDP with additional control and measurement constraints. Due to the complexity of deter-

mining POMDP solutions, we turn to state-of-the-art techniques in multi-agent systems to derive

effective and scalable algorithms. While there are a variety of multi-agent methods proposed in

literature, many are formulated specifically for a given problem formulation. In contrast, we also

consider a more general formulation of cooperative multi-agent problems to propose decentralized

solution techniques. We use our frameworks to provide examples of how robotics applications can

leverage GMDPs as a modeling framework, and we believe they provide a guide for developing future

approaches involving autonomous agents.

It should be noted that the results presented in this thesis form an algorithmic basis to continue to

develop and improve algorithms for GMDPs. Despite the extensive literature on structured models

and Markov models, there is a noticeable gap in addressing models with an arbitrary coupling

structure. While we make major strides in addressing the necessary problems for GMDPs, there are

a number of clear avenues for future research, which we remark on at the end of this thesis. Next,

we summarize current methods in literature for structured Markov models, note their shortcomings

in regards to the models we consider in this thesis, and emphasize our contributions in relation to

the relevant prior work.

1.1 Related Work

The popularity of Markov modeling frameworks has naturally led to the formulation of structured

models with coupling interactions in the state dynamics [1, 2]. Some of the first approaches for

CHAPTER 1. INTRODUCTION 4

the control problem considered ideas of strong and weak coupling interactions [3, 4, 5], and exploit-

ing interaction strength to develop suitable methods. Building on these ideas, structured solution

methods were developed for models with large state spaces, not necessarily containing additional

structure, including feature-based dynamic programming [6], approximate value trees [7], and fac-

tored representations [8]. Similarly, loopy belief propagation [9] and generalized belief propagation

[10] were developed as structured approaches to the inference problem for models with large state

and measurement spaces. While models with structure were not necessarily part of the problem

formulation in these works, the solution methods provide insight into developing approaches that

specifically address model structure.

The introduction of Markov models with structure began with the factorial HMM [11], where

the authors considered a collection of individual HMMs coupled only through the measurement and

proposed model learning algorithms. Shortly after, other learning algorithms were developed for a

similar style of model called coupled HMMs (CHMMs) [12, 13]. In addition, the filtering problem for

FHMMs was considered [14], and the authors identified key challenges for inference in the FHMM

framework. The introduction of the FHMM spurred considerable interest in the control problem

with a fully observable state, which lead to the factorial MDP (FMDP) formulation. An early survey

paper [15] discussed various types of structure considered in Markov models and solution techniques,

specifically for decision making methods.

The first solution methods for FMDPs focused on approximate dynamic programming techniques,

using function projections [16, 17] and efficient linear programming with structured value function

approximations [17, 18]. Analysis techniques were also developed to evaluate the approximate quality

of the linear programming approach to approximate dynamic programming [19]. The same type of

approaches were also translated to the case of factored POMDPs [20, 21] to reduce the complexity

of producing an exact solution. Despite the improvements, the authors noted that the resulting

complexity was still a challenge in practice.

Modern methods have continued to improve upon the foundation developed for FHMMs and

FMDPs to consider more general models and to improve the solution methods. The GMDP was in-

troduced by Forsell et al. [22], and the linear programming approach with structured value functions

was derived for this more general model description. Approximate policy iteration methods were also

developed by the same authors [23]. Novel solution techniques, based on variational planning [24]

and junction graphs [25], have also been proposed to produce higher quality approximate solutions.

In addition, Viega et al. extend the factored value function approach to factored POMDPs [21] and

instead propose an approximate solution method which they show performs well in practice. For the

inference problem, few approaches have been proposed specifically for GHMMs, with the notable

exceptions a Gibbs sampling approach [26] and an auto-encoding variational inference approach [27].

However, neither of these approaches address the problem of online inference as measurements are

taken.

CHAPTER 1. INTRODUCTION 5

Finally, Robbel et al. consider an additional structural property called Anonymous Influence,

where the state dynamics are based on the number of variables in a particular state, and not the

identity of the variables [28]. The authors derive an efficient exact solution method based on linear

programming and show they are able to scale to larger models than previously considered. We also

make extensive use of this property in the work we present in this thesis. We note that the prior

work we have discussed has been applied to large models, on the order of 1050 total states and 1015

total actions. Nevertheless, we aim to use even larger models in our algorithms, with over 101000

total states. We draw upon the lessons learned and insights provided by prior work to address

significantly large GMDPs.

1.2 Approach

The mission of this thesis is to develop a complete set of algorithms to enable the use of GMDPs in

modeling realistic natural phenomena. We specifically are interested in the optimal control problem

with a capacity constraint, the online filtering problem, and the model learning problem for GMDPs.

Furthermore, we develop frameworks based on a cooperative team of autonomous aerial vehicles to

demonstrate robotics-based applications of GMDPs. We begin with the optimal control problem

with a capacity constraint for the case of a fully observable state in Chapter 3. We relax the

assumption of a fully observable state in Chapter 4 and develop a fast online filtering scheme, as

well as propose a certainty-equivalence framework to enable the use of our control frameworks. In

Chapter 5, we no longer consider the GMDP model parameters as specified a priori, and instead

learn the parameters from a time history of observations for each MDP in the GMDP. We then

propose two frameworks based on a cooperative team of autonomous aerial vehicles in Chapter 6 to

address the persistent control and coverage problems for a forest wildfire. We also propose a more

general problem formulation for cooperative team problems and develop decentralized optimization

techniques which can recover the optimal centralized solution. Our proposed algorithms are validated

on simulation experiments of significantly large GMDP models for forest wildfires, disease epidemics,

and social networks.

Our methods rely on established techniques and results from the fields of Markov models, statisti-

cal physics, optimization, and the control of dynamical systems. For the optimal control of GMDPs,

we assume that actions can be applied arbitrarily to individual MDPs at each time step, up to a

specified capacity constraint. For the filtering problem, we assume a sensor model which is able to

return a measurement for each MDP. Similarly, in the learning problem, we assume a time history of

data exists for each MDP that we wish to include in the GMDP. For our multi-agent frameworks, we

assume the existence of a suitable aerial vehicle platform which is equipped with sensors, processing

power, and weight carrying capacity to enable the use of our algorithms. First, we assume the ve-

hicles are equipped with downward facing cameras and high-frequency radios. For the cameras, we

CHAPTER 1. INTRODUCTION 6

assume that a perception pipeline converts images into a measurement, as we discuss in our filtering

and multi-agent algorithms. Second, we assume the vehicles can process the onboard sensors with

little to no latency and that the only computational bottleneck may be in our algorithms. We note

that we do not require high polling rates for the sensors and that we specifically develop lightweight

algorithms to minimize complications with deployment on an embedded computer. Third, we as-

sume the existence of a lower-level controller which can translate the discrete trajectories output by

our algorithms into suitable actuator commands. These assumptions can reasonably be implemented

on a sub-class of Unmanned Aerial Vehicles (UAVs), such as quadrotors or quadcopters.

The methods developed in this thesis are based on the following domains.

1. Markov models. We utilize key results for the control, filtering, and learning problems for

standard Markov models to develop our algorithms. In Chapter 3, we rely on bounds on value

and state-action functions to develop our approximate dynamic programming framework. In

Chapter 4, we make use of the recursive Bayesian filter in developing an appropriate online

filtering scheme. In Chapter 5, we utilize the standard methods in model learning for HMMs,

including the Expectation-Maximization framework and the Forward-Backward algorithm, to

develop our learning algorithm for GMDPs. Finally, in our persistent control framework in

Chapter 6, we make use of deep reinforcement learning techniques to derive a decentralized

control policy for the agents.

2. Statistical physics. We make use of bond percolation on an infinite square lattice to propose

an alternative framework for generating control policies in Chapter 3. We also use bond

percolation to analyze whether or not a given control policy will stabilize a process modeled

by a GMDP.

3. Optimization techniques. We formulate the majority of the problems in this thesis as opti-

mization statements, and make use of established techniques to develop methods for GMDPs.

We make use of existing linear program solvers in Chapter 3 for our approximate dynamic

programming framework. For our filtering approach in Chapter 4, we leverage existing approx-

imate techniques in the variational inference framework, such as the mean-field approximation.

We also make use of the evidence-based lower bound. For our frameworks in Chapter 6, we

utilize existing methods for the team orienteering problem in the persistent coverage problem.

We also make use of the Bellman-Ford algorithm to compute the longest path on a directed

acyclic graph. Lastly, we use consensus techniques and the alternating direction method of

multipliers framework to solve a more general class of cooperative team problems.

4. Nonlinear control. We leverage existing methods to control an aerial vehicle so that we

can implement our frameworks in Chapter 6. Specifically, we use an established 3D trajectory

and altitude controller for quadrotor vehicles. The quadrotors can be commanded to maintain

CHAPTER 1. INTRODUCTION 7

a constant altitude and move laterally to achieve the discrete motion model we use in our

algorithms.

1.3 Applications

Graph-based Markov decision processes (GMDPs) have a wide variety of applications across many

different domains which are described by a collection of interacting subsystems. Notably, structured

Markov models have already been used in recognition tasks, biomedical modeling, disease epidemics,

forest wildfires, music theory, social networks and user interactions, and freeway traffic models.

Typically, these applications are presented with a specific coupling structure that can be considered

a special case of the more general GMDP formulation we present in this thesis. Therefore, by

developing learning, control, and filtering algorithms, we can streamline the use of GMDPs in these

applications. For example, given the increasing amount of available data on real world phenomena,

certain aspects of disaster management and response could be automated. Imagine the outbreak of a

new disease. As data is collected on new cases, model parameters could be learned and updated, while

also simultaneously estimating the true extent of the outbreak. In addition, as medical resources

are developed and distributed, the best allocation to contain the outbreak could also be determined.

We illustrate this idea by using a disease epidemic model as one of several example applications in

this thesis.

One of the biggest challenges of data driven modeling approaches is being able to specify arbi-

trarily complex models, since it must be tractable to perform certain tasks for the model to be useful.

When modeling complex environmental processes, such as autonomous vehicles navigating unknown

environments, simplifying assumptions are introduced to render the problem tractable. Otherwise,

decision making strategies would require an infeasible amount of computation time to produce a

solution. We believe that the ability to model complex scenes and environments with GMDPs will

allow for more complex behavior and decision making strategies for autonomous agents navigating

the real world. Our control (Chapter 3), filtering (Chapter 4), and learning (Chapter 5) algorithms

provide a complete pipeline to allow an arbitrary level of complexity in modeling the spaces in which

autonomous agents will need to understand and navigate in the future, such as busy intersections

and crowded freeways.

Future work on autonomous robots will ultimately focus on coordinating large teams to more

effectively carry out difficult and dangerous tasks. This is abundantly clear in addressing forest

wildfires, which are expected to become more common, more dangerous, and more damaging, due

to contributing factors such as climate change. The frameworks we present in Chapter 6 provide a

glimpse into what multi-agent systems will be able to achieve in the future. Persistent surveillance

will allow first responders to better distribute resources and utilize their tools, such as improving

the priority of evacuation orders and evaluating impact to the local community. Eventually, we

CHAPTER 1. INTRODUCTION 8

expect that autonomous teams will also take over the persistent control problem as well, drastically

reducing the risk and danger to firefighters. Furthermore, these ideas can translate to other envi-

ronmental disasters as well, such as tracking oil spills and other hazardous material incidents. Our

optimization statement for cooperative team problems in Chapter 6 suggests a framework for gen-

erally approaching this type of problem using distributed optimization techniques without requiring

a specific model formulation.

1.4 Contributions

The main contributions of this thesis are summarized below and the following references represent

publications by the author.

1. Two frameworks for producing and analyzing approximately-optimal control poli-

cies which explicitly enforce a global capacity constraint. We first propose an ap-

proximate dynamic programming approach based on linear programming with an approxima-

tion quality metric. We apply this framework to simulations of forest wildfires and disease

epidemics and show that our method outperforms a comparable approximate dynamic pro-

gramming approach with limited control effort available [29]. We also propose a control and

analysis framework based on bond percolation on a infinite square lattice which more easily

allows for rule-based policies and heterogeneous model properties. Here, we show that this

framework also outperforms other approximate dynamic programming and percolation based

methods on simulations of a forest wildfire near an urban area [30].

2. An approximate online filtering scheme to produce state estimates. We leverage vari-

ational inference and the mean-field approximation to derive a scalable and efficient message-

passing algorithm to produce state estimates in real time. Our method is comparably accurate

to the recursive Bayesian filter and loopy belief propagation, which we adopt for the online

filtering problem, while requiring significantly less time [31].

3. A combined framework for using constrained control policies with measurement

uncertainty. We propose a certainty-equivalence framework to address the constrained con-

trol problem under measurement uncertainty. We combine our filtering approach with our

approximate dynamic programming control approach and show that only a minimal increase

in control effort is required to provide comparable results to the case of a fully observable state.

Furthermore, we show that a small increase in error in the state estimate can result in a to-

tally ineffective policy, which further validates our filtering approach and certainty-equivalence

framework. Our combined filter and controller can control GMDPs while other architectures

with no filter, or other filters, are not able to control the same GMDP [32].

CHAPTER 1. INTRODUCTION 9

4. A learning algorithm to determine model parameters from historical data. We relax

the previous assumption that the model parameters are always known a priori, and instead

learn the model parameters from data. We use the Expectation-Maximization approach to

develop a learning algorithm which approximately optimizes the log likelihood of the data and

which has favorable complexity for large GMDPs. We show that on two publicly available

data sets, our learned GMDPs better explain the observed data compared to a model with a

complete independence assumption [33].

5. Two frameworks for applying a multi-agent system to a process described by a

GMDP. We define a realistic autonomous aerial agent model and no longer assume that control

actions can be arbitrarily applied in the GMDP at each time step or that measurements of all

MDPs in the GMDP are available at each time step. First, we develop a framework to generate

a decentralized control policy for a cooperative team of autonomous aerial agents to contain

and extinguish a forest wildfire. In this framework, agents have limited control capacity, can

only observe a small part of the forest, and communicate a limited amount of information. We

show that we are able to produce an effective coordination scheme over a baseline heuristic,

using deep reinforcement learning [34]. We also consider the problem of a cooperative team

of autonomous aerial agents providing persistent surveillance of a forest wildfire. In this

framework, agents have limited view of the forest and can only communicate when very close to

other agents. We develop a novel scheduling scheme for agents to communicate and coordinate

their efforts which can be executed in a decentralized manner. We show that our framework

provides coverage comparable to the case when agents are always able to communicate and

outperforms the case when agents cannot communicate at all [35].

6. A framework for distributed optimization of general cooperative multi-agent prob-

lems. We expand on our previous frameworks by formulating a more general optimization

statement describing cooperative multi-agent problems. We leverage methods from consensus

and the alternating direction method of multipliers framework to develop distributed opti-

mization algorithms, and we discuss the conditions under which the agents can recover the

optimal centralized solution. We demonstrate our distributed algorithms on synthetic data and

on a persistent surveillance problem, and we show that our methods improve upon existing

distributed coordination methods [36].

1.5 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the theoretical and algorith-

mic background necessary for the remaining chapters. We present the notation used throughout this

thesis, review necessary definitions in graph theory, optimization, and Markov models, and define

CHAPTER 1. INTRODUCTION 10

the Graph-based Markov model. We also present the process models used as application domains

for demonstrating and evaluating our algorithms.

In Chapter 3, we present two control frameworks for producing a policy that explicitly satisfies

a control effort constraint under the assumption that the underlying state is fully observable. Our

first approach is based on approximate dynamic programming, and the result is a framework to

determine approximate value and state-action functions, from which a policy can be extracted.

We exploit Anonymous Influence and an additional model property, which we call “Symmetry,”

to improve the computational complexity of this approach. Our second approach leverages bond

percolation on an infinite lattice and branching processes to allow for rule-based policies, and is

more suited for addressing heterogeneous properties of GMDPs. For both approaches, we derive

analysis techniques to evaluate the approximation quality of the frameworks and to determine if

the control policy will stabilize a GMDP. We demonstrate the effectiveness of our frameworks on

simulation experiments of considerably large GMDPs, with over 101000 total states and over 1010

feasible actions.

In Chapter 4, we address the problem of producing state estimates online as noisy measurements

are taken, and relax the assumption that the underlying state is fully observable. Our approach is

based on mean-field approximations in the variational inference framework, and results in a message-

passing scheme similar in spirit to belief propagation methods. Again, we exploit Anonymous

Influence to improve the computational complexity of our filter. Our approach produces estimates

online that are at least as accurate as comparable methods while requiring two orders of magnitude

less time on simulation experiments of forest wildfires and disease epidemics. Furthermore, we

demonstrate the need for a fast online filter by proposing a certainty-equivalence approach for

addressing the constrained control problem under measurement uncertainty. We show that by using

our filter with the approximate dynamic programming control framework in Chapter 3, we can

achieve comparable results to the case of a fully observable state with a minimal increase in control

effort on simulation experiments of forest wildfires.

In Chapter 5, we relax the assumption that the model parameters are known a priori and con-

sider the problem of learning the parameters directly from a time history of observations for each

MDP in a GMDP. Our approach is based on the Expectation-Maximization optimization method

for maximizing the log likelihood of the data, and the result is an iterative method amenable to par-

allelization with favorable complexity for large GMDPs. Here we use Anonymous Influence to test

and evaluate differential structural assumptions in GMDP models. We use publicly available data

on the Novel Coronavirus (COVID-19) in California and on Twitter interactions to fit GMDPs and

show that they explain the data better than a model based on a complete independence assumption.

In Chapter 6, we first develop two frameworks for applying a cooperative team of autonomous

aerial vehicles to a forest wildfire modeled by a GMDP. We define realistic agent models, which

include motion and partial observability constraints. We develop a coordination framework for the

CHAPTER 1. INTRODUCTION 11

team to effectively suppress a wildfire which is based on deep reinforcement learning, and show

that it improves over a baseline heuristic. We then develop a framework for the team to effectively

coordinate in performing persistent coverage of a wildfire, when communication can only occur

when agents are very close together. For this problem, we develop a novel scheduling scheme

which can be executed in a decentralized way, and show that it outperforms a baseline in which no

communication is possible and a baseline in which the team is in constant communication. Finally, we

propose a more general formulation of cooperative multi-agent problems and develop decentralized

optimization techniques to recover the optimal centralized solution. We discuss the conditions under

which agents are able to recover the optimal solution with limited communication and demonstrate

our methods on synthetic data as well as a persistent surveillance problem.

In Chapter 7, we provide concluding remarks for the research we have presented in this thesis.

We summarize our contributions and remark on the capabilities our algorithms have provided over

existing prior work. Finally, we consider future lines of research based on this work as well as

potential new applications.

Chapter 2

GMDP Model Formulation and

Problem Description

In this chapter, we define the mathematical foundation of the work in this thesis. We begin with the

mathematical notation that will be referenced throughout this thesis. We then review established

definitions in graph theory, optimization, and Markov models. We formally define the graph-based

Markov model and additional structural assumptions. We conclude with a description of the process

models we use as applications to illustrate and benchmark our algorithms.

2.1 Mathematical Preliminaries

We begin with the notation used throughout this thesis. The d-dimensional Euclidean space is Rd

and the d-dimensional space of integers is Zd. The d-dimensional space of non-negative integers

is Zd≥0 and the d-dimensional space of strictly positive integers is Zd>0, where the inequalities are

applied element-wise. The `p norm is ‖·‖p and the Frobenius matrix norm is ‖·‖F . The Hadamard

product (element-wise product) of two matrices A and B is denoted by A ◦ B. The d-dimensional

identity matrix is Id and the d-dimensional vector of ones is 1d. For vectors and matrices, the

operators =, ≥, and ≤ are element-wise comparisons. We use ᵀ to refer to the transpose of a vector

or matrix.

We denote the indicator function I(·) which is one when the argument condition is met and is

zero otherwise. In general, lowercase variables (z) refer to a element of a vector space or a set, and

script variables (Z) represent sets. Superscripts are used to indicate variables at a given time step

t (zt, Zt). A collection of variables within a range of time steps is also indicated in the superscript,

e.g., z1:t = {z1, . . . , zt}. Subscripts are used to label variables (zti , Zti) and to indicate collections

of variables, ztA = {zti | i ∈ A}. When it is convenient to express a collection of variables as a

12

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 13

vector instead of a set, we use brackets to refer to elements of the vector, e.g., [ztA]i with ztA ∈ R|A|.
Similarly, we use [A]i,j to refer to element i, j of matrix A. Probability distributions over variables

are written p(zt), joint distributions are written p(zt, at), and conditional distributions are written

p(zt | at). Marginalization of sets of variables from a distribution are specified in the summation,

e.g.,
∑
ztA
p(ztA). Expectations taken under a distribution p are written Ep [·].

2.2 Graph Theory

Let G = (V, E) be a graph with vertex set V = {1, . . . , n} containing n vertices and edge set E ⊆ V×V.

A graph is called undirected if for any edge between two vertices e = (i, j) ∈ E then the reverse edge

exists as well, (j, i) ∈ E . Conversely, a graph is called directed if this condition is not met for all

edges in the edge set. An important quantity for graph-based Markov models and for our algorithms

is the notion of a neighbor set, which is defined as follows.

Definition 1 (Neighbor Set). The neighbor set N (S) : S ⊆ V → T ⊆ V is defined as,

N (S) =
⋃
i∈S
{j | (j, i) ∈ E}.

In the case that S = {i}, this is the typical neighbor set of vertex i. Furthermore, for directed

graphs G, the quantity |N ({i})| is the in-degree for vertex i. However, our notion of a neighbor set

also expresses the notion of neighbors of a set of vertices S ⊆ V. For simplicity, we let N ({i}) = N (i)

when referring to the neighbor set of vertex i.

We also make use of a specific class of graphs called directed acyclic graphs (DAGs). The directed

aspect refers to the fact that in a DAG, for any vertex i ∈ V, there is no sequence of directed edges

which forms a path that starts at vertex i and returns to vertex i. For a DAG, we are interested in

finding weighted paths of longest length starting from a given vertex, and we use the Bellman-Ford

algorithm to solve this problem.

2.3 Optimization

Many problems discussed in this thesis are formulated as optimization problems. Stating robotics

and decision making problems as optimization problems allows us to gain insight into the problem

structure, leverage existing analysis and solution techniques, and understand the effect of apply-

ing approximations and heuristics. The minimization and maximization problems that return the

optimal value of a scalar objective function J over the decision variable z ∈ Rd are denoted,

J?(z?) = minimize
z∈Rd

J(z) and J?(z?) = maximize
z∈Rd

J(z), (2.1)

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 14

respectively. The respective optimization problems that return the optimal decision variable are,

z? = arg min
z∈Rd

J(z) and z? = arg max
z∈Rd

J(z). (2.2)

We also review two important types of constrained optimization problems that we will make use of

frequently. A constrained optimization problem is generally written as,

minimize
z∈Rd

f0(z)

subject to fi(z) ≤ 0 ∀i ∈ {1, . . . , n},

where the scalar functions fi : Rd → R, i ∈ {0, 1, . . . , n} define the objective function and the

constraints on the decision variable. The first type of optimization problem we make use of is the

linear program, where the functions fi are linear functions of the decision variable. In this case, the

functions fi can be written as,

f0(z) = cᵀz,

fi(z) = Aiz − bi,

where c ∈ Rd, Ai ∈ Rn×d, and bi ∈ Rn parameterize the objective functions and constraints. We

take advantage of existing solvers, such as interior-point methods [37, 38], to solve linear programs

in our algorithms.

The second type of optimization problem we make use of is the quadratic program. In this case,

the functions fi can be written as,

f0(z) = zᵀQz + cᵀz,

fi(z) = Aiz − bi,

where Q ∈ Rd×d, c ∈ Rd, Ai ∈ Rn×d, and bi ∈ Rn parameterize the objective functions and con-

straints. For quadratic programs, we use existing solvers such as interior point or gradient-based

methods [39].

In general, the optimization problems we consider are nonlinear and nonconvex and we derive

tailored algorithms to solve these problems.

2.4 Markov Models

We review the standard discrete-time and discrete-space Markov model formulation, along with the

control and filtering problems for discrete Markov models [40]. We then describe the discrete-time

and discrete-space graph-based Markov model.

A discrete Markov model consists of a time-varying state xt which is drawn from a finite discrete

state space X and is defined at discrete time steps t ∈ Z>0. Transitions between states at any two

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 15

consecutive time steps are described by the time-homogeneous distribution,

p(xt | xt−1), (2.3)

with the property that
∑
xt p(x

t | xt−1) = 1 ∀xt−1 ∈ X . In addition, the transition distribution

has the Markov property, where only the state at t− 1 is required in order to define the transition

probabilities.

The discrete Markov decision process (MDP) introduces a control action at−1 which influences

state transitions,

p(xt | xt−1, at−1), (2.4)

and the objective is to find a policy at = π(xt) which maximizes the infinite-horizon discounted

reward,

J = Ep

[∞∑
t=1

γt−1R(xt, π(xt), xt+1) | x1

]
, (2.5)

where the expectation is conditioned on the initial state x1, γ is the discount factor, and the reward

function R specifies the reward for taking actions and being in different states. Furthermore, we

specifically consider models in which the action is discrete and takes on one of two values, at ∈ A =

{0, 1}. Intuitively, this corresponds to choosing whether or not to apply control at a given time t.

The discrete hidden Markov model (HMM) model considers the case where the state cannot be

directly observed and instead only measurements of the hidden state are available. In this thesis,

we consider models where the observation yt ∈ Y is drawn from a discrete set (e.g., Y = X) and

where the observation lives in a continuous space (e.g., Y = Rd). For both cases, a measurement

distribution is introduced,

p(yt | xt), (2.6)

which describes the likelihood of observations given the hidden state. For the online filtering problem,

the objective is to produce the posterior distribution p(xt | y1, . . . , yt) at each time step t. Bayes’

rule can be used to derive the optimal filter which is a recursive relationship,

p(xt | y1:t) ∝ p(yt | xt)
∑
xt−1

p(xt | xt−1)p(xt−1 | y1:t−1), (2.7)

where we have used the shorthand y1:t = {y1, . . . , yt} to refer to the history of measurements. The

filter is initialized with a prior at the initial time step, p(x1).

2.4.1 Graph-based Markov Models

We now describe the main aspects of the graph-based Markov model [26]. The model includes a

graph G = (V, E) with vertex set V = {1, . . . , n} and edge set E ⊆ V × V. Each vertex i ∈ V

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 16

corresponds to a standard Markov model with latent state xti ∈ Xi, action ati ∈ Ai = {0, 1}, and

measurement yti ∈ Yi. An important feature of graph-based Markov models is the idea that the

state dynamics of model i are influenced by its neighbors,

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i). (2.8)

In other words, the probability of transitioning from a state xt−1
i to a state xti for a Markov model

in the graph-based Markov model only depends on the previous state xt−1
i , the previous state of its

neighbors xtj ∈ N (i) ⊆ V in the graph, and the action ati.

It is possible form a standard Markov model description, also called an “aggregate” model de-

scription, which combines all Markov models in the graph into a single set of model parameters.

The aggregate state xt is defined by the combination of all individual models, xt ∈ X =
∏n
i=1 Xi.

Likewise, the action space and measurement spaces are similarly defined, at ∈ A = {0, 1}n and

yt ∈ Y =
∏n
i=1 Yi, respectively. The state dynamics for the aggregate state xt are then defined as,

p(xt | xt−1, at−1) = η

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i), (2.9)

where η is a normalization factor that ensures
∑
xt p(x

t | xt−1, at−1) = 1 ∀xt−1 ∈ X , at−1 ∈ A. The

measurement likelihood for the aggregate state is described by the distribution,

p(yt | xt) =

n∏
i=1

pi(y
t
i | xti). (2.10)

We note that this likelihood model can be extended to a more general case, with pi(y
t
i | xti, xtM(i))

and M(i) ⊆ V. We remark where this extension is possible when deriving our algorithms.

We now describe the control and filtering problems for this class of structured Markov models.

In a graph-based MDP (GMDP), the reward function is additively composed of individual functions

ri which are associated with each MDP i,

R(xt, at, xt+1) =

n∑
i=1

ri(x
t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)). (2.11)

Each MDP reward function is defined over a subset of variables, O(i) ⊆ V ∀i ∈ V, and typically

|O(i)| � |V|. The objective is to find a control policy at = π(xt) to maximize the infinite-horizon

discounted reward,

J = Ep
[∞∑
t=1

γt−1R(xt, π(xt), xt+1) | x1
]
,

where the expectation is conditioned on the initial state x1 and γ is the discount factor. A capacity

constraint is enforced on the action at = π(xt), and γ is the discount factor. In particular, we are

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 17

interested in problems where a global capacity constraint is enforced on the action at, where the

feasible action set is,

Ac = {at ∈ A |
n∑
i=1

ati ≤ C}, (2.12)

and C ∈ Z≥0 is the maximum allowed capacity.

For the graph-based HMM (GHMM), there is no control action and the state is not directly

observable. As in the case of the standard HMM model, the objective of the online filtering problem

is to produce the posterior distribution p(xt | y1:t) at each time step t, where we again use the

shorthand y1:t for the history of measurements. Applying the structure in the state dynamics and

measurement likelihood for graph-based Markov models leads to the recursive Bayesian filter,

p(xt | y1:t) ∝
(n∏
i=1

pi(y
t
i | xti)

)∑
xt−1

p(xt−1 | y1:t−1)
(n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i)

)
, (2.13)

which is initialized by a prior at the initial time, p(x1).

Finally, we also describe the combined problem of optimizing the infinite-horizon discounted

reward when the underlying state cannot be directly observed. In this case, the model is best

described as a graph-based partially observable Markov decision process (GPOMDP). The infinite-

horizon discounted reward is now conditioned on an initial state and the history of measurements,

J = Ep
[∞∑
t=1

γt−1R(xt, at, xt+1) | x1, y2:t
]
. (2.14)

An exact solution for a GPOMDP is mapping from each possible belief over states to the optimal

action, at = π(p(xt | y1:t)).

2.4.2 Anonymous Influence

We describe the main structural assumption for GMDPs that we make use of throughout the work

in this thesis. We consider the case where (2.8) is based on the number of neighbors in particular

states rather than the identity of these neighbors. This property is called “Anonymous Influence”

and we summarize the relevant ideas [41, 28].

For a set of n discrete variables xi ∈ Xi = {0, 1, . . . , D ∈ Z≥0}, the count aggregator (CA) is a

vector z ∈ ZD≥0 where each element describes the number of variables taking on a particular value,

[z]j =
∑n
i=1 I(xi = j) and j ∈ {0, 1, . . . , D}. The CA is therefore the mapping

∏n
i=1 Xi → ZD≥0.

A mixed-mode function (MMF) is a real-valued function that takes as input a CA and other

variables not represented by CAs. Mixed-mode functions are important in graph-based models as

they allow us to drastically reduce the number of parameters required to represent the model. As a

result, many of our algorithms are significantly more computationally efficient and are able to scale

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 18

Figure 2.1: A forest wildfire modeled by a graph-based Markov decision process (GMDP), where
green are healthy trees, red are fires, and black are burnt areas. (left) A wildfire burning down a
forest of trees. (right) A wildfire threatening an urban region (light brown) next to a forest.

to models with large state and action spaces. A MMF can be described as the mapping ZD≥0×S → R,

where we generically use S to represent the space of other variables not represented by a CA.

For a GMDP where all MDPs have the same discrete domain xti ∈ {0, 1, . . . , D}, the state

dynamics (2.8) for each MDP requires specifying (at most) (D + 1)|N (i)|+2 values. If a CA zt−1
i is

used to represent the influence of other MDPs, then (2.8) can be represented by a MMF,

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i) = pi(x

t
i | xt−1

i , zt−1
i , at−1

i). (2.15)

Therefore,

(D + 1)2 ·
(|N (i)|+D
|N (i)|

)
=

(D + 1)2

D!

D∏
j=1

|N (i)|+ j (2.16)

values (at most) are required using MMFs, where
(
n
k

)
is the binomial coefficient. This representation

is a potentially significant reduction in parameters.

2.5 Process Models

We provide details on the three different example applications which we use in this thesis, and

discuss the resulting model complexity as well.

2.5.1 Forest Wildfires

The forest is modeled as a finite 2D lattice of dimensions L ×W with n = LW total nodes; see

Fig. 2.1. Each node i ∈ {1, . . . , n} on the lattice represents a tree and the tree state xti takes one

of three values, Xi = {H,F,B} = {healthy, on fire,burnt}. The position of node i ∈ {1, . . . , n} on

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 19

Table 2.1: Linear-type tree transition probabilities for wildfire model. Blank entries are zero.

xt+1
i

H F B

xti

H 1− αif ti αif
t
i

F βi −∆βia
t
i 1− βi + ∆βia

t
i

B 1

Table 2.2: Power-type tree transition probabilities for wildfire model. Blank entries are zero.

xt+1
i

H F B

xti

H 1− αf
t
i
i α

fti
i

F βi −∆βia
t
i 1− βi + ∆βia

t
i

B 1

the lattice is given by qi ∈ Q = Z2 ∩ {[1, L]× [1,W]}. An undirected graph is used to represent the

trees and influence between trees, with the vertex set V = {1, . . . , n}. Edges exist between trees if

they are neighbors on the lattice. An important quantities in this model is,

number of neighbors which are on fire: f ti =
∑

j∈N (i)

I(xtj = F),

which influences the state dynamics of the trees. We consider two different models, which are

summarized in Tables 2.1 and 2.2. A tree that is healthy transitions to on fire only if at least one

tree in its neighbor set is on fire where αi describes the likelihood of fire spreading from a tree on

fire to a healthy tree. A tree on fire will either remain on fire or transition to burnt in a single time

step. The parameters βi and ∆βi describe the average number of time steps a fire will persist and

the effectiveness of control actions, respectively. Control actions are binary and reflect the choice of

whether or not to apply fire retardant on a tree, ati = {0, 1}. Finally, a tree that is burnt will remain

burnt for all time. The difference between the two dynamics models for trees is how the number

of neighbors on fire influences the transition of a tree from healthy to on fire. It is easier to ensure

the state dynamics satisfy the Markov model properties for the power-type dependence, but on the

other hand, the linear-type dependence is simpler to develop approximate dynamic programming

techniques. We also note that the parameters αi, βi, and ∆βi can be varied across the lattice to

produce a wildfire that spreads at different rates for different directions on the lattice.

We consider heterogeneous forests as well, where some nodes on the lattice correspond to urban

areas and other nodes correspond to trees. For urban areas, the state xti takes on one of four values,

Xi = {H,F,B,R} = {healthy, on fire,burnt, removed}. The dynamics for an urban area are similar

to the tree dynamics and the values αi and βi parameterize the transition probabilities; the main

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 20

Table 2.3: Urban area transition probabilities for wildfire model. Blank entries are zero.

xt+1
i

H F B R

xti

H (1− ati)α
fti
i (1− ati)(1− α

fti
i) ati

F βi −∆βia
t
i 1− βi + ∆βia

t
i

B 1

R 1

Figure 2.2: A graph-based MDP is useful for describing disease epidemics. (left) A graph-based
model based on the administrative areas of Guinea, Liberia, and Sierra Leone describes the 2014
West Africa Ebola outbreak. (right) A graph-based model based on the 58 counties of California,
USA describes the 2020 Novel Coronavirus (COVID-19) pandemic. (both) Gray lines indicate major
transportation routes between communities.

difference is the control of healthy urban areas. Treating a healthy urban area removes it from the

lattice; it is no longer capable of catching on fire or spreading fire to other trees or urban areas.

This represents a controlled burn or structure removal that firefighters use to limit the spread of a

wildfire. In addition, treating an urban area on fire increases the likelihood it burns out. Table 2.3

summarizes the dynamics of urban areas.

2.5.2 Virus Epidemics

We introduce a graph-based model to describe three West African countries that were affected by

the 2014 Ebola outbreak, see Fig. 2.2. We use an undirected graph G = (V, E) where each ver-

tex i ∈ V corresponds to a different administrative area within Guinea, Sierra Leone, and Liberia.

Edges between administrative areas indicate major transportation routes. We refer to each ad-

ministrative area as a community, and each community has one of three values, Xi = {S,E,R} =

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 21

Table 2.4: Community transition probabilities for Ebola model. Blank entries are zero.

xt+1
i

S E R

xti

S 1− αif ti αif
t
i

E 1−∆βia
t
i ∆βia

t
i

R 1

{susceptible, infected, recovered}. For this model, an important neighbor-based quantity is,

number of neighbors which are infected: f ti =
∑

j∈N (i)

I(xtj = E).

Table 2.4 summarizes the state dynamics for each community. Similar to the wildfire model, a

healthy community will only transition to infected if there is at least one neighbor which is infected.

A key difference is that communities will remain in the infected state unless control is applied, in

which case the community may remain infected or transition to recovered. A recovered community

will remain recovered for all time. The choice of control action at each time step, ati ∈ {0, 1},
corresponds to distributing medical resources in order to limit the spread of the virus.

We also consider a graph-based model to describe the spread of the Novel Coronavirus (COVID-

19) in California, USA in 2020, which is used in our model fitting algorithm. An undirected graph

is used, where each vertex i ∈ V corresponds to a county in California, of which there are 58

total. Edges between counties indicate major transportation connections; see Fig. 2.2. The state

of each county xti has one of four values, Xi = {1, 2, 3, 4}, which is an Alert Level corresponding to

the current level of risk and number of cases. The state dynamics are influenced by the following

neighbor-based quantity,

number of neighbors above Alert Level 2: f ti =
∑

j∈N (i)

I(xtj ∈ {3, 4}). (2.17)

For a given county i, the quantity f ti can take on |N (i)|+1 values, f ti ∈ {0, 1, . . . , |N (i)|}. Therefore,

the county dynamics can be represented by a transition matrix Λi ∈ R4(|N (i)|+1)×4, where each row

must sum to one. We use publicly available health data in order to learn the state dynamics and

measurement likelihood parameters. More details are provided in Chapter 5.

2.5.3 Social Networks

We also consider a social network model for our model fitting algorithm, which is based on Twitter

interactions. An undirected graph G = (V, E) is used to represent different users and connections

between users. Each vertex i ∈ V corresponds to a unique user. An edge exists between user j to

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 22

user i if user i interacts with user j, e.g., through mentioning or retweeting user j. The state of each

user xti has one of five values,

Xi = {−−,−, ◦,+,++} = {negative, leaning negative,neutral, leaning positive,positive},

which corresponds to the user’s opinion on a given topic. For this model, we consider the following

neighbor-related quantity,

number of neighbors which are not neutral on topic: f ti =
∑

j∈N (i)

I(xtj 6= ◦). (2.18)

For each user i, the quantity f ti can take on |N (i)|+ 1 values, f ti ∈ {0, 1, . . . , |N (i)|}. The dynamics

for each user can then be represented by a transition matrix Λi ∈ R3(|N (i)|+1)×3, where each row

must sum to one. We collect publicly available tweets on a single topic in order to learn the state

dynamics and measurement likelihood parameters. More details are provided in Chapter 5.

2.5.4 Model Complexity

We illustrate the sources of complexity in using GMDPs as a modeling framework by discussing

the forest wildfire model we introduced with examples values. First, the number of possible forest

configurations is astronomical — a forest of N trees has 3N possible configurations. A 100 tree

forest has more states than there are grains of sand on Earth, and a 250 tree forest has more states

than atoms in the universe [42]. For comparison, there are approximately 26,000 trees in New York’s

Central Park, which is a relatively small sized forest. Second, in the control problem, if we impose

a limit of C total trees which can be treated at each time step, there are
(
N
C

)
feasible actions. For

the 250 tree forest, a capacity of C = 5 results in 109 feasible actions. Third, in the online filtering

problem, if the measurement space for each tree is the same as the state space yti ∈ Yi = Xi, then

the are also an astronomical number of possible observation configurations to consider.

Finally, when we consider applying multi-agent teams to a process modeled by a GMDP in Chap-

ter 6, we introduce an agent model with motion and sensing constraints. As a result, a GPOMDP is

the appropriate model description and it is difficult to succinctly describe the additional complexity

incurred by adding the agent model. These tractability issues motivate our approximate techniques

which we develop throughout this thesis.

2.6 Model Abstractions

The GMDP modeling framework has significant representational power, by allowing for an arbi-

trary level of abstraction when defining the individual subsystems to form the overall process. An

important question for a given GMDP is whether or not the chosen level of abstraction is suitable

CHAPTER 2. GMDP MODEL FORMULATION AND PROBLEM DESCRIPTION 23

for describing a particular physical process, i.e., whether or not the model is too high-level or too

detailed to draw insight and conclusions. This question has long been a staple of modeling and anal-

ysis in classical engineering problems which typically involve solving systems of partial differential

equations, e.g., finite element analysis [43, 44]. For the case of probabilistic models, and in particu-

lar discrete Markov models, analysis and verification methods are typically developed for a specific

problem or data set. For the example of forest wildfires, Markov models have been developed with

assumptions and parameters motivated by insight and analysis from deterministic models [45, 46].

In particular, the FARSITE model [47] is a well-known deterministic model of forest fire growth and

spread which has served as the basis for probabilistic models. For information-theoretic processes,

such as social networks, metrics have been generated based on standard statistical methods for model

verification [48]. While methods have been developed for verifying Markov models (e.g., see [49] for

a survey), verifying the influence structure of a coupled Markov model has received comparatively

less attention. It is clear that this type of analysis will also be essential in order to fully realize the

benefits of the GMDP modeling framework, and in this thesis we provide the initial steps to build

these analysis tools. In Chapter 5, we develop metrics to evaluate the quality of a GMDP (and

therefore the chosen level of abstraction) and in Chapter 7, we discuss future directions to expand

our analysis.

Chapter 3

Control Policies with Global

Capacity Constraints

In this chapter, we propose two approaches to generate control policies which explicitly satisfy a

global capacity constraint, given that the underlying process state is fully observable. The first

approach is based on standard Markov decision process solution techniques, where approximate

dynamic programming is used to compute a value or state-action function, from which a policy can

then be extracted. The second approach adopts ideas from statistical physics to frame the control

problem as percolation on a lattice. For each approach, we derive analysis techniques to evaluate

the approximation quality. We demonstrate through simulations of forest wildfires and the 2014

West Africa Ebola outbreak that our methods are effective compared to state-of-the-art approaches.

Furthermore, our methods are computationally efficient and are able to scale to models with much

larger state spaces than currently considered in relevant literature. The material in this chapter

appears in publications [29, 30].

3.1 Introduction

In this chapter, we consider controlling processes that are modeled by a fully-observable discrete

time and discrete space graph-based Markov decision problem (GMDP) which we introduced in

Chapter 2.4.1. This class of models is well-suited to describing the control of large-scale spreading

processes, such as forest wildfires, disease epidemics, computer viruses, and social networks [50, 51,

52, 53, 54]. We specifically consider controlling GMDPs with a global control capacity constraint

as capacity constraints are crucial in modeling the control of spatial processes, such as wildfires and

disease epidemics. For example, the optimal unconstrained policy for fighting a wildfire is to apply

fire retardant to every tree at every time. Similarly, the optimal unconstrained policy for a disease

24

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 25

epidemic is to treat every person with medicine at every time. Hence, these problems are only

rendered meaningful if a constraint is applied to the total control effort available, as we consider in

this chapter. In addition, the modeling of spreading processes naturally leads to GMDPs with large

state spaces and large constrained action spaces. As a result, standard solution techniques cannot

be directly applied as they scale poorly with these quantities; we review relevant prior work in the

following section.

We develop two approaches in order to address large GMDPs. The first approach is formulated

as a set of linear programs (LPs) based on the approximate linear programming method for solving

MDPs. We provide one algorithm for value functions and one algorithm for state-action functions.

Both algorithms generate approximations by solving for the weights of a factored basis representation

and we provide sub-optimality bounds for each algorithm. This approach is most appropriate for

GMDPs with a property common in large-scale spatial processes called “Anonymous Influence.”

Simply state, a GMDP has Anonymous Influence if the state dynamics of the MDPs rely on the

number of neighbor MDPs in particular states and not the identity of these neighbors. Furthermore,

we reduce the computational complexity of this approach by re-using LP solutions when possible, a

property we call “Symmetry.” We also provide a method for deriving a policy, from either a value

function or a state-action function, which explicitly satisfies a global capacity constraint.

The second approach is based on using the Galton-Watson branching process to forecast the

process growth over several time steps. Using this approximation, constrained rule-based policies

can be generated which prioritize different nodes in the graph to achieve multiple control objectives.

We also draw connections to bond percolation from statistical physics to analyze the process stability.

In contrast to our LP approach, this approach can more easily handle heterogeneous properties of

GMDPs, which we consider in three aspects. First, the process may spread at different rates for

different nodes in the graph. Second, each node may have a unique discrete space and discrete time

Markov model describing its state evolution. Third, nodes may have different priorities for control.

For both of our approaches, we use simulations of large GMDPs to illustrate the effectiveness

of our control approaches, including controlling a forest wildfire (101192 states) and a forest wildfire

near an urban area (101255 states) with limited fire retardant, and controlling an Ebola outbreak

(1029 states) with limited medical resources. The Ebola model is derived from data on the 2014

West Africa Ebola outbreak [55].

The remainder of this chapter is organized as follows. We review related work in Section 3.2. We

derive our approximate linear programming approach in Section 3.3 and we drive our percolation-

based approach in Section 3.4. We present simulation results comparing our approaches and demon-

strating their effectiveness relative to prior work in Section 3.5. Concluding remarks for this chapter

are provided in Section 3.6.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 26

3.2 Related Work

As we discussed in Chapter 2.4.1, a standard MDP formulation can be created from a GMDP descrip-

tion. However, traditional MDP descriptions are inappropriate for structured model descriptions as

the state and action spaces of the aggregate MDP description typically grow exponentially in the

number of constituent MDPs. The Factored MDP (FMDP) [8] and Graph-based MDP (GMDP)

[22] frameworks have been formulated to compactly represent structured MDPs. Nevertheless, the

compact representation does not generally translate to tractable exact solution methods that are

analogous to traditional MDP methods [16]. As a result, approximate solution techniques have been

proposed.

Our first approach leverages approximate LPs (ALPs) in this chapter. ALP methods circumvent

the explicit enumeration of the state space by using a basis function approximation of the value

function or the Q-function. Guestrin et al. [17] used variable elimination (VE) to efficiently generate

constraints which results in an exponential dependence on the tree-width instead of the full state

space. The method proposed by Forsell et al. [22] uses a specific basis function form and requires

solving a linear program for each constituent MDP instead of for the aggregate MDP linear program.

Chen et al. [25] proposed a VE approach that solves linear programs for the constituent MDPs and

then enforces consistency constraints. Robbel et al. [28] developed a VE approach for systems where

only the number of variables in a state is important, not the identity of the variables. This property,

called Anonymous Influence, is also exploited in our methods.

With the exception of the approach by Forsell et al. [22], prior work considers all MDPs in the

graph to compute a policy. In contrast, we consider GMDPs where each MDP belongs to one of a

small number of equivalence classes, a property which we call Symmetry. Our solution technique

only requires solving an LP once for each class with the resulting policy then applied to each MDP

belonging to that class, resulting in a large computational benefit when there are a small number of

classes. We note that [22] is the most relevant prior work but the authors do not consider control

constraints or state-action functions.

The assignment of limited resources to a set of coupled or decoupled MDPs has also been consid-

ered in literature. Constrained MDP formulations [56] allow explicit control constraints but require

traditional MDP descriptions. Approximate methods are proposed due to process stochasticity and

large state and action spaces, including Lagrangian relaxation [57, 58], approximate dynamic pro-

gramming [5, 59], Monte Carlo tree search [60], and receding horizon optimization [61]. However,

these methods are intractable for the high-dimensional state and action spaces of GMDPs. We

develop an approximate method for applying and satisfying a global capacity constraint that is

tractable for large GMDPs. Our approximation is similar in spirit to the approach by Meuleau et

al. [5].

Control methods for stochastic processes defined over a graph have also been proposed; a recent

survey is [62]. However, these methods are most appropriate for continuous-time dynamical systems

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 27

models and many do not scale to large models. We instead focus on discrete time and discrete space

graph-based models to develop a tractable approach.

Our second approach is based on using the Galton-Watson branching process as a model approx-

imation and leveraging bond percolation to analyze the process stability. Percolation models have

been studied extensively but have been used almost exclusively for modeling phenomena without

control, such as in physics, materials science, and others [63, 64, 65]. Notable exceptions are [66, 67],

which first proposed control policies within the percolation model framework. However, these works

are limited to the homogeneous case which greatly simplifies the model and policy analysis. We sig-

nificantly extend this work by directly addressing heterogeneous processes and we allow for general

randomized and deterministic policy descriptions. In addition, while [67] develops a model approx-

imation to analyze the stability of a policy, we create a different approximation that allows us to

predict quantities of the stochastic process.

3.3 Constrained Value and State-Action Functions Via Ap-

proximate Linear Programming

We now derive approximately optimal constrained value and state-action functions, from which we

then derive a constrained control policy. The use of approximate value functions is more common in

prior work, but its more difficult to enforce a capacity constraint on the control action. In contrast,

state-action functions are less studied in relevant prior work, but are easier to use with our capacity-

constrained formulations, as we discuss in Section 3.3.3. We present both approaches to provide a

broader set of tools for controlling large-scale spreading processes.

We briefly review the control model we introduced in Chapter 2.4.1 for GMDPs. We assume

binary actions, ati ∈ {0, 1} ∀i ∈ V, and enforce a capacity constraint. The feasible action set at each

time step is,

Ac = {at ∈ A |
n∑
i=1

ati ≤ C}, (3.1)

and C ∈ Z≥0 is the maximum allowed capacity. We first derive an approach based on approximate

value functions.

3.3.1 Approximate Constrained Value Functions

We consider approximate value functions which are a sum of local basis functions,

Vw(xt) =

n∑
i=1

wᵀ
i hi(x

t
O(i)), (3.2)

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 28

which mirrors the structure of the GMDP reward function (2.11), where wi ∈ Rki and hi : XO(i) →
Rki . Each basis function hi typically relies on state information from a few MDPs, O(i) ⊆ V and

|O(i)| � |V|. The purpose of this basis representation is to leverage the additive structure of the

reward function and to greatly reduce the complexity of solving a linear program to determine the

approximate value function. We use the following bound from [68] to derive a tractable method for

solving for the weights of the value function, and for determining the approximation error relative

to the optimal value function.

Proposition 1 (Value function approximation error [68]). The maximum difference between an

approximate value function Vw(xt) and the optimal value function V ?(xt) is δ = maximize
xt∈X

|Vw(xt)−

V ?(xt)| and is bounded,

δ ≤ 2γ

1− γ
maximize

xt∈X
|Vw(xt)− (BVw)(xt)|,

where (BV)(xt) is the Bellman operator for value functions,

(BV)(xt) = maximize
at∈A

Ep
[
R(xt, at, xt+1) + γV (xt+1)

]
,

and the expectation is taken with respect to the dynamics model p(xt+1 | xt, at).

This bound is useful as the right hand side (R.H.S.) involves quantities that can be approximated

and minimizing the R.H.S. explicitly minimizes the approximation error relative to the optimal value

function. Minimizing φ = max
xt∈X

|Vw(xt)− (BVw)(xt)| leads to the non-linear program,

minimize
wi∈Rki
φ∈R

φ

subject to φ ≥ Vw(xt)− (BVw)(xt),

φ ≥ (BVw)(xt)− Vw(xt),∀xt ∈ X ,

(3.3)

where the Bellman operator for the models considered in this work is,

(BVw)(xt) = maximize
at∈Ac

Ep

[
n∑
i=1

ri(x
t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)) + γwᵀ

i hi(x
t+1
O(i))

]

= maximize
at∈Ac

n∑
i=1

Ep
[
ri(x

t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)) + γwᵀ

i hi(x
t+1
O(i))

]
,

with the expectation taken with respect to the aggregate dynamics model (2.9). Computing oper-

ations over the full state space and the feasible action set is intractable so we develop upper and

lower bounds, (BVw)(xt) ≤ (BVw)(xt) ≤ (BVw)(xt). With these bounds, the following constraints

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 29

are imposed,

φ ≥ Vw(xt)− (BVw)(xt) ≥ Vw(xt)− (BVw)(xt),

φ ≥ (BVw)(xt)− Vw(xt) ≥ (BVw)(xt)− Vw(xt),

∀xt ∈ X ,

and the original non-linear program constraints are still satisfied. Let the expected immediate reward

and future value for every MDP be,

gi(x
t
O(i)∪N (O(i)), a

t
O(i)) = Ep

[
ri(x

t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)) + γwᵀ

i hi(x
t+1
O(i))

]
.

A lower bound is any action that satisfies the constraint. We use ati = 0 ∀i ∈ V and denote this

action at,

(BVw)(xt) =

n∑
i=1

gi(x
t
O(i)∪N (O(i)), a

t
O(i)).

An upper bound is an over-approximation of the constrained Bellman operator by removing the

capacity constraint and instead maximizing over the set of actions for each summand,

(BVw)(xt) =

n∑
i=1

maximize
at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)).

Removing the constraint over-approximates the value of each MDP but is critical in dividing the

original intractable non-linear program into n tractable programs. The constraints in (3.3) simplify

to,

φ ≥
n∑
i=1

−wᵀ
i hi(x

t
O(i)) + maximize

at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)),

φ ≥
n∑
i=1

wᵀ
i hi(x

t
O(i))− gi(x

t
O(i)∪N (O(i)), a

t
O(i)),∀x

t ∈ X .
(3.4)

We now decompose the approximation error, φ =
∑n
i=1 φi, to impose the following constraints

instead,

φi ≥ −wᵀ
i hi(x

t
O(i)) + maximize

at
O(i)

gi(x
t
O(i)∪N (O(i)), a

t
O(i)),

φi ≥ wᵀ
i hi(x

t
O(i))− gi(x

t
O(i)∪N (O(i)), a

t
O(i)),

∀xtO(i)∪N (O(i)).

This over-approximates φ by adding structure to the error contribution of each MDP but reduces

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 30

the coupled non-linear program into n separate non-linear programs. In addition, the constraints

in (3.4) are still satisfied after adding this structure. The maximum operator is then replaced by

adding a constraint for each action which results in the linear program,

minimize
wi∈Rki
φi∈R

φi

subject to φi ≥ −wᵀ
i hi(x

t
O(i)) + gi(x

t
N (O(i)), a

t
O(i)),

∀xtO(i)∪N (O(i)), a
t
O(i).

φi ≥ wᵀ
i hi(x

t
O(i))− gi(x

t
O(i)∪N (O(i)), a

t
O(i)),

∀xO(i)∪N (O(i)).

(3.5)

Each program contains ki + 1 variables and |XO(i)∪N (O(i))|
(
|AO(i)|+ 1

)
constraints, and there is

one linear program associated with each MDP in the GMDP. The quantity φ =
∑n
i=1 φi is a sub-

optimality estimate of Vw compared to the optimal value function V ?. Furthermore, we can exploit

Symmetry to reduce the number of programs that must be solved, as typically multiple MDPs will

have identical solutions φi, wi. In particular, we use the same basis approximation for all MDPs in

the same equivalence class.

Theorem 1. For a GMDP containing s ≤ n equivalence classes, the value function ALP method

requires solving s linear programs and
∑s
k=1|Ck|φk is the sub-optimality error.

Proof. The constraints in Program (3.5) are uniquely defined by the reward function ri, dynamics pi,

and basis approximation wᵀ
i hi. By definition, all MDPs in the same equivalence class have identical

reward functions ri and dynamics pi. Therefore, using the same basis approximation wᵀ
i hi for all

MDPs in the same equivalence class results in identical Programs (3.5). As a result, for n equivalence

classes, the solution to each program is unique as no two MDPs share the same class. When there

are s < n classes, there are at most s unique solutions for all n linear programs. In this case, only

one linear program per equivalence class must be solved as the solution for the per-MDP program

(3.5) is identical for all MDPs within a class.

3.3.2 Approximate Constrained State-Action Functions

We now derive a novel ALP approach to produce a state-action function (i.e., a Q-function) to

approximate a constrained value function. Our approximate state-action function approach is based

on the following bound [68].

Proposition 2 (State-action function approximation error [68]). The difference δ = max
xt∈X

|Vw(xt)−

V ?(xt)| is bounded by the maximum difference between the approximate state-action function

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 31

Qw (xt, at) and the Bellman operator on Qw(xt, at),

δ ≤ 2

1− γ
maximize
xt∈X ,at∈A

|Qw(xt, at)− (BQw) (xt, at)|,

where (BQ) (xt, at) is the Bellman operator for state-action functions,

(BQ) (xt, at) = Ep
[
R(xt, at, xt+1) + γmaximize

at+1∈A
Q(xt+1, at+1)

]
.

We assume the approximate state-action function Qw form,

Qw(xt, at) =
n∑
i=1

wᵀ
i bi(x

t
O(i)) + atiw

ᵀ
i ci(x

t
O(i)), (3.6)

with wi ∈ Rki and bi, ci : XO(i) ⊆ X → Rki , specifically for our capacity constrained formulations

which we describe in the next section. Minimizing φ = maximize
xt∈X ,at∈Ac

|Qw(xt, at) − (BQw) (xt, at)|
results in the non-linear program,

minimize
wi∈Rki
φ∈R

φ

subject to φ ≥ Qw(xt, at)− (BQw)(xt, at)

φ ≥ (BQw)(xt, at)−Qw(xt, at),

∀xt ∈ X , at ∈ Ac,

where the non-linearity is due to the maximization in the Bellman operator. We follow a similar

procedure as before to develop a tractable and scalable method. The constrained Bellman operator

is,

(BQ) (xt, at) = Ep
[n∑
i=1

ri(x
t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i))

+ γ max
at+1∈Ac

n∑
i=1

wᵀ
i bi(x

t+1
O(i)) + at+1

i wᵀ
i ci(x

t+1
O(i))

]
.

We construct upper and lower bounds for the constrained Bellman operator to instead impose the

constraints,

φ ≥ Qw(xt, at)− (BQw)(xt, at),

φ ≥ (BQw)(xt, at)−Qw(xt, at),∀xt ∈ X , at ∈ Ac.

Function arguments are omitted at times for clarity in the following discussion. A lower bound is

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 32

any action at+1 that satisfies the control constraint. A convenient choice is at+1
i = 0 ∀i ∈ V thus,

(
BQw

)
(xt, at) =

n∑
i=1

Ep
[
ri(x

t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i)) + γwᵀ

i bi(x
t+1
O(i))

]
.

An upper bound is found by removing the capacity constraint and choosing actions to improve the

total value of Qw,

(
BQw

)
(xt, at) =

n∑
i=1

Ep
[
ri(x

t
O(i)∪N (O(i)), a

t
O(i), x

t+1
O(i))+γwᵀ

i bi(x
t+1
O(i))+γmaximize {0, wᵀ

i ci(x
t+1
O(i))}

]
.

The maximization in the upper bound is replaced by two linear constraints and the error φ is

decomposed as a sum
∑n
i=1 φi. The result is the following per-MDP linear program,

minimize
wi∈Rki
φi∈R

φi

subject to φi ≥ wᵀ
i bi + atiw

ᵀ
i ci − Ep [ri + γwᵀ

i bi] ,

φi ≥ Ep [ri + γwᵀ
i bi]− w

ᵀ
i bi − a

t
iw

ᵀ
i ci,

φi ≥ Ep [ri + γwᵀ
i bi + γwᵀ

i ci]− w
ᵀ
i bi − a

t
iw

ᵀ
i ci,

∀xtO(i)∪N (O(i)), a
t
O(i),

(3.7)

where we have omitted the function arguments for clarity. Each program contains ki + 1 variables

and 3|XO(i)∪N (O(i))||AO(i)| constraints. Solving Program (3.7) for each MDP does not enforce that

the total control effort will satisfy the capacity constraint. However, allowing infeasible actions

results in a more conservative approximation of the true constrained value function since adding

constraints to Program (3.7) cannot lower the error φi. Similar to Theorem 1, we again exploit

Symmetry to reduce the number of linear programs that must be solved, by using the same basis

approximation for all MDPs in the same equivalence class.

Theorem 2. For a GMDP containing s ≤ n unique equivalence classes, the approximate state-action

function ALP method requires solving s linear programs and
∑s
k=1|Ck|φk is the approximation error.

Proof. The approximate state-action function Qw is determined after solving for the weights wi.

The Program (3.7) for two MDPs have identical solutions wi, φi if both are in the same equivalence

class and the same basis functions are used. Therefore, for n classes, n programs are solved to

determine Qw. Only s programs are solved for s < n classes as the solution is identical for all MDPs

in the same class.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 33

3.3.3 Deriving the Resulting Constrained Policy

In the previous two sections, we derived methods for constructing an approximate value or state-

action function. However, it is still necessary to extract a policy, which may be non-trivial given the(
n
C

)
possible feasible constrained actions. Therefore, we now introduce a class of linear programs

that have a capacity constraint and an explicit solution, and then discuss building a policy for an

approximate value or state-action function.

Proposition 3 (Capacity Constrained Linear Program). The integer linear program,

maximize
at∈Ac

λ+

n∑
i=1

µia
t
i, (3.8)

where λ, µi ∈ R, has an explicit solution. Assume that µ1 ≥ µ2 ≥ · · · ≥ µn. An optimal solution is,

ati =

1 if i ≤ C and µi ≥ 0,

0 otherwise.
(3.9)

Proof. The values µi can always be sorted a priori. The solution is optimal as changing it cannot

improve the objective. Consider an optimal solution described as ati = 1 for i ∈ {1, . . . , j} with

j ≤ C and zero otherwise. If j = C, then choosing atk = 1 for any k > j will violate the constraint.

If j < C, then choosing atk = 1 for j < k ≤ C lowers the objective as µk must be negative. Finally,

switching atk = 1 to atk = 0 for k ≤ j does not improve the objective as µk must be non-negative.

We now discuss the conditions under which our approximate functions result in the policy de-

scribed by (3.9).

Theorem 3. For approximate value functions Vw, if the form of the dynamics (2.8), reward func-

tions (2.11), and basis functions (3.2) result in,

Ep
[
R(xt, at, xt+1) + γVw(xt+1)

]
= λ+

n∑
i=1

µia
t
i, (3.10)

then the constrained policy is determined by (3.9). Furthermore, for approximate state-action func-

tions of the form in (3.6), the constrained policy is determined by (3.9).

Proof. The approximate value function is determined after solving for the weights of the basis

function representation. If the relationship in (3.10) holds, the constrained policy is,

π(xt) = arg max
at∈Ac

λ+

n∑
i=1

µia
t
i.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 34

Therefore, the policy π(xt) is determined by (3.9). For approximate state-action functions, if the

assumed form (3.6) is used then the constrained policy is,

π(xt) = arg max
at∈Ac

n∑
i=1

wᵀ
i bi(x

t
O(i)) + atiw

ᵀ
i ci(x

t
O(i)). (3.11)

Let λ =
∑n
i=1 w

ᵀ
i bi(x

t
O(i)) and µi = wᵀ

i ci(x
t
O(i)). The constrained maximization (3.11) is equivalent

to Program (3.8) and so the policy is determined by (3.9).

Although the policy (3.9) exactly solves Program (3.8), it is necessary in our derivations to

remove the capacity constraint when determining an approximate value function Vw or state-action

function Qw to develop tractable methods. As a result, the approximate functions are analogous to

unconstrained solutions found via dynamic programming. The use of (3.9) with an unconstrained

approximate solution is therefore an approximation to the true constrained policy determined by a

method that explicitly includes the control constraint.

3.3.4 Exploiting Anonymity in Linear Programs

Theorems 1 and 2 describe how we leverage Symmetry to reduce the total number of linear programs

that must be solved to fully determine an approximate value or state-action function. Similarly,

Anonymous Influence can be exploited to simplify the implementation of the Programs (3.5) and

(3.7). For example, consider the wildfire model (Chapter 2.5) and let O(i) = i∪N (i) and |N (i)| = 4

for all trees. Without mixed-mode functions (MMFs), Program (3.5) requires enumerating on the

order of 107 state combinations. By using a MMF, for the basis functions we present in Section 3.5, we

only need to consider on the order of 103 state combinations. This reduction significantly simplifies

the implementation of our framework which is still tractable for graphs where MDPs may have many

neighbors or large state spaces. We present results demonstrating the effectiveness of our algorithms

in Section 3.5.

3.4 Rule-based Policies and Analysis with Bond Percolation

In the previous section, we derived algorithms based on the approximate linear programming ap-

proach for solving MDPs. We now consider a different modeling perspective of GMDPs in order

to derive a complementary approach using branching processes and bond percolation. Specifically,

the nodes in the GMDP are arranged as a 2D lattice structure and the edges of each node are

the corresponding neighbors on the lattice. This perspective allows us to leverage tools from pop-

ulation models and statistical physics in order to generate and analyze rule-based policies, which

is more difficult to do in approximate dynamic programming frameworks. Furthermore, it is also

easier to address heterogeneous model properties, such as varying model parameters or using unique

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 35

Markov models for each graph node. While our lattice-based framework is capable of describing any

graph-based growth process, several quantities depend directly on the specific model formulation.

Therefore, we use a heterogeneous model of forest wildfire near an urban area as an example to

illustrate our approach. We described this model in Chapter 2.5.

3.4.1 Heterogeneous Bond Percolation

We now introduce the bond percolation model to analyze the lattice-based Markov model behavior

as a function of the model parameters αi and βi and the control policy. The 2D bond percolation

model consists of nodes on an infinite square lattice where a bond exists between two nodes with a

probability independent of other nodes [63]; this probability is called the bond percolation parameter.

There exists a critical value for this parameter above which there is a path of connected nodes of

infinite length [69, 70].

The forest wildfire, and other stochastic growth processes, are considered bond percolation with

persistence [51]. For a wildfire, the “persistence” nature is due to nodes on fire being able to spread

fire over multiple time intervals until it transitions to burnt or until it has no healthy neighbors.

The bond percolation parameter for two nodes i and j is denoted by pij . For the wildfire process,

consider two neighboring nodes where node i is on fire and node j ∈ N (i) is healthy; the node type

does not modify the following derivation. In the absence of control, ati = 0 ∀i ∈ V,∀t ∈ Z>0, the

probability that node i never causes node j to transition to on fire is,

1− pij =

∞∑
t=1

βt−1
i (1− βi)(αj)t

=
(1− βi)αj
1− βiαj

,

based on the dynamics in Tables 2.2 and 2.3. After algebraic manipulation,

pij(αj , βi) =
1− αj

1− αjβi
. (3.12)

In general, pij 6= pji, due to the potential uniqueness of αi and βi for different nodes. This property

is a significant difference from the homogeneous case where pij = pji = p ∀i, j. We build a model

approximation that directly addresses the uniqueness of the percolation parameter, which we present

in Section 3.4.2.

Given a lattice-based model, the parameter pij is computed for all pairs of nodes and represents

the likelihood of fire continuing to spread if the node i were to catch on fire. The following theorem

provides conditions for two types of process behavior for percolation models.

Theorem 4 (Theorems 3.1, 3.2 [70]). Let G = (V, E) be a countably infinite connected graph, with

vertex set V and edge set E, that represents the square lattice. Let p′ = {p′e ∈ [0, 1] | e ∈ E} be the

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 36

set of percolation parameters where one parameter is associated with each edge.

(i). If

∀e ∈ E p′e ≤
1

2
, (3.13)

there exists almost surely (a.s.) no infinite cluster.

(ii). If there exists δ > 0 such that,

∀e ∈ E p′e ≥
1

2
+ δ, (3.14)

then there exists a.s. exactly one infinite cluster.

The parameter p′e, which is associated with a graph edge, is equivalent to the parameter pij ,

which is computed for a pair of lattice nodes by (3.12). For the wildfire process, a “cluster” is a

subset of nodes that are either on fire or burnt and a path exists between any two nodes. Therefore,

we refer to a process as subcritical if the condition (3.13) is met as the majority of trees and urban

areas are not expected to be eventually burnt. Conversely, a process is supercritical if the condition

(3.14) is met and the majority of trees and urban areas are expected to be eventually burnt.

While Theorem 4 is valid for infinite square lattices, very large finite lattices exhibit similar

behavior. We also include finite lattice effects in our model approximation. Given Theorem 4, the

following theorem relates model parameters to a supercritical wildfire.

Theorem 5 (Critical Parameters for Percolation). If there exists a δ > 0 such that,

∀i, j ∈ V 1− αj
1− αjβi

≥ 1

2
+ δ, (3.15)

then the forest wildfire process is supercritical.

Proof. For a pair of nodes on the lattice the equivalent percolation parameter is determined by

(3.12). The statement then follows from (3.14) in Theorem 4.

The Markov model defined in the previous section describes the probabilistic state evolution of

individual nodes. The percolation model, in contrast, specifies a “spreading” probability between

nodes and then characterizes the resulting process. Theorem 5 provides a bridge between these two

modeling perspectives.

Thus far, we have discussed the properties of the lattice-based Markov model in the absence

of control. In the context of classical linear feedback control, the open-loop process dynamics are

unstable without control when the condition in (3.14) is met. Feedback control is then used to

produce a closed-loop system which is stable. Control actions reduce the percolation parameter pij

by modifying the dynamics of the Markov model and if the condition in (3.13) is met then the system

is stable. Therefore, one possible control objective is to stabilize a heterogeneous growth process,

which we discuss further in Section 3.4.3.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 37

Based on Tables 2.2 and 2.3, there are two cases to consider for the influence of control actions,

depending on whether fire may spread to a healthy tree or a healthy urban area. If node i is on

fire (either a tree or an urban area) and its neighbor node j is a healthy tree, then the change in

percolation parameter is computed using (3.12) as,

∆pij,1(ati, a
t
j) = pij(αj , βi)− pij(αj , βi −∆βia

t
i),

since a healthy tree is not influenced by control. If node i is on fire and its neighbor node j is a

healthy urban area,

∆pij,2(ati, a
t
j) = pij(αj , βi)− pij(αj(1− atj), βi −∆βia

t
i),

since urban areas can be removed from the lattice. The effect of control in the percolation model is

thus,

∆pij(a
t
i, a

t
j) =


∆pij,1(ati, a

t
j) if xti = F, xtj = H, j is a tree,

∆pij,2(ati, a
t
j) if xti = F, xtj = H, j is an urban area,

0 otherwise.

(3.16)

for the wildfire process. Lastly, we note that at each time step there is a limited subset of lattice

nodes that contribute to the continued spread of the process. For the forest wildfire, these are the

nodes that are on fire and have at least one healthy neighbor.

Definition 2 (Growth Boundary). A node on the lattice is part of the growth boundary Bt at time

t if it is on fire, xti = F , and at least one neighbor is healthy,

hti =
∑

j∈N (i)

I(xtj = H) > 0. (3.17)

In the next section, we introduce the Galton-Watson branching process to predict the expected

future size and stopping time for a stochastic growth process on a finite lattice.

3.4.2 Galton-Watson Branching Process Model

The Galton-Watson branching process has been used to model population dynamics and is defined

on a directed acyclic graph [71]. The graph starts with a single (root) node that produces a limited

number of children with a prescribed probability distribution. These children become the next

parents that can produce another group of children. The graph is organized by generations, which

includes a set of parents, the number of children they can produce, and the probability distribution

for producing children.

For the wildfire process, we use a branching process to represent the spreading dynamics of each

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 38

i i:1,1

j:2,1 i:2,1

j:2,2 j:1,1 j

j:2,3
j:2,4 j:1,2 j:2,6

j:2,5

Figure 3.1: Illustration of the boundary for the percolation framework. Example lattice state xt

for the wildfire process where green represents healthy trees, red are on fire, and black are burnt.
The orange line indicates the boundary Bt. The branching process model is illustrated for nodes i
and j where arrows indicate the possible growth of the process in one and two generations, which is
analogous to a prediction of one and two future time steps. Other node labels contain the boundary
node, generation number, and a unique identifier, e.g., j:1,2 refers to the second node that node j
could spread fire to in one generation. One node has two labels due to the branching process model;
see Fig. 3.2.

node in the boundary Bt at each time step. The first children are healthy nodes that may transition

to on fire due to the boundary node. These children then become the next set of parents that

may further spread fire to additional healthy nodes. Therefore, the parent nodes in each generation

represent the nodes that may form part of the boundary at future time steps.

We use the term generations to refer to future time steps of the process given the lattice state xt

at a particular time step. Therefore, predicting over multiple generations using branching processes

corresponds to predicting statistics of the process over multiple time steps. We are also interested

in using the predicted statistics in control policies to effectively control the process.

Percolation on a lattice is not a branching process as there are multiple paths between any two

nodes on the lattice. To compute the likelihood of the true process spreading further, it is necessary

to enumerate a combinatorial number of paths on the lattice which is not feasible. Therefore, we

instead assume each boundary node is a branching process that ignores how other boundary nodes

may spread.

Let GWi be a heterogeneous Galton-Watson (GW) branching process associated with boundary

node i ∈ Bt at time t; see Fig. 3.1. Each generation n of the GWi process has an associated

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 39

j

j:1,1 j:1,2

j:2,4 j:2,6j:2,5j:2,1 j:2,3j:2,2

p22 p23p21 p24 p26

p11 p12
dj1

bj1

dj2

bj2
p25

Figure 3.2: Illustration of the Galton-Watson process for the percolation framework. Equivalent
branching process representation for boundary node j in Fig. 3.1. The node with two labels in
Fig. 3.1 is considered two unique nodes (here, j:2,3 and j:2,4) for the branching model to avoid
cycles in the graph. Note that p23 may not equal p24 due to the different parent nodes as indicated
by (3.12). Without control, d1

j = 1
2

∑2
k=1 p1k and b1j = 2 for generation one and d2

j = 1
6

∑6
k=1 p2k

and b2j = 3 for generation two.

(potentially unique) children distribution Y ni . The quantity Zni describes the expected size of the

nth generation with Z0
i = 1. We refer to the collection of processes as GWBt = {GWi | i ∈ Bt}. The

benefit of using GW processes is the simplicity in computing statistics of each generation [72]. The

probability that process GWi stops at generation n is,

sni = p(Zni = 0) = g1
i (g2

i (· · · gni (0))),

where gτi is the probability generating function (PGF),

gτi (x) =

∞∑
k=0

p(Y τi = k)xk.

The expected size of each generation is,

E[Zni] =

n∏
τ=1

E[Y τi].

To predict the process growth using GW processes, we must specify the possible children for each

parent and the probability distribution for producing children within each generation. In the wildfire

model, this corresponds to determining how fire may spread given a lattice state xt and how likely

fire will propagate to different healthy nodes. We first define a function to specify the children of a

parent.

Definition 3 (Node Children). For the wildfire model with lattice state xt, the children of a node

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 40

are the neighbor nodes that are healthy,

Ct(i) = {j | j ∈ N (i) and xtj = H}.

When determining the children of parent nodes, nodes that are contained in a previous generation

as parents are ignored to prevent cycles in the process. For the wildfire process, we use the binomial

distribution to specify the the likelihood of fire spreading and so,

gτi (x) = (1 + (x− 1)dτi)b
τ
i ,

E[Y τi] = bτi d
τ
i ,

where we call dτi the child rate and bτi the branching factor. The child rate is based on the percolation

parameter to capture the heterogeneous nature of the process,

dτi =

∑
r∈Pτ−1

∑
c∈Ct(r) prc −∆prc(a

t
r, a

t
c)∑

r∈Pτ−1 |Ct(r)|
, (3.18)

where Pτ−1 refers to the set of parent nodes of generation τ − 1. The branching factor is then the

ratio,

bτi =

∑
r∈Pτ−1 |Ct(r)|
|Pτ−1|

. (3.19)

Finally, for the set of GW processes GWBt ,

snBt =
∏
i∈Bt

sni (3.20)

E[ZnBt] =
∑
i∈Bt

E[Zni] (3.21)

are the stopping probability and expected number of nodes on fire at generation n, respectively.

Fig. 3.2 shows the GW process approximation of a boundary node for the example lattice state

in Fig. 3.1. The root node, which is also the parent of generation one, is the node on fire itself. The

children of generation one are j:1,1 and j:1,2 and each may have a unique percolation parameter.

The number of children and the percolation parameters are used to determine the child rate (3.18)

and branching factor (3.19). The same process repeats for the second generation with the children

of generation one now serving as the parents. In this example, there is also a shared child that is

double-counted in generation two which is necessary to prevent graph cycles.

Algorithm 1 summarizes the use of the GW process approximation for each time step. Since

the boundary Bt is not known exactly after the first generation, the estimated quantities (3.20) and

(3.21) are used with the policy (line 8). For example, the UBT policy (Section 3.4.3) uses the known

quantity |Bt| for the the first generation and then the generated estimate E[ZτBt] for subsequent

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 41

Algorithm 1 Branching Process Model

1: Input: Lattice state xt, control policy
2: Output: Predicted boundary size and stopping time
3: Determine growth boundary Bt
4: Associate a GW process with each node in the boundary Bt
5: for τ = 1, . . . , n generations do
6: for each process GWi, i ∈ Bt do
7: Determine children of generation τ
8: Calculate child rate dτi with policy (3.18)
9: Calculate branching factor bτi (3.19)

10: Add unique children as parents of next generation τ + 1

11: Compute stopping time sτBt (3.20)
12: Compute expected boundary size E[ZτBt] (3.21)

generations.

By predicting the process growth over multiple generations, it is possible to build more effective

policies. For example, in Fig. 3.1, the boundary node i will stop spreading after two generations with

probability one. Therefore, this node can safely be ignored and control resources should instead be

used for other nodes. In the next section, we introduce control policies that satisfy a resource limit

and characterize the conditions for a policy to stabilize a supercritical process.

3.4.3 Defining Control Policies and Stability Analysis

We first define two benchmark randomized policies based on previous work. All of the following

policies strictly satisfy a resource limit C ≥ 0, so that
∑
i∈V a

t
i ≤ C ∀t ∈ Z>0.

Definition 4 (Uniform Boundary Treatment (UBT) [66]). Choose C fires in the boundary Bt with

uniform probability to treat at each time step.

Definition 5 (Degree Weighted Treatment (DWT), based on [29]). Choose C fires in the boundary

Bt with probability,
hti∑
i∈Bt h

t
i

,

at each time step, where hti is the number of healthy neighbors (3.17). The quantity hti can be

interpreted as the out-degree of each boundary node.

Next, we define two novel deterministic control policies. The first policy, receding horizon treat-

ment (RHT), uses the percolation parameters over multiple generations of a boundary node to

estimate its rate of growth, which we call the “volatility” of a node on fire.

Definition 6 (Receding Horizon Treatment (RHT)). Rank all nodes in the boundary Bt in order

of highest to lowest estimated volatility (Algorithm 2) where the parameter k is the number of

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 42

generations to consider. Treat C nodes on fire with the highest estimated volatility at each time

step.

The second policy, Urban Safety Treatment (UST), is summarized in Algorithm 3. This policy

first checks if any node on the boundary Bt, after predicting k generations, will include an urban

area. If so, the urban areas are ranked, in order of highest to lowest, by the number of boundary

nodes that included a given urban area in their associated branching process. Up to C urban areas

are then removed. Any remaining control is used to treat nodes on fire in the boundary. The

ordering of boundary nodes includes their proximity to the right-most lattice edge (line 4) due to

the arrangement of urban areas on the lattice; see Section 3.5. Lastly, if urban areas are removed,

then nodes on fire with low volatility (line 3) are ignored. This is intended to eliminate boundary

nodes that will stop spreading fire after k generations; an example of this is node i in Fig. 3.1.

Given a control policy, the following theorem provides a condition for a policy to be considered

stabilizing.

Theorem 6 (Stabilizing Policy). A policy is stabilizing if,

∀t ∈ Z>0 ∀i ∈ Bt, j ∈ N (i) : pij −∆pij(a
t
i, a

t
j) ≤

1

2
. (3.22)

Proof. By (3.13), a policy must reduce the percolation parameter below 1
2 in order to change a

supercritical process to a subcritical process. Consider the lattice state xt at time t. Any node

that is not part of the boundary Bt cannot spread fire to a healthy node in which case pij = 0.

Therefore, the policy must modify the percolation parameter of all nodes that can spread fire, which

by definition are those in the boundary Bt, to satisfy (3.13) at t. Thus, if the policy achieves this

for all times t, then (3.13) is always satisfied, and the statement follows.

Analysis of policies using Theorem 6 must be done on a case by case basis as it depends on

the policy description. For the UBT policy, only nodes on fire in the boundary will be treated so

atj = 0 ∀t in (3.16). At each time t, this policy chooses boundary nodes with uniform probability

without replacement and so each node has probability C/|Bt| of being treated. Therefore, if the

following holds,

∀t ∈ Z>0 ∀i ∈ Bt, j ∈ N (i) : pij −
C

|Bt|
∆pij(a

t
i = 1, atj = 0) ≤ 1

2
,

then the UBT policy is stabilizing according to Theorem 6. While this condition cannot be computed

a priori, it can serve as real-time feedback to indicate if the resource limit C is insufficient to stabilize

the process.

For the DWT policy, there is no simple analytical description of the probability for weighted

sampling without replacement [73]. For the DWT, RHT, and UST policies, (3.22) must be evaluated

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 43

Algorithm 2 Estimated Volatility

1: function Vest(r, k)

2: if k = 0 then return
∑
c∈Ct(r) prc

|Ct(r)|
3: else return

∑
c∈Ct(r) Vest(c, k − 1)

Algorithm 3 Urban Safety Treatment (UST)

1: if fire can reach an urban area in k generations then
2: Remove up to C urban areas that are reachable by at least one fire, with priority

determined by the number of fires that reach a given urban area.

3: Remove fires with Vest < k from consideration for treatment with remaining control.

4: Use remaining control to treat nodes in the boundary Bt with the highest ranking
according to,

1. proximity to the right-most lattice edge and,

2. estimated volatility (Algorithm 2).

at each time step to determine if each policy is stabilizing. We present simulation results for the

previously described policies in the next section.

3.5 Simulation Experiments

We compare our control methods on simulations of forest and urban wildfires and the 2014 West

Africa Ebola outbreak. We call our approximate linear programming framework Approximate Con-

strained Scalable Allocation of Resources (ACSAR). We defined several rule-based policies in Sec-

tion 3.4 and we refer to them by their respective names.

3.5.1 ACSAR Performance

We first benchmark our method on forest wildfires simulations. For all simulation experiments of

wildfires, model parameters of αi = 0.2 ∀i ∈ V and βi = 0.9 ∀i ∈ V were used for the wildfire model

(Chapter 2.5) with the linear-type tree state dynamics (Table 2.1). We use a forest size of 50 × 50

which has 101192 total states and at the initial time step, all trees are healthy except for a 4 × 4

grid of fires in the center of the forest. Simulations terminate when there are no more fires. The

control effectiveness parameter used was ∆βi = 0.54 ∀i ∈ V, the discount factor was γ = 0.95, and

the control capacity was C = 4.

We use the following reward and basis functions in conjunction with our approximate value

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 44

function approach,

ri(x
t
i∪N (i)) = I(xti = H)− I(xti = F)

∑
j∈N (i)

I(xtj = H),

wᵀ
i hi(x

t
i∪N (i)) = [wi]0 + [wi]1 I(x

t
i = H) + [wi]2 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H),

where wi ∈ R3 ∀i ∈ V. Furthermore, we assume that every tree has four neighbors, |N (i)| = 4 ∀i ∈ V,

so that there is one equivalence class. The derived policy is then applied to the original graph model.

The Program (3.5) requires computing an expectation of the basis functions, which is conditioned

on a given configuration of the states xti∪N (i)∪N (N (i)). The result is the following expression after

applying the dynamics in Table 2.1,

Ep
[
wᵀ
i hi(x

t+1
i∪N (i))

]
= [wi]0 + [wi]1 I(x

t
i = H)p(xt+1

i = H | xti, xtN (i))+

[wi]2

(
I(xti = H)p(xt+1

i = F | xti, xtN (i))+

I(xti = F)p(xt+1
i = F | xti, ati)

) ∑
j∈N (i)

I(xtj = H)p(xt+1
j = H | xtj , xtN (j)).

(3.23)

The resulting approximate linear program is then,

minimize
wi∈R3

φi∈R

φi

subject to φi ≥ [wi]0 + [wi]1 I(x
t
i = H) + [wi]2 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H)

− I(xti = H) + I(xti = F)
∑

j∈N (i)

I(xtj = H)

− γ (Eq. (3.23)) , ati = 0,∀ xti∪N (i)∪N (N (i)).

φi ≥ − [wi]0 − [wi]1 I(x
t
i = H)− [wi]2 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H)

+ I(xti = H)− I(xti = F)
∑

j∈N (i)

I(xtj = H)

+ γ (Eq. (3.23))∀ xti∪N (i)∪N (N (i)), a
t
i.

To implement this program, we exploit Anonymous Influence to drastically reduce the number of

constraints that must be specified. Computing the expectation (3.10) to determine the control policy

then yields the following action weights,

µi = −γ [wi]2 I(x
t
i = F)∆β

∑
j∈N (i)

I(xtj = H)(1− αf tj).

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 45

Table 3.1: ACSAR results for different value and state-action function approximations. Data are the
median percent of remaining healthy trees over 100 simulations, with the subscript and superscript
denoting the first and third quartile, respectively. Without control, the majority of the forest
burns down. Our control approach is much more effective and results in lower approximation error,
compared to prior work.

Control Method Approximation Error φi Remaining Healthy Trees

No Control — 1.0+0.0
−0.0%

Prior Vw(xt) [22] 2.30 1.2+0.4
−0.3%

ACSAR Vw(xt) 1.98 98.4+0.4
−0.6%

ACSAR Qw(xt, at) 0.84 98.4+0.4
−0.7%

Solving the program yields [wi]2 = −1.43, and so this policy treats fires in priority of the number

of neighboring healthy trees and their likelihood of remaining healthy at the next time step. We

compare our approach with the basis approximation proposed by Forsell et al. [22], which can also

be used with our capacity constrained formulation 3.8. The basis functions are,

wᵀ
i h

prior
i (xti) = [wi]0 I(x

t
i = H) + [wi]1 I(x

t
i = F) + [wi]2 I(x

t
i = B),

The action weight for the policy (3.9) when using this basis with the same reward function as before

is,

µi = γ∆βI(xti = F)([wi]2 − [wi]1).

Therefore, the resulting policy is to randomly treat trees on fire at each time step. We also construct

an approximate Qw function using ACSAR to illustrate a complementary approach. We use the

following reward and basis functions,

ri(x
t
i, x

t+1
i) = I(xti = H)− (1− ati)I(xt+1

i = F),

wᵀ
i bi(x

t
i) = [wi]0 + [wi]1 I(x

t
i = H) + [wi]2 I(x

t
i = F),

atiw
ᵀ
i ci(x

t
i∪N (i)) = ati [wi]3 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H),

where wi ∈ R4 ∀i ∈ V.

Table 3.1 summarizes the results for ACSAR using two different basis functions as well as the basis

functions from prior work. We present the median percent of remaining healthy trees, along with the

first and third quartile, to summarize the performance of each method. Overall, our basis functions

are significantly more effective than those proposed in prior work, and the approximation error is

lower as well. A comparison of the resulting policies from both our value function approximation

and the prior work value function approximation is shown in Fig. 3.3.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 46

Figure 3.3: Comparison of policies from prior work and ACSAR. (both) Policies for a single time
step of a wildfire simulation. Green cells are healthy trees and black are burnt trees. Fire color
indicates control preference: white is low and dark red is high. (left) Policy using basis from prior
work which treats all fires equally. (right) Our policy which prioritizes fires based on number of
neighboring healthy trees.

We also apply our control framework to the 2014 West Africa Ebola outbreak, a graph-based

model which we introduced in Chapter 2.5. We use the parameters αi = 0.14 ∀i ∈ V and ∆βi =

0.12 ∀i ∈ V. We derived the αi parameter from data [55] by fitting an exponential model to the

cumulative number of cases per area, normalized by the area’s population; see Fig. 3.4. We aggregate

the exponential models across all areas to get a single parameter value to generate a more accurate

parameter estimate. We generate an approximate Qw function with the following reward and basis

functions,

ri(x
t
i, x

t+1
i) = I(xti = S)− I(xt+1

i = E),

wᵀ
i bi(x

t
i) = [wi]0 + [wi]1 I(x

t
i = S) + [wi]2 I(x

t
i = E),

atiw
ᵀ
i ci(x

t
i∪N (i)) = ati [wi]3 I(x

t
i = E)

∑
j∈N (i)

I(xtj = S),

with wi ∈ R4 ∀i ∈ V. As a simplification, we assume that each community has the same number

of neighbors, |N (i)| = 4 ∀i ∈ V, so there is a single equivalence class. The derived policy is then

applied to the original graph model.

A total of 100 simulations were run, with a capacity constraint of C = 3 and a discount factor of

γ = 0.9. Each simulation is initialized with three communities being infected: Guieckedou (Guinea),

Kailahun (Sierra Leone), and Lofa (Liberia); all other communities are initially healthy. Simulations

terminate when no communities are infected and the performance metric zsim for each simulation is

the median number of weeks a community is infected, i.e., zsim = median of {yi =
∑T
τ=1 I(xτi = E) |

i ∈ V}. Solving the approximate Qw ALP yields φi = 0.28, and the median and maximum value of

zsim over 100 simulations were 32 weeks and 102 weeks, respectively.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 47

Figure 3.4: Example of fitting parameters for the 2014 West Africa Ebola outbreak model. Cumu-
lative Ebola cases for Bomi in Liberia, normalized by population. Data (orange circles) are used to
fit an exponential model (green line) from which we derive the model parameter αi.

From the dataset, we also estimate the median time each community spent with active cases,

by estimating the week when cases started increasing and the week when cases leveled off for each

community. The difference between these quantities is the length of time each community was

considered infected. Over all communities, the median infection time was 36 weeks and the maximum

infection time was 112 weeks. Therefore, our approach has low approximation error and closely

matches the dataset.

3.5.2 Percolation Framework Performance

We now evaluate our percolation-based framework on simulations of a forest wildfire near an urban,

which we introduced a model for in Chapter 2.5. The lattice is a square of size 50 × 50 nodes, the

right edge is composed of 500 urban areas, and the remaining nodes are trees. Each simulation is

initialized with fires at the center as shown in Fig. 3.5. The initial set of fires was chosen so that at

the first time step, there are a number of “interior” fires which will only spread for a few time steps

before extinguishing. The parameters αi and βi were varied across the lattice as shown in Fig. 3.6

and the control effectiveness parameter was set to ∆βi = 0.35 ∀i ∈ V.

A total of 1, 000 total simulations were run with two different resource limits, C = 6 and C = 10,

for each policy. For a given policy, the fraction of remaining healthy trees and remaining healthy

urban areas were recorded at the end of each simulation run. Simulations ended when there were

no more nodes on fire. For the UST policy, the fraction of removed urban areas was also recorded.

For the RHT policy, two horizons were tested, k = 1 and k = 3, and for the UST policy the horizon

was k = 5.

Tables 3.2 and 3.3 present the median of the results and Fig. 3.7 provides the full distribution

of the results for each policy. Without control, the process is supercritical and Tables 3.2 and 3.3

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 48

Figure 3.5: Details for simulation experiments with the percolation framework. (both) Green nodes
are healthy trees, red are on fire, black are burnt, and light brown are healthy urban areas. (left)
Initial condition for simulations. (right) Example snapshot of the UST policy where purple indicates
removed urban areas. By removing urban areas, the UST policy prevents other urban areas from
catching on fire.

show that the majority of the nodes are eventually burnt.

The UBT and DWT policies are not very effective with the lower resource limit C = 6 as they do

not account for heterogeneous properties or for potential interior fires. However, with the increased

capacity C = 10 these policies are more successful and are able to preserve more trees and urban

areas. The RHT policy easily outperforms the UBT and DWT policies for both resource limits due

to directly considering differences in the percolation parameter. However, this policy is only effective

in preserving urban areas for the higher resource limit. In contrast, the UST policy is either equally

or more effective than all other policies in preserving both trees and urban areas. Even for a low

resource limit, UST preserves the majority of urban areas as desired. Fig. 3.5 shows an example

snapshot of the lattice state for a single simulation while using the UST policy. The policy starts to

remove urban areas once fire spreads too closely thus preventing urban areas from being burnt.

The distributions of the results, shown in Fig. 3.7, show that the median does not adequately

capture the performance of each policy. All policies have large variance, although the RHT and UST

policies significantly improve the likelihood that a majority of trees and urban areas are preserved.

Only the UST policy reliably preserves urban areas for both resource limits as evidenced by the

much lower variance, although this comes with the trade off of more trees being burnt and some

urban areas being removed. Fig. 3.7 also provides a sense of how many times a given policy was

stabilizing for all time steps. Policies with large variance in the results did not frequently meet the

requirements of Theorem 6 over 1, 000 simulations.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 49

0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

0.82

0.84

0.86

0.88

0.90

Figure 3.6: Parameter values for simulation experiments with the percolation framework. (left)
Values of αi for all nodes on the lattice. (right) Values of βi for all nodes on the lattice. These
parameter values correspond to a supercritical forest wildfire.

Table 3.2: Percolation results for resource limit C = 6 and 1, 000 simulations. The median fraction
of removed urban areas for the UST policy is 3.10%.

Method
Median Remaining

Healthy Trees (%)

Median Remaining

Healthy Urban Areas (%)

No Control 3.80 0.00

UBT 13.25 0.02

DWT 16.32 0.20

RHT k = 1 22.78 1.00

k = 3 38.02 0.60

UST 38.78 96.90

3.6 Summary

In this chapter, we presented solution techniques for generating a control policy that strictly satisfies

a capacity constraint, given that the underlying state of the graph-based Markov decision process

is fully observable. Our first approach, based on approximate dynamic programming, has the ben-

efit of an approximation error metric which directly provides feedback on the quality of the chosen

basis function approximation. However, additional structure must be enforced on the basis func-

tions in order to reduce the computational complexity of solving the linear programs and to ensure

that a constrained policy can be tractably extracted from the approximate value or state-action

function. In addition, it is non-trivial to deal with heterogeneous models where the model param-

eters or the discrete Markov models may be unique on a per-node basis. Our second approach,

based on branching processes and bond percolation, allows us to easily define rule-based policies

and address heterogeneous model properties. However, additional approximations are required and

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 50

Table 3.3: Percolation results for resource limit C = 10 and 1, 000 simulations. The median fraction
of removed urban areas for the UST policy is 0.40%.

Method
Median Remaining

Healthy Trees (%)

Median Remaining

Healthy Urban Areas (%)

No Control 3.80 0.00

UBT 56.07 1.80

DWT 85.42 98.90

RHT k = 1 88.27 100.00

k = 3 90.70 100.00

UST 88.90 99.60

it is not straightforward to analyze the stability of the process under a given policy. We demon-

strated through simulation results that both of our approaches are scalable to considerably large

graph-based models, and that our methods are more effective than other proposed approaches in

literature. For future directions, policy iteration methods [23] could be adapted so that ACSAR

can handle heterogeneous model parameters while still providing an approximation error metric,

and so that additional structure is not needed in order to produce a constrained control policy. For

the percolation framework, it is difficult to analyze the process stability models without a lattice

structure, and extending this approach to more general graph structures would be useful. Finally, we

hope to apply these control techniques to additional application domains, especially with cooperative

multi-agent teams, to provide an additional tool for team-based decision making strategies.

CHAPTER 3. CONTROL POLICIES WITH GLOBAL CAPACITY CONSTRAINTS 51

No
Control

UBT DWT RHT
k = 1

RHT
k = 3

UST

0

10

20

30

40

50

60

70

80

90

100
R

em
ai

n
in

g
H

ea
lt

hy
(%

)

Trees

Urban Areas

Mean

Median

No
Control

UBT DWT RHT
k = 1

RHT
k = 3

UST

0

10

20

30

40

50

60

70

80

90

100

R
em

ai
n

in
g

H
ea

lt
hy

(%
)

Figure 3.7: Percolation framework performance, presented as box and whisker plots over 1, 000
simulations with resource limit C = 6 (top) and C = 10 (bottom) for the different policies. The
whiskers represent the minimum and maximum and the box shows the first quartile, mean, median,
and third quartile. Only the UST policy is capable of reliably preserving the urban areas as other
policies show a large variance in their performance.

Chapter 4

Fast Online Filtering

In this chapter, we introduce state uncertainty in the graph-based Markov decision process (GMDP)

model and consider the problem of producing state estimates online as measurements are taken. We

propose an approach based on variational inference, where a structured distribution is introduced

to approximate the true posterior distribution at each time step. The result is a message-passing

scheme that is tractable for the large state and observation spaces that typically arise in natural

phenomena modeled by GMDPs, and we show that our approach is faster than and comparably

accurate to loopy belief propagation. Furthermore, we also demonstrate the need for a fast and

accurate online filtering scheme by developing a certainty-equivalence approach in conjunction with

the control methods we discussed in Chapter 3. By using our filtering method, we show that our

control policies perform comparably to the case where the state is fully observable. The material in

this chapter appears in publications [31, 32].

4.1 Introduction

We begin this chapter by considering the problem of producing sequential state estimates online in

the absence of control actions for the discrete time and discrete space graph-based Markov decision

problem (GMDP) which we introduced in Chapter 2.4.1. Considering state uncertainty in the GMDP

framework is necessary to address realistic natural phenomena and online sequential inference for

large GMDPs requires approximate methods due to the large state and observation spaces. For this

reason, we leverage variational inference to derive a suitable approach to address these challenges.

The online aspect creates further challenges, as any candidate method must provide a belief at each

time step in a reasonable amount of computation time. Prior work has presented many variations

and improvements on variational inference methods, belief propagation methods, and many other

filtering methods. However, other methods typically incur additional complexity or require model

additional structure and as a result are not appropriate for the GMDP models we consider. We

52

CHAPTER 4. FAST ONLINE FILTERING 53

review relevant literature in Section 4.2.

Our filtering approach is based on introducing an approximation to the evidence-based lower

bound (ELBO), and we prove the approximation is itself a lower bound to the ELBO. We then

leverage the mean-field approximation in variational inference to derive a message-passing scheme,

which is similar in spirit to belief propagation methods. We show that our scheme is considerably

faster than comparable methods, such as loopy belief propagation, while being at least as accurate

on simulations of forest wildfires and the 2014 West Africa Ebola outbreak.

In this chapter, we also consider the problem of producing a control action, subject to a capacity

constraint, given noisy measurements. In Chapter 3, we considered this same problem under the

assumption of perfect state knowledge instead of noisy measurements. Considering uncertainty in

the control problem is necessary to apply our method to more realistic problem descriptions and

we develop a certainty-equivalence approach to provide a single framework capable of addressing

realistic phenomena which naturally contain state uncertainty. To the best of our knowledge, our

approach is the first framework to consider GMDPs with a control constraint and measurement

uncertainty.

While the partially observable Markov decision process (POMDP) framework is appropriate for

this problem, it is difficult to develop approximately-optimal methods that are suitable for the model

sizes we consider using existing POMDP tools. In addition, any candidate method must also run in

(near) real-time to be useful in the applications we consider, similar to the online filtering problem.

Therefore, we separate the problem into using our filtering approach to produce accurate state

estimates, and then using our control methods with the state estimate to determine a constrained

control action. We show that this approach is performs comparably to the control results when the

underlying state is observable.

The methods we present in this chapter are most appropriate for GMDPs with two properties

common in large-scale spatial processes, called “Anonymous Influence” and “Symmetry.” A GMDP

has Anonymous Influence if the state dynamics of a given MDP relies on the number of influencing

MDPs in particular states, and not the identity of these influencing MDPs. Symmetry refers to the

insight that value approximations for a given MDP can frequently be reused for other MDPs in the

GMDP, which greatly reduces the computational complexity of our control methods.

The remainder of this chapter is organized as follows. We review related work in Section 4.2. In

Section 4.3, we derive our message-passing filtering scheme based on variational inference. In Sec-

tion 4.4 we formulate our certainty-equivalence framework which combines our filter method with

our approximate linear programming control approach from Chapter 3. Section 4.5 present simula-

tion results demonstrating the performance of our filter and our certainty-equivalence approach in

comparison with relevant methods from literature. We provide concluding remarks in Section 4.6.

CHAPTER 4. FAST ONLINE FILTERING 54

4.2 Related Work

For the models we introduced in Chapter 2.5, the equivalent graphical model representation typically

contains many cycles. Therefore, methods that rely on a tree structure (e.g., belief propagation)

or assume few cycles cannot be directly applied. Furthermore, we are interested in producing a

full posterior distribution over states to quantify certainty in the state estimate, in contrast to a

maximum-likelihood estimate (e.g., Viterbi algorithm).

Particle filters can address some issues of online inference for GMDP models [74]. However, the

number of particles required for a given accuracy increases with the state dimension [75] which is

generally intractable for GMDPs. Proposed approaches that have addressed this issue [76, 77, 78]

are appropriate for continuous dynamical system models and not the discrete state space models we

consider. Other methods [26, 79, 27] have been applied to relatively large models but do not scale

to the model sizes we consider.

Variational inference (VI) methods have been applied to relatively large discrete models for

inference [80, 81, 82, 83]. Notably, semi-implicit VI [83] optimizes bounds of the evidence lower

bound (ELBO), but these bounds are not suitable for our approach and thus we develop our own

approximation. While some methods [84] perform approximate inference for large datasets, it is

unclear how to adapt them for online use as applications have been limited to relatively small

models [85]. Stochastic gradient methods typically require a differentiable distribution whereas we

estimate arbitrary discrete distributions. Other methods [86] are based on exploiting distribution

structure which we do not require.

Belief propagation (BP) methods can be derived using variational inference with energy approx-

imations (e.g., Bethe or Kikuchi). Loopy belief propagation (LBP) has been shown to be effective

in some discrete loopy graphical models [9] and we use LBP as a benchmark method. Generalized

belief propagation (GBP) improves upon LBP [10] but incurs additional (worst-case exponential)

complexity and is non-trivial to apply generally. We emphasize that our approach does not use these

energy approximations.

In contrast, our filtering approach uses a logarithm approximation to develop a message-passing

scheme that approximates the Kullback–Leibler divergence typically used in VI methods. The result

of this approach is a combination of the computational efficiency of message-passing methods with

the theoretical insight and effectiveness of variational inference approaches.

For the problem of computing constrained control policies under state uncertainty, POMDPs

are the most appropriate framework and methods have been proposed for structured models, based

on algebraic decision diagrams [20, 87], factored value functions [21, 88], and policy graphs [89].

Notably, Poupart et al. [87] are able to solve models with approximately 106 states, but this is

still much smaller than the models we wish to address. While prior work suggests some appealing

approximation methods, it is not clear how to adopt them for online use. Furthermore, while

exploration actions help improve the state belief, they may sacrifice some performance in controlling

CHAPTER 4. FAST ONLINE FILTERING 55

the process. We wish to maximize the effectiveness of the control since we aim to control large-scale

natural disasters like forest wildfires and disease epidemics. Contrary to POMDP methods, which

are dominated by the interleaving of filtering and control, we intentionally separate the two. This

leads to our methods being able to scale up to problems with 101192 possible discrete states, well

beyond existing POMDP methods.

4.3 Variational Message-Passing Filter Scheme

We now derive our filtering scheme. The objective of a filter at a single time step is to produce

the posterior distribution p(xt | y1:t) where y1:t is the history of measurements up to time t, y1:t =

{y1, . . . , yt}. We discussed the exact filter in Chapter 2.4.1, and we include it here for convenience,

p(xt | y1:t) ∝ p(yt | xt)
∑
xt−1

p(xt | xt−1, at−1)p(xt−1 | y1:t−1),

which is initialized by a prior at the initial time step, p(x1). Similarly, given the structure of the

GMDP model discussed in Chapter 2.4.1, the recursive Bayesian filter (RBF) [90] is,

p(xt | y1:t) ∝
(n∏
i=1

pi(y
t
i | xti)

)(∑
xt−1

p(xt−1 | y1:t−1)

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

)
. (4.1)

The above expression does not simplify to a tractable form as we allow for arbitrary graph structure.

In particular, the graphical model representation of the graph G may contain many undirected

cycles (or loops), as is the case for the lattice-based graph in our wildfire model. See Fig. 4.1 for

a graphical model representation of a simple GMDP as well as its equivalent Dynamic Bayesian

Network representation.

Variational inference (VI) methods formulate an optimization problem to approximate an in-

tractable posterior distribution [91]. The RBF (4.1) requires (
∏n
i=1|Xi|) − 1 values to specify

p(xt−1 | yt−1) and is intractable to compute for even a single time step despite the graph structure.

For example, our wildfire model with 250 total trees has 10119 total states. Therefore, we use VI to

introduce a family of distributions q(xt) ∈ Q to approximate the posterior p(xt | y1:t) which ideally

minimizes the Kullback-Leibler (KL) divergence between the two distributions. However, directly

minimizing the KL divergence is infeasible due to requiring knowledge of the posterior. Instead, a

tractable optimization is maximizing the evidence lower bound (ELBO) which indirectly minimizes

the KL divergence. The ELBO is,

ELBO = Eq
[
log p(xt, yt | y1:t−1)− log q(xt)

]
, (4.2)

where Eq indicates the expectation is taken with respect to the distribution q(xt). The ELBO is

CHAPTER 4. FAST ONLINE FILTERING 56

Figure 4.1: (top) An example GMDP consisting of three vertices, each of which represents an MDP,
where arrows indicate the mutual influence between MDPs. (bottom) The underlying graphical
model of the example GMDP, where arrows indicate influence between time steps.

derived by considering a distribution to approximate the intractable posterior. By using Jensen’s

inequality for the concave logarithm function, the following relationship holds,

log p(y1:t) = logEq
[
p(xt, yt | y1:t−1)

q(xt)

]
≥ Eq

[
log

p(xt, yt | y1:t−1)

q(xt)

]
= ELBO.

Therefore, optimizing the ELBO directly optimizes the probability of observing the history of mea-

surements. Choosing an appropriate form for the approximating distribution q(xt) results in an

optimization problem with a tractable solution, as we explain next.

We leverage the mean-field approximation where the approximating distribution is factored,

q(xt) =
∏n
i=1 qi(x

t
i), and a discrete distribution (or variational factor) is associated with each HMM

in the GHMM. This approximation reduces the representation size of the posterior and leads to,

ELBO =
∑
xt

(n∏
i=1

qi(x
t
i)
)

log p(xt, yt | y1:t−1)−
n∑
i=1

∑
xti

qi(x
t
i) log qi(x

t
i),

after substitution of q(xt) and algebraic simplification. A common approach, known as coordinate

ascent VI, finds a local optimum by iteratively optimizing each factor qi(x
t
i) while holding others

fixed. The update expression for each factor is derived by collecting the terms in the ELBO which

CHAPTER 4. FAST ONLINE FILTERING 57

involve factor qi(x
t
i),

ELBO =
∑
xti

qi(x
t
i)E−i

[
log p(xt, yt | y1:t−1)

]
−
∑
xti

qi(x
t
i) log qi(x

t
i) + other terms,

(4.3)

where E−i refers to the expectation taken with respect to the distribution q(xt) excluding factor

qi(x
t
i), i.e.,

∏n
j=1,j 6=i qj(x

t
j). For the optimization of (4.3) over a single factor, the “other terms” are

dropped as they are constant with respect to factor qi(x
t
i). As a result, the expression in (4.3) can

be rewritten as the following objective function,

Li = −DKL(qi(x
t
i) || expE−i

[
log p(xt, yt | y1:t−1)

]
), (4.4)

where DKL is the KL divergence. Since the KL divergence is non-negative and equals zero when

the argument distributions are identical, maximizing Li leads to the closed-form update expression,

qi(x
t
i) ∝ expE−i

[
log p(xt, yt | y1:t−1)

]
. (4.5)

We emphasize that arbitrary graph structure prevents simplification of the previous expression

through structure in log p(xt, yt | y1:t−1).

4.3.1 Approximating the ELBO

For GHMMs with the mean-field assumption, the coordinate ascent update (4.5) for a single time

step requires computing the joint probability,

p(xt, yt | y1:t−1) ∝ p(yt | xt)
∑
xt−1

p(xt | xt−1, at−1)p(xt−1 | y1:t−1)

∝
(n∏
i=1

pi(y
t
i | xti)

)∑
xt−1

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)ui(x

t−1
i),

(4.6)

where r(xt−1) =
∏n
i=1 ui(x

t−1
i) ≈ p(xt−1 | yt−1) is the approximate factored prior distribution.

Computing this quantity is typically intractable due to the required marginalization of all n HMMs.

Instead, a tractable computation of E−i
[
p(yt, xt | y1:t−1)

]
is possible using a message-passing

scheme. We first discuss necessary approximations to the ELBO (4.2) and then describe the scheme.

We assume the joint probability satisfies a lower bound, p(yt, xt | y1:t−1) ≥ ε for some 0 < ε < 1.

Given a bound ε, an under-approximation to the logarithm function over the interval [ε, 1] is the

line,

g(θ) =
log ε

1− ε
(1− θ) , (4.7)

and g(θ) ≤ log θ for θ ∈ [ε, 1]. Using (4.7) to approximate log p(xt, yt | y1:t−1) in (4.2) results in a

CHAPTER 4. FAST ONLINE FILTERING 58

surrogate ELBO,

ELBO = Eq
[
g
(
p(xt, yt | y1:t−1)

)
− log q(xt)

]
. (4.8)

Theorem 7. Given ε > 0 such that ε ≤ p(xt, yt | y1:t−1) ≤ 1, the surrogate ELBO (4.8) is a lower

bound to the original ELBO (4.8).

Proof. The difference between the surrogate ELBO (4.8) and the ELBO (4.2) is,

ELBO− ELBO = Eq
[
log p(xt, yt | y1:t−1)− log q(xt)

]
− Eq

[
g
(
p(xt, yt | y1:t−1)

)
− log q(xt)

]
= Eq

[
log p(xt, yt | y1:t−1)

]
− Eq

[
g
(
p(xt, yt | y1:t−1)

)]
≥ 0, ∀xt, yt

The expectation operator is linear and thus preserves the lower bound relationship of the approxi-

mation (4.7) to the logarithm function. The lower bound is valid for any combination of states xt

and measurements yt as the joint probability is bounded below by ε.

Maximizing the surrogate ELBO (4.8) over the factors qi(x
t
i) therefore indirectly maximizes the

ELBO (4.3). Following the same derivation for the ELBO, the factor objective (4.4) for the surrogate

ELBO is,

L̂i = −DKL(qi(x
t
i) || expE−i

[
g
(
p(xt, yt | y1:t−1)

)]
).

The coordinate update (4.5) changes to,

qi(x
t
i) ∝ expE−i

[
g
(
p(xt, yt | y1:t−1)

)]
∝ exp g

(
E−i

[
p(xt, yt | y1:t−1)

])
,

(4.9)

and the factors are now a function of the expectation of the joint probability, as desired, due to the

linear approximation.

Remark. Imposing a lower bound on the joint probability (4.6) precludes combinations of states

and observations that have zero probability of occurring. In practice, we round estimates of (4.6)

lower than ε up to ε, which has the effect of introducing noise into the joint probability. For large

GHMM models, probabilities naturally tend to zero, e.g., the aggregate state distribution (2.9)

and observation distribution (2.10), since the product of probabilities less than one will approach

zero. This approximation can therefore be seen as preventing the expectation in (4.9) from being

zero for all states xti prior to updating the posterior factor qi(x
t
i). In addition, after updating a

posterior factor with (4.9), state probabilities lower than ε are rounded to zero before normalizing

the distribution. This is used to preserve the idea that some state transitions must be considered

impossible, e.g., a healthy tree transitioning to on fire without any neighboring trees being on fire.

We show through numerical simulations in Section 4.5 that this approach is effective. Finally, ε is

CHAPTER 4. FAST ONLINE FILTERING 59

a tuning parameter and is chosen to be a small positive value to avoid excessively influencing the

posterior factors.

4.3.2 Message-passing Scheme

We now build a tractable message-passing scheme to estimate the quantity E−i
[
p(xt, yt | y1:t−1)

]
required in (4.9) for each coordinate update. Substituting (4.6) leads to,

E−i
[
p(xt, yt | y1:t−1)

]
∝

∑
{xtj |j∈V,j 6=i}

(n∏
j=1
j 6=i

qj(x
t
j)
)(n∏

i=1

pi(y
t
i | xti)

)
(∑
xt−1

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)ui(x

t−1
i)

)
.

(4.10)

The message-passing scheme works as follows. Each HMM in the GHMM maintains an estimate

of its posterior factor, qki (xti), and an estimate of (4.10), Eki (xti); the superscript k on these quantities,

and other quantities below, refers to the kth estimate. For each iteration k of the scheme, each HMM

i receives messages from the neighbor HMMs j ∈ N (i) and generates estimate Eki (xti). This estimate

then updates the posterior factor using (4.9). Lastly, an updated message is calculated for the next

iteration k + 1.

The development of a message-passing scheme requires recognizing a recursive structure in the

information that must be shared for each HMM to compute (4.6). We illustrate this structure and

derive the required messages by describing the first two iterations of the scheme for a given HMM i.

The first iteration E1
i considers information from the neighbor HMMs j ∈ N (i),

E1
i (xti) ∝

[
pi(y

t
i | xti)

]∑
xt−1
i

ui(x
t−1
i)

[∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

uj(x
t−1
j)

]
. (4.11)

The second iteration E2
i considers information from the neighbors N (i) and the neighbors of neigh-

bors
⋃
j∈N (i)N (j),

E2
i (xti) ∝ pi(y

t
i | xti)

∑
xt−1
i

ui(x
t−1
i)

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

uj(x
t−1
j)

∑
xtj

q1
j (xtj)

[
pj(y

t
j | xtj)

∑
xt−1
N(j)

pj(x
t
j | xt−1

j , xt−1
N (j), a

t−1
j)

∏
l∈N (j)

ul(x
t−1
l)

]
.

(4.12)

Note that the above expression assumes that HMM i is not a part of the neighbors of HMMs

j ∈ N (i), i.e., that i /∈ N (j) ∀j ∈ N (i). This is a simplifying assumption to approximately include

information from the neighbor set, as we do not assume any simplifying structure; see the Remark at

the end of Section 4.3.3. There is a common structure in the first (4.11) and second (4.12) iterations,

CHAPTER 4. FAST ONLINE FILTERING 60

as indicated by the large brackets in both expressions. Define d1
i as the following quantity,

d1
i (x

t−1
i , xti) = pi(y

t
i | xti)

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

uj(x
t−1
j).

(4.13)

The second iteration (4.11) then simplifies to,

E1
i (xti) ∝

∑
xt−1
i

ui(x
t−1
i)d1

i (x
t−1
i , xti). (4.14)

In addition, the second iteration (4.12) simplifies to,

E2
i (xti) ∝ pi(y

t
i | xti)

∑
xt−1
i

ui(x
t−1
i)

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

[
uj(x

t−1
j)

∑
xtj

q1
j (xtj)d

1
j (x

t−1
j , xtj)

]
,

(4.15)

by using information computed by the neighbor HMMs j ∈ N (i) during the first iteration of the

scheme, d1
j . Notably, the simplified second iteration (4.15) now only requires information from the

neighbors N (i), as indicated by brackets. If the neighbors produce a message to share,

m1
j (x

t−1
j) ∝ uj(xt−1

j)
∑
xtj

q1
j (xtj)d

1
j (x

t−1
j , xtj),

then the second iteration (4.15) further simplifies,

E2
i (xti) ∝

[
pi(y

t
i | xti)

]∑
xt−1
i

ui(x
t−1
i)

[∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

m1
j (x

t−1
j)

]
. (4.16)

Finally, (4.16) shares a common structure with the first iteration (4.11), as indicated by brackets.

If d2
i is defined as the following quantity for the second iteration,

d2
i (x

t−1
i , xti) = pi(y

t
i | xti)

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

m1
j (x

t−1
j),

(4.17)

then the second iteration E2
i simplifies again to,

E2
i (xti) ∝

∑
xt−1
i

ui(x
t−1
i)d2

i (x
t−1
i , xti),

which mirrors the form of the simplified first iteration (4.14). By initializing the messages as the

CHAPTER 4. FAST ONLINE FILTERING 61

prior for all HMMs, m0
i (x

t−1
i) = ui(x

t−1
i), the quantity dki can be written generally as,

dki (xt−1
i , xti) = pi(y

t
i | xti)

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

mk−1
j (xt−1

j).
(4.18)

Subsequent iterations Eki , k ≥ 3 continue to incrementally add influence from additional HMMs in

the GHMM to improve the estimate of (4.10).

Using the general form of dki , the estimate of the joint probability computed by HMM i at

iteration k is,

Eki (xti) ∝
∑
xt−1
i

ui(x
t−1
i)dki (xt−1

i , xti)

≈ E−i
[
p(xt, yt | y1:t−1)

]
,

(4.19)

and qki (xti) is updated by using the above estimate with (4.9). Lastly, the updated message that is

shared by each HMM at the next iteration is,

mk
i (xt−1

i) ∝ ui(xt−1
i)

∑
xti

qki (xti)d
k
i (xt−1

i , xti). (4.20)

Using (4.7) moves the expectation into the argument of (4.9) which allows the posterior factors to

be used for marginalization of (4.10). This property is key for creating a tractable message-passing

method. Otherwise, the quantity E−i
[
log p(xt, yt | y1:t−1)

]
is not tractable to compute as we do not

allow for simplification based on the graph structure of the GHMM, on the properties of distributions

for the posterior factors, or other properties. In addition, the estimates (4.19) are normalized to

estimate the normalization constant of the joint probability (4.6), since the approximation (4.7) does

not allow this constant to be factored out.

The previous derivation is based on a model where each MDP measurement is conditionally

independent of other MDPs given its own state, i.e., measurement models of the form p(yti | xti). In

general, MDP measurements may be influenced by other MDPs as well, and we provide a derivation

for the model p(yti | xti, xtN (i)) in the Appendix to consider a broader class of GMDP models with

state uncertainty.

4.3.3 Simplifying with Anonymous Influence

Computing dki (4.18) may be intractable as marginalizing out xt−1
N (i) requires considering

∏
j∈N (i)|Xj |

values. If a HMM has many neighbors (large |N (i)|) or if the neighbors have large state spaces |Xj |
then the computational cost may be significant. Therefore, we now exploit Anonymous Influence to

address this potential issue. If the dynamics (2.8) of a HMM rely on a count aggregator (CA) (as

shown in (2.15)), then it is useful to create a mixed-mode function (MMF) m̃k−1
i (zt−1

i) to represent

CHAPTER 4. FAST ONLINE FILTERING 62

Algorithm 4 Relaxed Anonymous Variational Inference (RAVI) for time step t

1: Input: prior factors ui(x
t−1
i), graph G, actions at−1

i , dynamics pi(x
t
i | x

t−1
i , xt−1

N (i), a
t−1
i),

measurements yti and measurement models pi(y
t
i | xti)

2: Output: posterior factors qi(x
t
i)

3: Parameters: iteration limit Kmax, lower bound ε, convergence criteria
4: for each vertex i do
5: initialize message m0

i (x
t−1
i) = ui(x

t−1
i)

6: initialize factor q0
i (xti)

7: for iteration k = 1, . . . ,Kmax do
8: for each vertex i ∈ V do
9: Receive messages {mk−1

j (xt−1
j) | j ∈ N (i)}

10: Compute dki (xt−1
i , xti) with (4.18) or (4.21)

11: Estimate Eki (xti) using (4.19)
12: Update qki (xti) by (4.9)
13: Compute mk

i (xt−1
i) with (4.20)

14: if factors qki (xti) converge then terminate early

15: return posterior factors qi(x
t
i) = qki (xti)

the received neighbor messages. Using this MMF leads to the modified form of dki ,

dki (xt−1
i , xti) = pi(y

t
i | xti)

∑
zt−1
i

pi(x
t
i | xt−1

i , zt−1
i , at−1

i)m̃k−1
i (zt−1

i).
(4.21)

The marginalization for (4.21) is now with respect to zt−1
i which has lower computational cost.

Algorithm 4, Relaxed Anonymous Variational Inference (RAVI), summarizes the approximate

filter for a single time step. The factors qi(x
t
i) are then used as the priors ui(x

t
i) for the next time

step. The main component is the message-passing scheme, which is relatively straightforward to

implement. The posterior factors are initialized to any valid discrete distribution (line 6) and the

algorithms runs for a fixed number of iterations Kmax unless the factors converge (line 14).

Remark. Our filtering approach is based on two key approximations, an approximate lower bound

on the joint probability (4.6) and a message-passing scheme to approximate the expectation of

the joint probability (4.10). Variational Inference techniques commonly rely on approximations and

simplifications, such as other bounds of the ELBO [83], the mean-field approximation [91], conjugate

distributions [92], or the presence of tractable substructures [93]. These approximations are necessary

to reduce the optimization of the ELBO to a tractable optimization. Furthermore, Loopy Belief

Propagation (LBP) approximates computing marginals on a cyclic graph with a message-passing

scheme, and has been shown to be accurate in a variety of applications [9]. Our focus in this

work is to develop a probabilistic approach with a focus on scalability and performance, which we

demonstrate with our simulation results in Section 4.5.

CHAPTER 4. FAST ONLINE FILTERING 63

4.3.4 Additional Measurement Model Derivation

We now consider measurement models of the form pi(y
t
i | xti, xtN (i)). The form of (4.10) is then,

E−i
[
p(xt, yt | y1:t−1)

]
∝

∑
{xtj |j∈V,j 6=i}

(n∏
j=1
j 6=i

qj(x
t
j)
)(n∏

i=1

pi(y
t
i | xti, xtN (i))

)
(∑
xt−1

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)ui(x

t−1
i)

)
.

The first iteration is,

E1
i (xti) ∝

[∑
xtN(i)

pi(y
t
i | xti, xtN (i))

∏
j∈N (i)

q0
j (xtj)

]

∑
xt−1
i

ui(x
t−1
i)

[
pi(x

t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

uj(x
t−1
j)

]
,

and the second iteration is,

E2
i (xti) ∝

∑
xtN(i)

pi(y
t
i | xti, xtN (i))

∏
j∈N (i)

q1
j (xtj)

∑
xt−1
i

ui(x
t−1
i)pi(x

t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

uj(x
t−1
j)

[∑
xtN(j)

pj(y
t
j | xtj , xtN (j))

∏
l∈N (j)

q1
l (xtl)pj(x

t
j | xt−1

j , xt−1
N (j), a

t−1
j)

∏
l∈N (j)

ul(x
t−1
l)

]
.

Following the same derivation as before and using the common structure in the previous two expres-

sions indicated by brackets, the quantity dki is,

dki (xt−1
i , xti) =

∑
xtN(i)

pi(y
t
i | xti, xtN (i))

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i), a

t−1
i)

∏
j∈N (i)

mk−1
j (xt−1

j , xtj).

Messages are now initialized as,

m0
i (x

t−1
i , xti) = ui(x

t−1
i)q0

i (xti).

The kth estimate update (4.9) and message update (4.20) remain the same for this case. Similar to the

derivation in Section 4.3.2, influence from additional HMMs is approximately added to estimates of

(4.10), as we do not consider special graph structure. In addition, the Anonymous Influence property

can be exploited if either the dynamics (2.8) or the measurement distribution pi(y
t
i | xti, xtN (i)) (or

both) can be represented using mixed-mode functions (MMFs).

CHAPTER 4. FAST ONLINE FILTERING 64

Algorithm 5 Certainty-Equivalence Framework

1: Offline
2: Solve linear program(s) for basis functions weights of approximate function Vw(xt) or Qw(xt).
3:

4: Online
5: for each time step t do
6: Get measurement.
7: Update state estimate using filter with measurement.
8: Solve linear program to get constrained control action for the state estimate.
9: Apply control action.

4.4 Constrained Control Under Measurement Uncertainty

Now that we have developed a process filter to produce accurate maximum-likelihood estimates of the

underlying state of a GMDP, we now describe a certainty-equivalence framework to enable the use of

our control methods. In particular, we combine our filter with our approximate linear programming

control approach, called ACSAR, which we developed in Chapter 3. Algorithm 5 provides a high-

level overview of our framework. First, a value or state-action function approximation is produced

offline by solving linear programs to determine the weights of the chosen basis functions. Second,

our fast filter produces online estimates of the process state, which is used in a linear program to

determine a control action that satisfies a capacity constraint.

4.5 Simulation Experiments

For all simulation experiments, we use the forest wildfire model with the linear-type tree dynamics,

which we introduced in Chapter 2.5. The model parameters α = 0.2 ∀i ∈ V and βi = 0.9 ∀i ∈ V
were used, with a forest size of 50×50 trees that has 101192 total states. At the initial time, all trees

are healthy except for a 4 × 4 grid of fires in the center of the forest. Simulations terminate when

there are no more trees on fire.

The measurement model for each tree pi(y
t
i | xti) is parameterized by the probability pc, which is

the probability that the ground truth tree state is observed. The other two tree states are observed

with probability 1
2 (1− pc). The measurement model is thus,

p(yti | xti) =

pc if yti = xti,

1
2 (1− pc) otherwise.

(4.22)

4.5.1 Filter Performance

We compare our filter RAVI against loopy belief propagation (LBP) which we adapt for online

sequential estimation by limiting the time history to a maximum of length H = 3. If adding a new

CHAPTER 4. FAST ONLINE FILTERING 65

1 25 50 75 100 125 150
Time

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 [%
]

observation
LBP, Kmax=1
RAVI, Kmax=1

observation median
LBP, Kmax=1 median
RAVI, Kmax=1 median

Figure 4.2: Example filter results for a single model simulation. The simulation accuracy for a
filter is the median accuracy over the entire time series. Here, LBP is the same as taking as the
measurement as the estimate, as it overlays the measurement accuracy in the plot. In contrast,
RAVI is 9% better.

time step will exceed this limit, the model is reinitialized with only the latest time step and the

prior belief is from the first time step of the previous model. For RAVI, the value of ε was chosen to

be 10−10. Both RAVI and LBP were terminated early if less than 1% of the posterior factors stop

changing their maximum likelihood belief. We also compare against taking each measurement as

the estimate for each time step, which may produce inconsistent estimates, e.g., a tree transitioning

from healthy to burnt in one time step. All filters were initialized with the ground truth.

At each time step of the simulation, the belief produced by the filter is converted to a maximum

likelihood estimate and compared to the true state. We compute the percentage of trees whose states

are correctly estimated as the “accuracy” of the estimator at that time step. The result is a time

history of accuracies for a single simulation, as shown in Fig. 4.2. We compute the median accuracy

for the time history which we call the simulation accuracy. We run 10 total simulations and report

the first quartile, the median, and the third quartile simulation accuracy. Table 4.1 shows the results

for different message passing iteration limits and measurement model accuracies pc in (4.22). While

pc = 0.9 may seem like a very accurate measurement model, there is a 0.92500 ≈ 10−115 probability

that the true ground state is observed. For the lowest limit Kmax = 1, LBP is slow and is the same

accuracy as simply taking the measurement as the estimate. While we showed in prior work that

LBP can be effective when given enough iterations [31], it does not scale to the model size in this

work and cannot be used online. For example, the 2018 Camp wildfire in Northern California at one

point was spreading at a rate of 80 acres per minute [94]. At this rate, a wildfire burns 184 acres

in 138 seconds, compared to 5.33 acres in 4 seconds. Therefore, it is critical to use a fast, accurate

online filter to enable an effective response to natural disasters.

In contrast, RAVI is effective even for the low iteration limit, and improves slightly given more

CHAPTER 4. FAST ONLINE FILTERING 66

Table 4.1: Filter results for two different measurement accuracies pc in (4.22). Data are the median
simulation accuracy for 10 simulations, and the subscript and superscript indicate the first and third
quartiles, respectively. LBP improves with more iterations but is slow while RAVI is accurate and
fast enough to be used online.

Method
Measurement Accuracy

Estimate Time (seconds)
80% 90%

Measurement 80.0+0.1
−0.1% 90.0+0.2

−0.1% —

LBP Kmax = 1

Kmax = 2

RAVI Kmax = 1

Kmax = 5

Kmax = 10

80.0+0.0
−0.0% 90.0+0.0

−0.0% 138.73

85.0+0.8
−1.1% 94.5+0.9

−0.8% 251.43

98.0+0.4
−0.3% 99.4+0.1

−0.2% 1.41

98.6+0.2
−0.2% 99.5+0.0

−0.1% 4.25

98.6+0.2
−0.2% 99.5+0.0

−0.1% 4.23

iterations. Coordinate ascent methods are known to find local optima and RAVI quickly finds a

solution which does not significantly change with more iterations. In particular, the time to produce

an estimate drops for Kmax = 10 which is likely due to slightly more accurate posterior factors at

earlier time steps in each simulation.

4.5.2 Closed-loop Filter and Controller Performance

We now present simulation results to demonstrate the performance of our closed-loop filter and

control approach, which we call RAVI ACSAR.

Given the filtering results in Table 4.1, we use the measurement and RAVI (with Kmax = 5) and

pc = 0.9 as filtering methods. We use ACSAR to generate both an approximate value function and

an approximation state-action function, and we also compare with a method from prior work for

approximate value functions. The control effectiveness parameter used was ∆βi = 0.45 ∀i ∈ V, the

discount factor was γ = 0.95, and the control capacity was C = 5.

We use the following reward and basis functions in conjunction with our approximate value

function approach,

ri(x
t
i∪N (i)) = I(xti = H)− I(xti = F)

∑
j∈N (i)

I(xtj = H),

wᵀ
i hi(x

t
i∪N (i)) = [wi]0 + [wi]1 I(x

t
i = H) + [wi]2 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H),

and we use the following reward and basis functions with our approximate state-action function

CHAPTER 4. FAST ONLINE FILTERING 67

Table 4.2: Results for two filter methods and three choices of basis approximations. Data are the
median percent of remaining healthy trees over 100 simulations, with the subscript and superscript
denoting the first and third quartile, respectively. Without control, the majority of the forest burns
down. An accurate filter is required, as otherwise control effort is wasted on trees that are believed
to be on fire but are actually healthy or burnt. Only our filtering method RAVI and our control
approach ACSAR is successful in preserving the majority of trees in the forest.

Filter Method Control Method Remaining Healthy Trees

— No Control 1.0+0.0
−0.0%

Measurement Prior Work [22] Vw(xt) 1.3+0.3
−0.3%

ACSAR Vw(xt) 2.2+0.5
−0.3%

RAVI Kmax = 5 Prior Work [22] Vw(xt) 1.9+1.7
−0.4%

ACSAR Vw(xt) 97.8+0.6
−1.0%

ACSAR Qw(xt) 97.8+0.7
−1.0%

approach,

ri(x
t
i, x

t+1
i) = I(xti = H)− (1− ati)I(xt+1

i = F),

wᵀ
i bi(x

t
i) = [wi]0 + [wi]1 I(x

t
i = H) + [wi]2 I(x

t
i = F),

atiw
ᵀ
i ci(x

t
i∪N (i)) = ati [wi]3 I(x

t
i = F)

∑
j∈N (i)

I(xtj = H).

These are the same reward and basis functions we used in Chapter 3 to demonstrate the performance

of ACSAR for the case when the underlying state is fully observable.

Table 4.2 summarizes the results for two different filtering methods in combination with the prior

work basis functions and our basis functions. We present the median percent of surviving healthy

trees, along with the first and third quartile, to summarize the performance of the overall framework.

Without control, nearly the entire forest typically burns down. Although the measurement appears

to be accurate enough for control, there are many cases where a tree is believed to be on fire but

is actually healthy or burnt. As a result, control actions are wasted as treating a healthy or burnt

tree has no effect. Only the combination of our filter and our value or state-action function basis

approximation is successful in extinguishing the wildfire. Finally, we note that a higher capacity was

used for the framework experiments (C = 5) compared to the ACSAR experiments in Chapter 3

(C = 4). More control is required to overcome the effects of occasionally wasting control effort on

trees that are not on fire, but with an accurate filter, the increase is minimal.

CHAPTER 4. FAST ONLINE FILTERING 68

4.6 Summary

In this chapter, we considered the case where the underlying state of a graph-based Markov decision

process (GMDP) cannot be fully observed. Addressing uncertainty is critical for using GMDPs to

model real-world processes and for applying decision-making algorithms. In particular, we leveraged

approximations in the variational inference framework, such as a lower bound to the ELBO, to derive

a message-passing scheme that is similar in spirit to belief propagation methods. We also exploited

Anonymous Influence to further reduce the computational complexity, which is necessary in large

graph models with many edges or large individual state spaces. We showed that our filter approach is

around ten times faster than adopting loopy belief propagation for the online filtering problem while

still maintaining high filter accuracy. Future work on filtering methods should focus on understanding

the quality of the approximations we have made, and relaxing the structural assumptions to continue

to move towards addressing general GMDP descriptions. In addition, we also constructed a certainty-

equivalence framework to show that our filter is accurate enough to enable the use of our control

methods without modifications. In particular, only a minimal increase in control effort is required

to maintain a similar level of performance compared to the case where the underlying state is

fully observable. For this framework, future work includes exploring factored POMDP methods to

consider the full decision making problem without additional simplifying assumptions. While prior

work has suggested some methods to achieve this, it is not clear how to best adopt these approaches

for online use with models that have large state and observation spaces.

Chapter 5

Learning Model Parameters with

Historical Data

So far in this thesis, we have considered graph-based Markov decision processes (GMDPs) where the

model parameters have been specified a priori. Notably, we extracted parameters for our 2014 West

Africa Ebola model using data from the World Health Organization (WHO) [55]. In this chapter,

we formalize and consider the problem of learning the parameters of a GMDP model, specifically the

state dynamics and measurement model parameters, using sequences of observations for each vertex

in the graph. There exists many models and learning algorithms for graph-based process models,

but almost all are either developed on a case-by-case basis or do not consider arbitrary influence

models, as we do in this chapter. In addition, formulating a model learning algorithm completes our

suite of algorithms for GMDPs; after learning the parameters of a model, we can directly consider

the constrained control problem (Chapter 3) with or without state uncertainty (Chapter 4). Our

approach is a coordinate-ascent style optimization approach, based on the Expectation-Maximization

(EM) framework, which approximately optimizes the log-likelihood of the observed data. The result

is a learning algorithm that is amenable to parallelization, and allows for efficient training of GMDPs

with many vertices and long observation sequences. We demonstrate our algorithm on two real-world

data sets, the daily count of Novel Coronavirus (COVID-19) cases by county in California, USA, and

Twitter interactions on a topic over several days. Our experiments show that the resulting GMDP

models explain the observed data better than a uncoupled model assumption. The material in this

chapter appears in publication [33].

69

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 70

5.1 Introduction

In this chapter, we address the model learning problem for discrete time and discrete space graph-

based Markov decision processes (GMDPs), which we introduced in Chapter 2.4.1, given a sequence

of observations for each vertex in the graph. Many application domains have been modeled as a

structured system of interacting Markov processes, such as recognition tasks [12, 95], biomedical data

[13, 96, 97], disease epidemics [29, 26], forest wildfires [29], freeway traffic [98], music theory [11, 99],

and social networks and user interactions [100, 48, 101, 102]. Structured Markov models have a

number of benefits over standard Markov model formulations as well as other stochastic process

modeling frameworks. First, structured representations can directly incorporate known structure in

the process that generated the time series data. Second, with respect to other modeling frameworks,

there is significant research on optimal control [16, 22, 25] and inference methods [26] for structured

Markov models, which allow them to be deployed in real-world applications. In particular, by

developing a model learning algorithm, we have a produced a complete algorithmic pipeline for

considering real-world processes based on historical time series data by leveraging our prior work.

We have considered the optimal control problem with capacity constraints [29, 30], the online state

filtering problem [31], and the constrained control problem under measurement uncertainty [32]. In

this chapter, we develop a model learning algorithm appropriate for large-scale GMDPs to allow us

to apply our previous methods to models learned from publicly available data.

The Anonymous Influence property, which we discussed in Chapter 2.4.2, allows us to investigate

different influence structures that may exist in real-world data. For example, to what extent does

confirmation bias play a role in user activity and interactions in social networks? For a disease

epidemic, does intra-community or inter-community transmission play a bigger role in daily case

counts? We design simulation experiments to evaluate hypotheses like these by comparing learned

GMDPs to learned models based on a completely independent process assumption.

Learning algorithms for structured Markov models, and in particular graph-based Markov mod-

els, have been previously developed in literature with early approaches based on mean-field networks

[103]. For the most part, relevant prior methods have focused mainly on relatively simple coupled

models, e.g., few number of individual processes, or different coupling assumptions, e.g., only the

observations are coupled. In contrast, we consider arbitrarily coupling between the state dynamics of

the individual MDPs when there is potentially a large number of MDPs in the GMDP. Our approach

is based on the Expectation-Maximization optimization framework which leads to an approximately-

optimal method with favorable complexity for large GMDPs.

The remainder of this chapter is organized as follows. We review relevant related work in Sec-

tion 5.2. In Section 5.3, we formulate the model learning problem as an optimization statement,

discuss the complexity of this statement, and provide background on the EM algorithm. We derive

our approximate EM approach in Section 5.4 and discuss the resulting complexity of our approach.

In Section 5.5, we introduce performance metrics for evaluating learned models, provide details on

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 71

two real-world data sets, and demonstrate the benefits of our approach over an uncoupled model

assumption. We provide concluding remarks in Section 5.6.

5.2 Related Work

Model learning algorithms have been presented in literature for a variety of application domains

and modeling assumptions, and we are particularly interested in discrete structured Markov models.

An equivalent standard hidden Markov model (HMM) formulation can be created from a GMDP

model, by taking the product space of the individual MDP state and measurement spaces. From

there, standard approaches can be leveraged such as the Baum-Welch [104] algorithm, or for more

general cases, the Expectation-Maximization (EM) framework [105]. However, these methods quickly

become intractable for moderately sized GMDPs due to the curse of dimensionality, as there is an

exponential dependence on the number of constituent MDPs. To address this challenge, the factorial

HMM (FHMM) [11] and the coupled HMM (CHMM) [12] frameworks have been formulated, along

with suitable methods to leverage model structure.

Several optimization frameworks have been applied to the learning problem for FHMMs and

CHMMs, starting with approximate EM techniques [11] which were later expanded upon [106, 107].

Notably, the FHMM framework consists of coupling only between the measurements of the individual

HMMs, and the state dynamics are independent. Other work has expanded on this limitation

by considering state couplings and applying the EM framework. Specifically, in [99], the authors

consider a hierarchical coupling structure and in [107], the authors consider a convex combination

of simpler dynamical models. While these works are less general cases of the types of models we

wish to consider, they nevertheless provide useful insight into parameter learning techniques.

The CHMM framework, in contrast, directly considers coupling interactions in the state dynam-

ics, and initial learning methods were based on efficient exact techniques in the EM framework [12].

CHMMs quickly became popular for a number of applications and several techniques were developed,

such as use sampling methods [96, 98], neural networks [95], and variable clustering [98]. Similar to

the approach by Saul et al. [107], Zhong et al. [13] derived the EM-based learning algorithm for

the case the joint transition probability in a CHMM is a linear combination of marginal probabil-

ities. Notably, Raghavan et al. [48] proposed a simple CHMM consisting of two HMMs to model

a social network, where one chain models a single user and the other chain models the aggregate

influence exerted by other users. This idea is similar to Anonymous Influence, which we make use

of in the GMDPs we consider in this chapter. The majority of these works also consider relatively

simple CHMMs, with only a few interacting HMMs, whereas we wish to consider GMDPs with a

significantly large number of MDPs.

Few works have directly considered the more general case of GMDPs, especially for the learning

problem. Forsell et al. introduced the GMDP [22] and the authors proposed solution methods

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 72

for the optimal control problem. Dong et al. considered graph-based HMMs [26] to model the

spread of an infection and the authors proposed a sampling-based inference method. To the best

of our knowledge, our approach is the first to consider the model parameter learning problem for

GMDPs. We specifically aim to address GMDPs with a large number of MDPs and arbitrary

coupling structure. Finally, we note that other works that consider different models for coupled

stochastic systems, such as other Markov model formulations [100, 101] and stochastic differential

equations [102], are typically formulated for a specific application. In contrast, we wish to consider

a more general class of models to draw connections between many different domains, and to provide

additional insight and theoretical analysis.

5.3 Model Learning Problem

For the model learning problem, we wish to determine the parameters of a graph-based Markov

decision process (GMDP), which we described in Chapter 2.4.1, with V = {1, . . . , n} and n total

MDPs. In particular, these parameters are the state dynamics pi(x
t
i | x

t−1
i∪N) and the measurement

model pi(y
t
i | xti) for each vertex i ∈ V. We represent the state dynamics for each vertex as a

time-invariant matrix Λi and refer to specific elements by,

pi(x
t
i | xt−1

i∪N (i)) = [Λi]xt−1
i∪N(i)

,xti
.

For the data sets we present in Section 5.5, we assume the measurements are real-valued, yti ∈ Rd

with dimension d, and we consider a generic measurement model in our algorithm derivation in the

following section. Furthermore, we assume that the data consists of a sequence of measurements for

each vertex, {y2
i , . . . , y

T
i | i ∈ V}, over the set of uniformly-spaced time steps starting at t = 2 and

ending at time t = T . We use the notation y2:T
i to refer to the measurements for a single vertex i

and use y2:T to refer to the measurements for all vertices. Likewise, we use x1:T
i and x1:T to refer to

state trajectories for a single vertex and for all vertices, respectively. Given a prior for each vertex

at the initial time, pi(x
1
i), and a set of measurements for every vertex, y2:T , the joint probability is,

pθ(y
2:T , x1:T) =

∏
i∈V

pi(x
1
i)

T∏
t=2

pi(x
t
i | xt−1

i∪N (i))pi(y
t
i | xti), (5.1)

where θ = {Λi, pi(yti | xti) | i ∈ V} collectively refers to the state dynamics and measurement model

parameters for all vertices.

We consider optimizing the log-likelihood of the observed data y2:T over the set of state dynamics

and measurement model parameters θ,

maximize
θ

log pθ(y
2:T) = maximize

θ
log
∑
x1:T

pθ(y
2:T , x1:T), (5.2)

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 73

which requires marginalizing all possible state sequences for every vertex in the graph from the joint

probability distribution. As a result, exactly computing this maximization is intractable. Instead,

a lower bound on this objective can be generated by using Jensen’s inequality with a distribution

over state trajectories Q(x1:T),

log
∑
x1:T

pθ(y
2:T , x1:T) = log

∑
x1:T

Q(x1:T)
pθ(y

2:T , x1:T)

Q(x1:T)

≥
∑
x1:T

Q(x1:T) log
pθ(y

2:T , x1:T)

Q(x1:T)

=
∑
x1:T

Q(x1:T) log pθ(y
2:T , x1:T)−

∑
x1:T

Q(x1:T) logQ(x1:T)

= f(Q, θ).

(5.3)

Given this lower bound, the Expectation-Maximization algorithm [105] performs coordinate ascent

in f(Q, θ),

Expectation (E-step): Qk+1(x1:T)← arg max
Q

f(Q, θk)

Maximization (M-step): θk+1 ← arg max
θ
f(Qk+1, θ)

(5.4)

The E-step in this coordinate ascent approach has a closed-form solution. It is straightforward

to show that the maximum is achieved when the approximating distribution is the conditional

distribution of x1:T , Q(x1:T) = pθk(x1:T | y2:T), at which point the lower bound becomes an equality

for a given θk. This yields the classic EM algorithm result,

θk+1 ← arg max
θ

∑
x1:T

pθk(x1:T | y2:T) log pθ(y
2:T , x1:T). (5.5)

In many cases, this approach is still computationally intractable as it requires computing the con-

ditional distribution pθk(x1:T | y2:T) as well as marginalizations of this distribution. Therefore, we

derive an approximate E-step to develop a tractable coordinate-ascent algorithm, which indirectly

optimizes the log-likelihood of the observed data.

5.4 Approximate Expectation-Maximization Approach

Given an estimate of the model parameters θk, we approximate the true distribution over state

trajectories p(x1:T) by a distribution Q(x1:T) which considers each MDP i ∈ V as an independent

process given the observations,

Q(x1:T) =
1

ZQ

∏
i∈V

pi(x
1
i)

T∏
t=2

Qi(x
t
i | xt−1

i)pi(y
t
i | xti), (5.6)

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 74

where ZQ is a normalization constant,

ZQ =
∑
x1:T

∏
i∈V

pi(x
1
i)

T∏
t=2

Qi(x
t
i | xt−1

i)pi(y
t
i | xti).

We parameterize Qi by a time-varying bias φti ∈ R|Xi|×|Xi| and,

Qi(x
t
i | xt−1

i) =
[
φti
]
xt−1
i ,xt

. (5.7)

This bias term encapsulates the information from the Markov blanket of each node i ∈ V as required

in the distribution p(y2:T , x1:T). Substituting this form of Q(x1:T) into f(Q, θk) yields,

f(Q, θk) = logZQ + EQ

[∑
i∈V

log pi(x
1
i) +

∑
i∈V

T∑
t=2

log pi(y
t
i | xti)

]

+ EQ

[∑
i∈V

T∑
t=2

log pi(x
t
i | xt−1

i∪N (i))

]
− EQ

[∑
i∈V

log pi(x
1
i)

]

− EQ

[∑
i∈V

T∑
t=2

logQi(x
t
i | xt−1

i) +
∑
i∈V

T∑
t=2

log pi(y
t
i | xti)

]

= logZQ +
∑
i∈V

T∑
t=2

EQ
[
log pi(x

t
i | xt−1

i∪N (i))− logQi(x
t
i | xt−1

i)
]

(5.8)

where several terms have canceled due to our choice of approximation. Working out the expectations

leads to the following expressions,

EQ
[
log pi(x

t
i | xt−1

i∪N (i))
]

=
∑
xt−1
i

∑
xti

pQ(xt−1
i , xti | y2:T

i)
∑
xt−1
N(i)

(∏
j∈N (i)

pQ(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti
,

EQ
[
logQi(x

t
i | xt−1

i)
]

=
∑
xt−1
i

∑
xti

pQ(xt−1
i , xti | y2:T

i) log
[
φti
]
xt−1
i ,xti

.

(5.9)

Substituting these expressions into the objective for the E-step results in,

f(Q, θk) = logZQ +
∑
i∈V

T∑
t=2

∑
xt−1
i

∑
xti

pQ(xt−1
i , xti | y2:T

i)
(
− log

[
φti
]
xt−1
i ,xti

+
∑
xt−1
N(i)

(∏
j∈N (i)

pQ(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti

)
.

(5.10)

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 75

To solve for the elements of the bias, we take the derivative of f(Q, θk) with respect to log [φti]xt−1
i ,xti

which yields,

∂f(Q, θk)

∂ log [φt]xt−1
i ,xti

=
∂ logZQ

∂ log [φti]xt−1
i ,xti

− pQ(xt−1
i , xti | y2:T

i)

+
∂pQ(xt−1

i , xti | y2:T
i)

∂ log [φti]xt−1
i ,xti

(
− log

[
φti
]
xt−1
i ,xti

+
∑
xt−1
N(i)

(∏
j∈N (i)

pQ(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti

)

=
∂pQ(xt−1

i , xti | y2:T
i)

∂ log [φti]xt−1
i ,xti

[
− log

[
φti
]
xt−1
i ,xti

+
∑
xt−1
N(i)

(∏
j∈N (i)

pQ(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti

]
,

(5.11)

where we have used
∂ logZQ

∂ log[φti]xt−1
i

,xt
i

= pQ(xt−1
i , xti | y2:T

i) to simplify the expression. Setting the

expression in brackets to zero leads to the following fixed-point equation,

log
[
φti
]
xt−1
i ,xti

=
∑
xt−1
N(i)

(∏
j∈N (i)

pQ(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti
. (5.12)

We note here that using (5.12) to update the approximating distribution represented by φti requires

enumerating T |Xi|2
∏
j∈N (i)|Xj | values, which may be intractable due to the number of observations

T , the size of the neighbor set |N (i)|, or the state space of the MDPs |Xi|. Therefore, we now

exploit Anonymous Influence to address this potential issue. By instead considering whether or not

the neighboring MDPs j ∈ N (i) are in an influencing state, the fixed-point equation becomes,

log
[
φti
]
xt−1
i ,xti

=
∑
zt−1
i

pQ
(
zt−1
i | y2:T

j , j ∈ N (i)
)

log [Λi]xt−1
i ,zt−1

i ,xti
. (5.13)

In the above expression, we make use of a count aggregator (CA) zt−1
i ∈ [0, 1, . . . , |N (i)|] to represent

the influence of the MDPs j ∈ N (i) which has significantly lower computational cost. We also note

that the distribution pQ
(
zt−1
i | y2:T

j , j ∈ N (i)
)

is computed from the distributions pQ(xtj | y2:T
j), j ∈

N (i).

Solving the fixed-point equation (either (5.12) or (5.13)) requires iterating between the following

two steps,

1. Compute the distributions pQ(xt−1
i , xti | y2:T

i) ∀i ∈ V, t ∈ [2, T] given the estimates {φti | i ∈ V};

2. Update the time-varying bias φti ∀i ∈ V, t ∈ [2, T] given an estimate of the distributions.

The first step can be efficiently computed by using the Forward-Backward algorithm [104] with the

model assumption in (5.6) which has time complexity O(T |Xi|2) for each vertex. The second step

has time complexity O(T |Xi|2
∏
j∈N (i)|Xj |), and with Anonymous Influence, this can be reduced to

O(T |Xi|2|N (i)|) for each vertex. We note that both steps can easily be parallelized and we take

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 76

advantage of this in our simulation experiments in Section 5.5. We alternate between these two steps

until successive estimates of the time-varying biases converge, and the result is the approximating

distribution Q(x1:T) =
∏
i∈V Qi(x

1:T
i). With this distribution in hand, we can turn to the M-step

to compute an update of the model parameters θ, as we discuss next.

The M-step objective is,

f(Qk+1, θ) = EQk+1

[
log p(y2:T , x1:T)

]
=
∑
i∈V

EQk+1

[
log pi(x

1
i)
]

︸ ︷︷ ︸
first term: prior

+
∑
i∈V

T∑
t=2

EQk+1

[
log pi(x

t
i | xt−1

i∪N (i))
]

︸ ︷︷ ︸
second term: dynamics

+
∑
i∈V

T∑
t=2

EQk+1

[
log pi(y

t
i | xti)

]
︸ ︷︷ ︸

third term: measurement model

,

(5.14)

where we denote the estimate from the approximate E-step as Qk+1; the entropy of Qk+1 is constant

with respect to θ once the distribution is specified and therefore is not included in the objective. The

first term of (5.14) is constant as the prior is assumed to be known and therefore can be dropped

from the objective as well. The second term of (5.14) is,

∑
i∈V

T∑
t=2

EQk+1

[
log pi(x

t
i | xt−1

i∪N (i))
]

=
∑
i∈V

T∑
t=2

∑
xt−1
i∪N(i)

∑
xti

(
pQk+1(xt−1

i , xti | y2:T
i)

∏
j∈N (i)

pQk+1(xt−1
j | y2:T

j)
)

log [Λi]xt−1
i∪N(i)

,xti
.

(5.15)

To derive an update expression for the state dynamics Λi, we introduce a Lagrange multiplier λi

with the constraint
∑
xti

[Λi]xt−1
i∪N(i)

,xti
= 1 ∀xt−1

i∪N (i), and solve the following equation,

∂

∂ [Λi]xt−1
i∪N(i)

,xti

Eq. (5.15) + λi

(∑
xti

[Λi]xt−1
i∪N(i)

,xti
− 1
) = 0. (5.16)

The result is the following update expression,

[Λi]xt−1
i∪N(i)

,xti
=

∑T
t=2 pQk+1(xt−1

i , xti | y2:T
i)

∏
j∈N (i) pQk+1(xt−1

j | y2:T
j)∑T

t=2 pQk+1(xt−1
i | y2:T

i)
∏
j∈N (i) pQk+1(xt−1

j | y2:T
j)

. (5.17)

We again note that we can exploit Anonymous Influence to reduce the computational complexity

of updating the transition distribution parameters. In particular, we can take advantage of count

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 77

Algorithm 6 Model-fitting Algorithm

1: Initialize state dynamics and measurement model parameters
2: while dynamics and measurement model parameters have not converged do
3: while time-varying bias has not converged do . Approximate E-step
4: Compute distributions using Forward-Backward algorithm
5: Update time-varying bias using (5.12)

6: Update dynamics and measurement model parameters . M-step

aggregators (CAs), in which case the update expression is,

[Λi]xt−1
i ,zt−1

i ,xti
=

∑T
t=2 pQk+1(xt−1

i , xti | y2:T
i)pQk+1

(
zt−1
i | y2:T

j , j ∈ N (i)
)∑T

t=2 pQk+1(xt−1
i | y2:T

i)pQk+1

(
zt−1
i | y2:T

j , j ∈ N (i)
) , (5.18)

where zt−1
i ∈ [0, 1, . . . , |N (i)|] summarizes the influence from the neighbors of MDP i.

Finally, the third term of (5.14) is,

∑
i∈V

T∑
t=2

EQk+1

[
log pi(y

t
i | xti)

]
=
∑
i∈V

T∑
t=2

∑
xti

pQk+1(xti | y2:T
i) log pi(y

t
i | xti), (5.19)

and the resulting update for the parameters of pi(y
t
i | xti) depends on the choice of observation

model. We derive the update expression for two different examples in Section 5.5 after we introduce

two case studies demonstrating the use of our approach. Algorithm 6 summarizes our method and

we provide details on two data sets in the next section, as well as performance metrics to evaluate

our approach in comparison to a baseline method.

5.5 Datasets and Results

5.5.1 Performance Metrics

To develop a set of performance metrics, we also learn a model based on a complete independence

assumption, where each MDP in the GMDP has a transition matrix ΛnMDP
i ∈ R|Xi|×|Xi| with no

coupling interactions with other MDPs. The same parameterization for the measurement model

pi(y
t
i | xti) is used, and we use the standard EM approach to learn the model parameters given the

measurements y2:T
i for each MDP. We refer to this model as “nMDP,” to emphasize the independence

assumption, when presenting metrics to evaluate our approach. We start by comparing the objective

value of the learning algorithms for each model assumption after reaching, which is a common metric

when learning discrete Markov models. In particular, this corresponds to the log-likelihood of the

data under the different model assumptions. We emphasize here that computing the log-likelihood

of the data, log pθ(y
2:T), is intractable for GMDPs as it requires enumerating all possible state

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 78

trajectories x1:T ∈
∏
i∈V |Xi|. Therefore, we use the log-likelihood computed from the approximate

distribution φti instead, which provides an under-approximation to the log-likelihood under the true

distribution based on the GMDP model.

We also introduce additional metrics based on the Kullback-Leibler (KL) divergence to provide

additional analysis and insight,

fKL
i =

∑
xt−1
i∪N(i)

∑
xti

[Λi]xt−1
i∪N(i)

,xti

(
log [Λi]xt−1

i∪N(i)
,xti
− log g(xt−1

i∪N (i), x
t
i)
)
, (5.20)

where g represents a comparison or baseline distribution. We compute this metric for each MDP

and then present the results as a box-and-whisker plot to draw conclusions and gain insight into the

learned model. We consider two cases for the distribution g, starting with,

g(xt−1
i∪N (i), x

t
i) =

[
ΛnMDP
i

]
xt−1
i ,xti

, (5.21)

which uses the transition model from the nMDP model. If the metric fKL
i has little spread in values

for this case, then the learned GMDP does not represent significant coupling interactions between

MDPs, and the independence assumption is more appropriate for the data. For this case, we refer

to the metric as “coupling strength” and denote it f coupling
i . We also consider,

g(xt−1
i∪N (i), x

t
i) =

1∏
j∈N (i)|Xj |

∑
xt−1
N(i)

[Λi]xt−1
i∪N(i)

,xti
, (5.22)

which averages the learned dynamics model over configurations of neighbor states for a given MDP.

We use this average distribution as a comparison to determine if the influence of neighboring MDPs

is not significant, i.e., the dynamics of an MDP do not change based on the neighbor MDP states.

We again use a box-and-whisker plot to present this metric for a learned GMDP, we refer to the

metric as “influence strength” and denote it f influence
i .

5.5.2 Novel Coronavirus 2019 (COVID) in California

We use the GMDP model we introduced in Chapter 2.5 to model the 2020 COVID pandemic in

California, USA. The data consists of a daily case count for all 58 counties in California, normalized

by county population, from March 18th, 2020 to October 28th, 2020 [108]. The initial belief of each

county is based on the case count at the first time step. If there are a non-zero number of initial

cases, y2
i > 0, then the prior belief is,

pi(x
1
i) =

0.4 if x1
i = Alert Level 2,

0.2 otherwise.
(5.23)

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 79

If there are no initial cases, y2
i = 0, then the prior belief is,

pi(x
1
i) =

0.4 if x1
i = Alert Level 0,

0.2 otherwise.
(5.24)

We use the following observation model based on the Normal distribution,

pi(y
t
i | xti = s) = Normal(yti ; s, σis)

= σ−1
is (2π)−1/2 exp

(
− 1

2
(yti − s)2σ−2

is

)
,

(5.25)

where the mean of the Normal distribution is the state value, xti ∈ Xi = {0, 1, 2, 3}, and the standard

deviation associated with each state value are the unknown parameters. Furthermore, we also scale

the mean values by a constant c = 4000, to correlate the Alert Level of a county with the expected

number of daily cases scaled by population. The third term in (5.14) is then,

∑
i∈V

T∑
t=2

EQk+1

[
log p(yti | xti)

]
=
∑
i∈V

T∑
t=2

∑
s∈Xi

pQk+1(xti = s | y2:T
i)

(
log σ−1

is + log(2π)−1/2

− 1

2
(yti − s)2σ−2

is

)
.

(5.26)

Taking the derivative of this expression with respect to σ−1
is and setting it equal to zero yields,

T∑
t=2

pQk+1(xti = s | y2:T
i)

(
σis − (yti − s)2σ−1

is

)
= 0, (5.27)

and the resulting update is,

σ2
is =

∑T
t=2 pQk+1(xti = s | y2:T

i)(yti − s)2∑T
t=2 pQk+1(xti = s | y2:T

i)
. (5.28)

We present the objective value of the learning algorithm for the GMDP and nMDP models, along

with the coupling and influence metrics, in Fig. 5.1. First, the negative log-likelihood plots show

that the GMDP model assumption has a significantly lower value at convergence, which corresponds

to a higher likelihood of observing the data. Furthermore, the coupling strength f coupling
i and the

influence strength f influence
i are non-zero for a significant fraction of counties in California. The

spread of values in both metric shows that our GMDP model is able to learn a combination of

coupled and uncoupled models for different counties, in order to best fit the observed data. An

uncoupled model may be more descriptive based on the measures taken by a county, such as mask

mandates, limiting gathering sizes, and requiring quarantines for incoming travelers, which limits

the influence of neighboring counties on the daily case count. At this point, we can investigate the

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 80

Figure 5.1: (left to right) Comparison of the objective values for the GMDP and nMDP model

learning algorithms, and the plots of the f coupling
i and f influence

i metrics, for the COVID-19 data
set. In the box plots, the orange line is the median, the green triangle is the mean, and the caps
refer to the minimum and maximum values. For the coupling strength, the minimum is 0.00, the
mean is 980.72, and the maximum is 5666.00. For the influence strength, the minimum is 0.00, the
mean is 2.35, and the maximum is 10.94. The GMDP model assumption better explains the data
by explicitly including coupling interactions, as indicated by all of the metrics.

learned models further to understand what measures are particularly effect in reducing the infection

rate.

5.5.3 Tweets on a Topic

We use the GMDP model we introduced in Chapter 2.5 to model user opinions on a single topic

based on user activity. We discretize time into eight hour intervals, and for each interval, the data

consists of the number of tweets posted and the sentiment of the tweets. We use an off-the-shelf text

classifier [109] to generate the sentiment for tweets and we consider an observation model based on

the Geometric and Normal distributions,

pi(y
t
i | xti = s) = Geometric(kti ;hi)Normal(dti; s1kti , σisIkti)

= (1− hi)h
kti
i (2π)−k

t
i/2|σ2

isIkti |
−1/2 exp

(
− 1

2
(dti − s1kti)

ᵀ(σ2
isIkti)

−1(dti − s1kti)
)
,

(5.29)

where kti is the number of tweets posted, hi is the user posting rate, and dti ∈ Rkti represents

the tweet sentiments arranged as a vector. For intervals where a user does not post, kti = 0, the

observation model reduces to pi(y
t
i | xti = s) = 1 − hi. We translate the user states into discrete

values in order to use them as the means of the Normal distribution, xti ∈ Xi = {−−,−, ◦,+,++} =

{−0.5,−0.25, 0, 0.25, 0.5}, as text sentiment is restricted to the interval [−1, 1]. In the measurement

model, the only unknown parameters are the posting rate and the standard deviation associated

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 81

with each user state. The third term in (5.14) works out to,

∑
i∈V

T∑
t=2

EQk+1

[
log pi(y

t
i | xti)

]
=
∑
i∈V

T∑
t=2

∑
s∈Xi

pQk+1(xti = s | y2:T
i)

(
log(1− hi) + kti log hi

+ log(2π)−k
t
i/2 + log|σ2

isIkti |
−1/2

− 1

2
(dti − s1kti)

ᵀ(σ2
isIkti)

−1(dti − s1kti)
)

=
∑
i∈V

(
log(1− hi)(T − 1) + (log hi)

T∑
t=2

kti

+

T∑
t=2

∑
s∈Xi

pQk+1(xti = s | y2:T
i)

(
log(2π)−k

t
i/2

+ kti log σ−1
is −

1

2
(dti − s1kti)

ᵀ(dti − s1kti)σ
−2
is

))
.

(5.30)

Taking the derivative of (5.30) with respect to the posting rate hi and setting it equal to zero gives,

− T − 1

1− hi
+

1

hi

T∑
t=2

kti = 0, (5.31)

which results in the closed-form solution,

hi =
1

T−1

∑T
t=2 k

t
i

1 + 1
T−1

∑T
t=2 k

t
i

. (5.32)

Taking the derivative of (5.30) with respect to σ−1
is and setting it equal to zero gives,

T∑
t=2

pQk+1(xti = s | y2:T
k)

(
ktiσis − (dti − s1kti)

ᵀ(dti − s1kti)σ
−1
is

)
= 0, (5.33)

and the resulting update is,

σ2
is =

∑T
t=2 pQk+1(xti = s | y2:T

i)(dti − s1kti)
ᵀ(dti − s1kti)∑T

t=2 pQk+1(xti = s | y2:T
i)kti

. (5.34)

Our data set consists of tweets on the topic of fake news from February 9th, 2017 to March 18th,

2017 [110]. The initial belief for each user is uniform over user’s possible states, and we remove

users with less than 50 tweets to ensure each user has enough data to learn an accurate model of

their posting behavior. We also remove tweets with a sentiment less than ±0.05 to eliminate tweets

with an undetermined sentiment, which would incorrectly indicate that a user is neutral on a topic.

Finally, we limit the number of neighbors for each user to at most five, and then add edges to the

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 82

three users with the most tweets. We use this process to consider the effect of users seeing other

users post about the topic without explicitly responding or mentioning the top posters. We present

the objective value of the learning algorithm for the GMDP and nMDP models, along with the

coupling and influence metrics, in Fig. 5.2. For the log-likelihood, both the GMDP and the nMDP

models approximately achieve the same value at convergence. However, the objective value can

be misleading, as we are using an approximation to the true log-likelihood of the data under the

GMDP model assumption, which is intractable to directly compute. Therefore, we have introduced

additional metrics to provide further insight and analysis for the learned models. In particular, the

coupling and influence metrics show that the coupled interaction model provided by the GMDP

better explain the observed data than the independent model assumption for a number of users. On

the other hand, some users are simply posting due to the aggregate activity on the topic, and not

because of particular interactions with other users.

At this point, it is possible to investigate which users are more responsible for driving posting

activity and user interactions on a given topic, compared to others which are simply expressing their

opinion. For this data set, we note that it is difficult to determine sentiment from tweets [111], due

to the 140 character limit and the frequent use of abbreviations, slang, and emojis. However, there

are no easily available off-the-shelf text sentiment classifiers specifically for tweets, which limits the

quality of the data given to the learning algorithms, and accurately determining tweet sentiment

remains an open research question. We believe that improving the sentiment analysis will directly

benefit our framework, and we intend to investigate this aspect further in future work.

5.5.4 Data Considerations

We emphasize that using real-world data to learn models contains a number of challenges, which

remain open research questions in literature. Data typically contains various types of bias, such

as: skew towards certain demographics, control actions influence the observations and cannot be

separated, and high-order interactions effects are difficult to accurately describe in discrete Markov

models. Furthermore, models learned from historical data may have limited insight for long-term

future predictions, since influence and coupling assumptions that fit prior data may not hold in the

future. Nevertheless, our learned models provide insight into which effects or details should be further

investigated. In particular, we have proposed a modeling framework where it is straightforward to

specify higher-order coupling effects than typically considered in prior work. By building upon

the Markov model foundation, which has been thoroughly studied in prior work, we aim to provide

additional modeling tools and to also leverage previous validation and verification analysis techniques

in future work, as we discuss next in our concluding remarks.

CHAPTER 5. LEARNING MODEL PARAMETERS WITH HISTORICAL DATA 83

Figure 5.2: (left to right) Comparison of the objective values for the GMDP and nMDP model

learning algorithms, and the plots of the f coupling
i and f influence

i metrics, for the fake news Twitter
data set. While both methods achieve the same objective value (the trajectories are overlaid in the
plot), the coupling strength and influence strength metrics indicate that the GMDP model better
explains the correlations between different users’ behavior based on their posting activity. In the
box plots, the orange line is the median, the green triangle is the mean, and the caps refer to the
minimum and maximum values. For the coupling strength, the minimum is 0.00, the mean is 111.79,
and the maximum is 3779.15. For the influence strength, the minimum is 0.00, the mean is 0.16,
and the maximum is 1.45. We note that it is difficult to extract sentiment from tweets which limits
the insights from the learned models.

5.6 Summary

In this chapter, we developed a model learning algorithm appropriate for large GMDPs with arbitrary

coupling structure. We leverage the Expectation-Maximization framework to derive our approach

which approximately optimizes the log-likelihood of the observed data. Our approach enables the use

of GMDPs with real historical data and in conjunction with our other algorithms, provides a complete

set of methods to use GMDPs in a variety of problem settings. In comparison to current methods in

literature, we directly consider the case of arbitrary coupling structure. Our experiments with two

data sets show that our learned models better explain the observed data compared to a independent

model assumption. In addition, we are able to learn non-trivial influence structures which provide

insight into real-world processes. In future work, we plan to consider hybrid models, where identity

is important for a subset of MDPs in the GMDP, to further improve the representational power of

GMDPs. Additional case studies in different application domains would also help validate the use

of GMDPs. While prior work has considered relatively small coupled models, this work provides

insight into other learning approaches which may have improved theoretical analysis. Given the

popularity of Markov models, adapting prior methods for verification and validation is critical for

understanding the accuracy and limitations of our learned models.

Chapter 6

Interacting with GMDPs using

Teams of Robots

In previous chapters, we presented algorithms for controlling GMDPs with capacity constraints,

estimating the state online of a GMDP, and learning the parameters of a GMDP. In this chapter,

we develop frameworks which coordinate a cooperative team of autonomous agents that interact

with a process modeled by a GMDP in order to consider more practical implementations of our

algorithms. We present three frameworks that utilize a cooperative team of autonomous for (i)

containing and extinguishing a forest wildfire, (ii) monitoring an aggressive forest wildfire, and (iii)

solving a more general statement of team problems. Each of our frameworks is validated through

extensive simulation experiments and the performance is compared baseline heuristics and other

methods in prior work, when relevant.

We begin by presenting in Section 6.1 a reinforcement learning (RL) framework to generate a

decentralized policy for a cooperative team of unmanned aerial vehicles (UAVs) to control a forest

wildfire [34]. Each agent has motion constraints, can only view a limited area of the forest, passively

communicate with other UAVs, and carries a limited amount of fire retardant. We leverage recent

advances in model-free RL to develop a centralized training procedure that produces a network

that compactly represents a decentralized control policy for the UAVs. Furthermore, the resulting

solution scales independently of forest size and total number of UAVs. We show through extensive

simulation experiments that the policy enables effective cooperation and outperforms a baseline

heuristic.

Next, we present in Section 6.2 a novel schedule scheme to enable a team of UAVs to perform

persistent surveillance of an aggressive wildfire [35]. By aggressive, we mean a wildfire which spreads

at a comparable rate to the speed of the UAVs, which means travel time to areas of interest cannot

be neglected. Furthermore, we assume that UAVs can only communicate when physically very close

84

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 85

together, as robust long-range communication networks are not viable in disaster response scenarios.

Our framework is based on information-theoretic optimization for teams, such as the team orienteer-

ing problem, and the result is a scheme which coordinates UAVs meeting to share information and

effectively coordinate. Our scheme can be executed in a decentralized manner, and we show that

our approach is effect through simulation experiments. In particular, our framework outperforms

the case of zero communication and can be comparable to the case of unlimited communication.

Finally, we present in Section 6.3 a general optimization statement that describes cooperative

team problems [36]. We use this problem statement to motivate general distributed optimization

methods that a team of autonomous agents can use to recover the optimal centralized solution. In

particular, we assume there is a communication graph which describes communication links between

agents and that a limited amount of information can be shared through communication. We develop

solution methods based on the alternating direction method of multipliers framework combined with

consensus ideas. We show through simulation experiments on synthetic data and on a persistent

surveillance problem that our methods recover the optimal centralized solution and outperform

comparable methods in literature.

The material in this chapter appears in publications [34, 35, 36].

6.1 Distributed Deep Reinforcement Learning for Persistent

Control

Forest fires are responsible for a significant amount of economic, property, and environmental damage

all over the world. Studies have shown that the economic impact alone can reach over a billion

US dollars per incident for suppression efforts, environment rehabilitation, and public assistance

[112]. Monitoring and controlling forest fires is therefore an appealing application for aerial robotics

as terrain, weather, and other factors can pose serious challenges for firefighters – including the

potential for loss of life. An attractive solution is to use autonomous multi-agent systems, such as a

team of Unmanned Aerial Vehicles (UAVs), in this domain. UAVs are agile, potentially disposable,

can be deployed in large numbers, and can form a distributed system, eliminating the need for a

central decision maker. Information from a multi-agent system can be provided to firefighters to

assist their planning, monitoring, and control efforts.

In this section we first introduce an agent model that includes motion, communication, and

action constraints. We discuss task decomposition to address problem complexity and describe

a hand-tuned heuristic to generate control inputs for the UAV agents. We then develop a novel

extension of Q-learning for multi-agent systems to create a decentralized and scalable solution by

which a network of aerial agents can effectively contain the spread of a forest wildfire. Specifically,

the solution scales independent of the forest size and the number of agents. Simulation and hardware

experiments validate its efficacy.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 86

6.1.1 Related Work

Prior work on the application of robotics to assisting with forest fires has focused on the modeling

and monitoring aspects. A number of models have been introduced to describe the spread of a

wildfire, including elliptical PDE models [113], vector propagation models using spatial data [114]

(used by the US Department of Agriculture Forest Service), and stochastic lattice-based models

[66, 115].

Several methods have been published on using autonomous agents to surveil and monitor a forest

fire. Methods include using computer vision techniques to detect a fire [116, 117] or to monitor a fire

and relevant data of the fire (e.g. temperature and flame height) [118, 119, 120, 121]. Decentralized

monitoring systems with UAVs have also been investigated [122]. In general, persistent surveillance

is a broad research topic with methods that could be applied to forest fire models.

Surprisingly, there are relatively few published methods for autonomous agents to control a forest

fire. One method [123] constructs a fully decentralized method using potential fields and the agents

are able to surround and suppress a wildfire. Another method [124] uses a centralized formulation

with one agent collecting observations that are sent to a base station which then determines actions

for the other agents. In [66], the authors also develop two centralized policies that are idealized

and provide conditions necessary for agents to stabilize a fire under their model. Other work has

posed forest fire fighting as a centralized resource allocation problem without autonomous agents

[125, 126].

Reinforcement learning (RL) approaches also mainly focus on persistent monitoring of forest

fires. Ure et al. [127] developed an online decentralized cooperative method for agents to build

an estimated model of a forest fire process. Julian et al. [128] proposed two deep reinforcement

learning methods for fixed-wing aircraft with imperfect sensors to maximize sensor coverage of a

forest fire. The application of RL in prior work for modeling and sensor coverage [127, 128] provided

inspiration for using RL methods to produce a decentralized policy for agents to suppress a forest fire.

Bertsimas et al. [129] applied Monte Carlo tree search and rolling horizon optimization to forest fire

management for a centralized decision maker and assume suppression resources can instantaneously

be assigned to any location.

Model-based RL is the appropriate framework for solving the described problem, but exact meth-

ods and many approximate methods either cannot address the domain complexity or require recom-

puting solutions when changing problem parameters. To address domain complexity, we leverage

task abstraction which has been shown to be effective for improving long-term planning [130, 131].

For scalability, we propose a novel extension of deep Q-learning.

6.1.2 Agent Model

We use the lattice-based forest wildfire model we introduced in Chapter 2.5, where there are a total

of n trees arranged on a lattice. The graph vertex set is V = {1, . . . , n} and edges for each tree exist

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 87

between itself and its lattice neighbors.

The UAV agent model includes motion constraints, communication limits, and simple sensors.

We use the index k to refer to the kth agent, as in the wildfire model we use i to refer to the ith

tree. There is a total of C agents operating in the domain and the UAVs are considered agile in the

sense that ulimit actions can be executed before the forest wildfire model is updated.

Due to the disparity of time steps for model updates and time steps for agent actions, the time

index τ is used when referring to time-dependent agent quantities.

1. Motion. Each agent moves on the same plain square two-dimensional lattice Z2 as the forest.

The agent is also not constrained to stay within any boundaries — it can move infinitely

away from the lattice in any direction. The position of an agent k is represented by pτk ∈ Z2.

The agent action space contains nine possible actions which modify the position, pτ+1
k =

pτk + uτk with uτk ∈ U and,

U =

{[
i

j

] ∣∣∣ (i, j) ∈ {−1, 0, 1} × {−1, 0, 1}

}
.

Note that action set A refers to actions that influence the transitions of the forest and action

set U refers to actions that modify the position of agents.

2. Sensors. Each agent is equipped with two sensors.

i. Camera. A downward facing Infrared (IR) camera captures the states of an h × w sized

grid of trees. The agent is located at the center of the image and if images are taken at

an edge of the forest, the image is padded with healthy trees.

ii. Radio. The agents are notified of the initial average position qfire of the trees on fire over

the entire forest, qfire =
(∑n

i=1 I(x0
i = F)qi

)
/
∑n
i=1 I(x0

i = F).

Example sensor data for an agent is shown in Figure 6.1.

3. Communication. Agents communicate with the nearest agent. For example, agent k com-

municates with

jcomm = arg min
j=1,...,C∧j 6=k

‖pτk − pτj ‖2.

Agent jcomm transmits the position pτjcomm
and the label jcomm to agent k; no other information

is shared. Agent k does not transmit information to agent jcomm unless agent k is also the

nearest agent. The nearest agent may change at each time step τ as the agents move on the

lattice. Figure 6.1 provides an example of the communication model for three agents.

4. Control action. Fire retardant is applied to a tree when any agent’s position coincides with

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 88

Figure 6.1: (left) Example sensor data for an agent (blue circle): an image (here, h = w = 3) of tree
states and the initial fire location qfire (red circle). In the image, color indicates tree state: green is
healthy, red is on fire, black is burnt. (right) Example communication based on distance for three
agents (red, green, and blue circles). Arrow directions show the flow of information and line color
indicates the broadcasting agent.

a tree on fire,

ati =

1 if xti = F ∧ pτk = qi ∧ τ ∈ [t, t+ ulimit],

0 otherwise.

The effect of retardant does not compound if multiple agents move to the same tree within

the interval [t, t+ ulimit] and therefore agents will need to cooperate to avoid wasting control

effort. A retardant capacity can be specified, dk ∈ Z>0, to limit the number of trees on fire an

agent can dump retardant on. If an agent runs out of retardant, the agent returns to a base

station near the edge of the forest, its retardant capacity is refilled, and it is re-deployed into

the forest at the station.

We assume that agents without retardant have a greater maximum speed and that refilling

takes a negligible amount of time. Therefore, a depleted agent is refilled and re-deployed at

the station at the next time step τ .

5. Memory. Agents track if their position has coincided with a tree that is on fire or burnt,

ck ∈ {True,False}, which is determined by the image data. Initially, ck is False and the value

is changed only once,

ck = True if xti ∈ {F,B} ∧ pτk = qi ∧ τ ∈ [t, t+ ulimit] ,

for any time t during the forest fire model simulation.

The agent modeling assumptions can reasonably be implemented on a sub-class of UAVs. Mellinger

et al. [132] describe a 3D trajectory and altitude controller for quadrotor vehicles. The quadrotors

can be commanded to maintain a constant altitude and move laterally to achieve the discrete motion

described in the agent motion model.

Cameras and High Frequency (HF) radios are compact and relatively inexpensive sensors and

many quadrotor platforms incorporate both for various applications. We assume the agents are

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 89

distributed throughout a forest (e.g. uniformly or randomly) for a task, such as persistent monitoring,

prior to the fire ignition. The fire ignition location is assumed to be known and is sent to the agents

through HF broadcasting.

Dense communication networks (e.g. all-to-all communication) with high bandwidth are possible

but are difficult and costly to implement. Instead, a passive method is described where agents can

continually broadcast their position and index label and receive the same information via HF radios.

The communication model is relatively low bandwidth and does not require reciprocal data transfer

or acknowledgment of transmission or reception, resulting in less susceptibility to errors. Lastly, we

assume a practical amount of fire retardant can be stored on-board the agents; enough to dump

retardant on 10 trees before returning to the base station for a refill. Although the forest fire and

agent models are highly abstracted, we believe they retain the key attributes for designing a fire

fighting policy for a team of UAVs.

6.1.3 Heuristic Approach

We now describe a hand-tuned method to generate actions for agents that does not depend on the

forest size or the number of agents.

Task Decomposition. In Chapter 2.5.4 we discussed the difficulty in finding solutions to the

GMDP model with an agent model, which includes agent motion, sensing, and communication

constraints. Therefore, we decompose the problem at the agent level. Each agent is tasked with

completing two objectives, described as

1. approach the initial forest fire location,

2. move to suppress the forest fire.

The first task is equivalent to finding the shortest path between an agent’s position pτk and the

location qfire. Agent communication and cooperation are ignored to further simplify the task. The

solution is described in closed-form as,

uτk = arg min
u∈U
‖pτk + u− qfire‖2. (6.1)

Once an agent moves “close enough” to the initial fire location, the agent switches to the second

task. The memory ck determines when to switch tasks as ck describes when an agent first encounters

a tree that is not healthy, an indication that the agent is near a fire.

Algorithm Description. Algorithm 7 describes the heuristic that generates actions for both tasks.

The method uses information derived from an agent’s sensors which is encapsulated in a feature set

denoted sτk for notational convenience. The agent feature set sτk consists of the following quantities.

1. Memory cτk.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 90

2. Image Iτk . The camera image is vectorized to Iτk ∈ Rhw.

3. Avoidance eτk. Agents use right-of-way priority by comparing their index with the nearest

agent’s index. The value is eτk = True if k > jcomm and False otherwise. Agents with higher

indices are responsible for yielding to agents with lower indices.

4. Rotation vector vτk . The vector vτk,cen = pτk − qfire informs the agent of its relative position

with respect to the initial fire location. The rotation vector is vτk = R⊥v
τ
k,cen where R⊥ is the 2D

rotation matrix that rotates a vector through −90 degrees. The vector vτk is constructed so that

always taking the action uτk = arg min
u∈U
‖u/‖u‖2−vτk‖2 will continuously move the agent clockwise

about the location qfire.

5. Nearest agent vector wτk . The vector wτk = pτk−pτjcomm
informs the agent of its relative position

with respect to the closest agent. If agent k is responsible for avoiding agent jcomm (determined

by eτk) then it should not move within a safety radius of one of agent jcomm.

The feature set sτk is formed by the concatenation of this information into a vector,

sτk =
[
ck Iτk vτk eτk wτk

]ᵀ
. (6.2)

Figure 6.2 provides an example of the direction vectors. Both the heuristic and the deep RL method

proposed in Section 6.1.4 use this feature set as the only input for each agent to determine its control

action.

Once ck = True, the heuristic first proposes to simply rotate clockwise about the fire center (line

4). The purpose of this action is to make each agent “patrol” and apply retardant along the set of

“boundary” trees of the forest fire.

Definition 7 (Boundary tree). A tree i is considered a “boundary tree” if xti ∈ {F,B} and∑
j∈N (i) I(xtj = H) > 0.

The rotational action may sometimes skip applying retardant to trees on fire since the fire grows

stochastically. Therefore, the heuristic also considers two “left” actions defined relative to the

proposed action so agents can move appropriately as the fire grows (lines 5 and 7). These actions

are defined relative to an action uτk =
[
i j

]ᵀ
as,

uleft,1 =

[
−j
i

]
,

uleft,2 =
1

max{|i+ j|, |i− j|, 1}

[
i− j
i+ j

]
.

On the other hand, the agent may move far away from boundary trees if the fire does not grow

as quickly as anticipated. A “right” action is taken when the agent believes the proposed action

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 91

Figure 6.2: (left) Example direction vectors vτk,cen, vτk , and wτk for a given agent (gold circle). The
red circle denotes the fire ignition location qfire and the blue circle denotes the nearest agent to the
given agent. (right) In the heuristic, the agent considers left and right actions (red and blue vectors)
relative to an action uτk.

would move it to a healthy tree that is far from a boundary tree. Specifically, if the new position

pτ+1
k = pτk + uτk coincides with a healthy tree xti that has many nearby healthy trees, then the

proposed action is switched to a “right” action (line 9), defined relative to uτk as,

uright =

[
j

−i

]
.

We define “many nearby healthy trees” as the condition,

I
(∣∣{j ∈ V | 0 < ‖qj − pτ+1

k ‖2 ≤ 2 ∧ I(xtj = H)
}∣∣ ≥ 6

)
,

which represents the agent moving to a healthy tree which has at least six healthy neighboring trees

in its Moore neighborhood. Figure 6.2 shows an example of left and right actions for a proposed

action. Lastly, the agent chooses to “stop” if eτk = True and it will move within the safety radius of

the nearest agent (line 11), where the stop action is u =
[
0 0

]ᵀ
.

We stress that this complex hand-tuned heuristic encapsulates significant expertise from the

authors. It is then noteworthy that the deep RL approach we describe next produces a policy that

significantly outperforms this heuristic.

A reward function for the second task is described in Algorithm 8 and is used for the deep RL

approach. Additional performance metrics are presented in Section 6.1.5 to evaluate both methods.

Agents are rewarded for applying control to boundary trees on fire (line 4) as well as moving near the

boundary (line 6). Agents are heavily penalized if they fail to avoid collisions (line 9) and rewarded

if they move further away from other agents (line 11). Agents are rewarded for moving clockwise

about qfire (line 13), which is the condition,[
0 0 −1

]
·
(
vτk,cen × uτk/‖uτk‖2

)
≥ 0.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 92

Algorithm 7 Heuristic

1: Input: agent feature set sτk
2: Output: agent action uτk
3: if ck = True then
4: uτk = arg min

u∈U
‖u/‖u‖2 − vτk‖2

5: if tree on fire to “left” of agent then
6: uτk = move to tree on fire
7: else if burnt tree to “left” of agent then
8: uτk = move to burnt tree
9: else if agent moves and sees many healthy trees then

10: uτk = move “right”

11: if eτk ∧ ‖wτk + uτk‖2 ≤ 1 then
12: uτk = “stop”

13: else uτk = use Equation (6.1)

Algorithm 8 Agent Reward

1: Input: agent feature set sτk and action uτk
2: Output: agent reward rτk
3: Initialize rτk = 0
4: if agent moved to a boundary tree on fire then
5: rτk = rτk + 1 else rτk = rτk − 2
6: else if agent moved to a healthy tree then
7: if tree has at least one on fire or burnt neighbor then
8: rτk = rτk + 0.5 else rτk = rτk − 1

9: if eτk ∧ ‖wτk + uτk‖2 ≤ 1 then
10: rτk = rτk − 10

11: if eτk ∧ ‖wτk‖2 ≤ 1 ∧ ‖wτk + uτk‖2 > 1
12: then rτk = rτk + 1
13: if agent moved “clockwise” then rτk = rτk + 1

6.1.4 Multi-Agent Deep Q Network

Our deep RL approach generates a decentralized solution that outperforms the heuristic and scales

independently of the forest size and the number of agents. A neural network is used to represent

the state-action utility function Q following [133]. The network outputs values for all agent actions

uτk ∈ U given an agent feature vector sτk and the architecture consists of three fully-connected layers

with ReLU activations, represented schematically in Figure 6.3.

The training algorithm for the Multi-Agent Deep Q Network (MADQN) is given in Algorithm 9.

Every episode consists of specifying an initial set of trees on fire and agent locations with an example

shown in Figure 6.4. Each agent contributes experiences
(
sτk, u

τ
k, r

τ
k , s

τ+1
k

)
to shared memory once ck

= True (centralized training). Experience replay is used to break up correlations between experiences

(line 18). After training, agents use the same copy of the final trained network to generate actions

online (decentralized execution).

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 93

Figure 6.3: MADQN network architecture. The input is an agent’s feature set sτk (black rectangle).
Hidden layers are fully-connected with ReLU activations (blue rectangles). The output is a vector
containing a value for each action uτk (red rectangle).

Figure 6.4: Details for MADQN simulation experiments. (both) Red cells are trees on fire and black
cells are burnt trees. (left) Sample initial condition with random initial agent positions (blue circles)
and a 4 × 4 grid of trees on fire. Base station is shown as a gold square. (right) Comparison of
heuristic (blue) and MADQN (green) paths. Agent number indicates initial position and ×’s are
final positions.

Target networks [133] are used for stable training of the neural network (line 19). In addition,

simulation episodes are capped at a fixed number of model updates, set by tlimit (line 5), to bound

the maximum cumulative reward.

The training algorithm linearly anneals the exploration rate ε from εinit to εfinal over zlearn updates

of the network. The heuristic (Algorithm 7) is used to populate the replay memory with experiences

before network training starts. The heuristic also provides guided exploration of the state space by

occasionally providing agent actions (line 10)

6.1.5 Simulation and Hardware Experiments

Following [66], the spatial spreading parameter is α = 0.7237 and the fire persistence parameter is

β = 0.9048. The effect of retardant is ∆β = 0.54. The MADQN architecture uses three hidden

layers, each of which has a size of 2,048. The replay memory was initialized by the heuristic with

5,000 experiences, the memory limit was Dlimit = 1,000,000, and the discount factor was γ = 0.95.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 94

Algorithm 9 Multi-Agent Deep Q Network (MADQN)

1: Initialize network Q with random θ
2: Initialize target Q with θ− = θ, initialize replay D
3: for episode 1, . . . , N do
4: Initialize simulator, agent positions and memory
5: while less than tlimit simulator updates do
6: for each agent k do
7: Generate sτk and update ck with image data
8: if ck = False then uτk = Equation (6.1)
9: else sample b uniformly from [0, 1]

10: if b ≤ ε then uτk = query heuristic
11: else uτk = query network

12: Generate reward rτk (Algorithm 8)

13: if ulimit actions taken then update simulator
14: if episode ends then continue to next episode
15: Update agent positions using current actions
16: for each agent k do
17: if ck = True then generate sτ+1

k and add
(
sτk, u

τ
k, r

τ
k , s

τ+1
k

)
to D

18: Sample minibatch from D and update network
19: if zlimit updates then update θ− = θ
20: Drop experiences if |D| > Dmax, anneal rate ε

The exploration rate ε started at one and was linearly annealed to 0.15 over 20,000 updates. For

training, 110 episodes were run on a 50× 50 sized forest with 10 agents and 16 initial trees on fire.

Episodes were terminated after tlimit = 100 model updates. The camera image dimensions were

h = w = 3 and agents performed ulimit = 6 actions per model update. Agents were initialized to a

random set of tree positions within the forest at the beginning of each simulation. When used, the

capacity constraint was dk = 10 for all agents.

The model parameters α and β were chosen to simulate a fire that does not self extinguish but

instead will burn down the majority of the forest if control is not applied. In addition, random agent

positions do not let the network assume that the fire will always be surrounded by agents.

The evaluation metric for both methods is the fraction of remaining healthy trees to total trees

fepisode = 1
n

∑n
i=1 I(xTi = H) at the end of a simulation. Given that the model is stochastic,

Nepisodes = 1,000 total simulations were run for each method. The number of agents was varied with

two different initial sets of trees on fire: a 4× 4 and a 10× 10 sized square grid, both at the center

of the forest.

Three numerical experiments were used to evaluate the control methods. The first assumes

unlimited control capacity to determine if it is possible to contain an aggressive forest fire. The second

adds the capacity constraint for more realistic results. The third increases the model parameters

to α = 0.3 and β = 0.92 to demonstrate robustness of MADQN to model variations. Larger model

parameter values results in a fire that spreads faster and lasts longer.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 95

Table 6.1: MADQN simulation results for three experiments. Data are presented as “loss / limited /
win” percentages for 1,000 episodes. The forest is a square grid of 50×50 trees and fires are initialized
in a square grid at the center. The shaded cell indicates the configuration used for network training.
When overwhelmed with trees on fire (e.g. 10 agents, 10×10 fires) both methods fail to consistently
suppress the fire. Otherwise, MADQN scales better with more agents and preserves more healthy
trees compared to the heuristic.

1. Unlimited Capacity

Agents
4× 4 Fires 10× 10 Fires

Heuristic MADQN Heuristic MADQN

10 61.9 / 0.2 / 37.9 45.0 / 0.0 / 55.0 97.1 / 0.2 / 2.7 95.3 / 0.2 / 4.5

50 24.3 / 22.0 / 53.7 12.6 / 4.3 / 83.1 40.9 / 32.0 / 27.1 22.3 / 10.5 / 67.2

100 17.5 / 23.6 / 58.9 7.5 / 4.9 / 87.6 30.9 / 38.9 / 30.2 15.8 / 11.3 / 72.9

2. Limited Capacity 3. Limited Capacity, Larger α and β

Agents
4× 4 Fires 4× 4 Fires

Heuristic MADQN Heuristic MADQN

10 83.8 / 0.0 / 16.2 78.5 / 0.3 / 21.2 94.0 / 0.0 / 6.0 93.1 / 0.0 / 6.9

50 48.0 / 3.4 / 48.6 12.0 / 5.3 / 82.7 77.5 / 0.0 / 22.5 35.5 / 5.6 / 58.9

100 41.0 / 4.3 / 54.7 9.5 / 4.7 / 85.8 70.4 / 1.1 / 28.5 26.9 / 8.6 / 64.5

Figure 6.5 shows sample distributions of the metric fepisode using the heuristic and MADQN. For

a batch of episodes, results are divided into three categories,

1. “losses”: fepisode ≤ 0.2,

2. “limited”: 0.2 < fepisode ≤ 0.8,

3. “wins”: fepisode > 0.8,

in order to separate the modes of the distribution and summarize the performance. A loss corre-

sponds to almost all trees burning down, limited refers to a limited number of trees burning down,

and a win is when a large majority of healthy trees remain at the end of a simulation.

Table 6.1 compares performance of the heuristic and MADQN. For 16 initial fires, the maximum

achievable fepisode is 99.36% (all trees on fire immediately transition to burnt) and for 100 initial

fires the maximum is 96%. The heuristic does well, but does not scale as well as MADQN. With

more initial fires and low agents, both methods are less effective, but MADQN rapidly improves

with additional agents. Most notably, MADQN was only trained on the case of 10 agents with 16

initial fires and unlimited control capacity. Nevertheless, it adapts to more agents and a different

initial configuration, as well as the capacity constraint and model variations. Figure 6.4 shows a

comparison of the actions that the heuristic would make compared to the network. The heuristic

typically more strictly follows the action to rotate about the fire center qfire.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 96

Figure 6.5: Sample distributions of fepisode using (left) heuristic and (right) MADQN for 100 initial
fires, 50 agents, and unlimited control capacity. Values used for delineating the three performance
categories are shown by red and green lines.

Figure 6.6: Still frame taken from hardware experiments using MADQN which were conducted in
the robotarium. An overhead projector displays images to represent healthy, on fire, and burnt trees.
Mobile robots represent firefighting UAVs.

The Robotarium [134] at the Georgia Institute of Technology was used to demonstrate actions

made by MADQN on mobile robots, as shown in Figure 6.6. The experiment used four agents

performing ulimit = 2 actions per model update in a 10 × 10 forest. We show that the agents are

able to move to successfully surround and extinguish the wildfire.

6.2 Spatial Scheduling of Informative Meetings for Persis-

tent Coverage

We now consider the task of using a cooperative team of autonomous aerial vehicles (UAVs) to

continuously surveil an aggressive forest wildfire. We call a wildfire “aggressive” when its rate

of spread is comparable to the movement speed of the UAVs. In such cases, the agents cannot

rely on neglecting the travel time to points of interest in the environment. There is significant

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 97

interest in using cooperative multi-agent teams to mitigate natural disasters. In California, 10 of

the 20 most destructive wildfires in state history occurred within the last four years, including the

current most destructive wildfire in November 2018 [135]. Furthermore, the number of wildfires

and their intensity will increase in the United States [136]. For natural disaster response, multi-

agent systems also cannot rely on communication networks that operate over unlimited range [137].

Issues such as high transmitter power requirements, limited on-board power, and weather conditions

typically preclude robust, long-range communication networks. Therefore, we assume that agents

communicate only when they are physically close. We model this constraint as requiring agents to

be at the same location in the forest in order to exchange information. Furthermore, since wildfires

naturally occur over large areas, agents must communicate to maintain an accurate belief of the

wildfire as traversing the entire domain individually is ineffective.

In this section, we use a realistic sensing model and build a scalable coordination algorithm

to enable the use of our control framework with state uncertainty. Many approaches have been

proposed in literature for the persistent coverage problem and some directly consider communication

constraints. However, the majority of these methods still allow for communication over arbitrary

distances. In addition, prior work also does not scale to processes modeled by large discrete Markov

models. Therefore, we propose a novel decentralized coordination algorithm that is scalable to

large process models and large multi-agent teams. Agents coordinate by scheduling a future time

and location in the forest to meet to ensure information is continuously shared. By using this

approach, agents avoid duplicating efforts when they are unable to communicate. Our framework

approximately solves the problem of multi-agent exploration with limited communication, and we

show through simulations that our approach is effective.

6.2.1 Related Work

Many methods have been proposed for persistent coverage and we review the approaches most rel-

evant to our work here. Coverage frameworks have been developed to account for communication

limitations [138, 139], but are typically applied to static or slowly changing environmental processes

whereas we aim to monitor a fast process. In addition, many methods require a connected commu-

nication graph in order to prove stability properties. In contrast, we consider a problem setup where

communication connectivity cannot be guaranteed.

Information-based metrics have been used to create multi-agent exploration frameworks, such

as sequential allocation [140, 141], sampling [142, 143, 144], and mixed-integer optimization [145].

Similar to coverage control, many of these methods assume a connected or fully-connected commu-

nication graph. While some methods include communication limitations, such as link failures [143]

or lossy channels [144], these frameworks still assume communication can occur over arbitrarily large

distances.

There is a significant amount of literature on surveillance specifically for wildfires, some of which

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 98

Figure 6.7: Illustration of persistent coverage of a forest wildfire using autonomous aerial vehicles.
The forest lattice is visualized as a grid of cells. Multiple agents (blue circles) are tasked with mon-
itoring an aggressive wildfire (red are fires, black are burnt, and green are healthy trees). Agents
schedule meetings (white ×’s) to periodically communicate and coordinate their efforts. Communi-
cation only occurs in meetings.

propose centralized frameworks [146, 117, 147]. Decentralized methods are based on wildfire bound-

aries or perimeters [148, 149], image-based feature processing [150, 151], potential field controllers

[152, 153], and team coordination or assignment [154, 155]. Almost all of these methods assume a

large or unlimited communication radius, e.g. Ure et al. [151] only consider bandwidth limitations,

whereas we enforce limited range communication.

Our framework can be viewed as a synchronization (or rendezvous) strategy [156, 157, 158], but

we do not assume periodic synchronization of all agents (which may occur over large distances). In

addition, some methods [158] require precise boundary information that cannot be known in advance,

but must be estimated as the wildfire spreads, and is non-trivial for multiple wildfire sources. In

contrast, our approach handles multiple sources which may merge or split over time.

Prior work also does not address large discrete space and discrete time models, as we do in

this work. Many methods use discrete process filters or enumerate (or sample) paths through the

domain, and do not scale to large state spaces. Likewise, the multi-agent exploration problem is

naturally described by partially observable Markov decision processes (POMDPs) [159], but exact

methods and many approximate methods are intractable for our problem. In the next section, we

introduce the wildfire model along with an agent model.

6.2.2 Agent Model

We use the lattice-based forest wildfire model we introduced in Chapter 2.5, where there are a total

of n trees arranged on a lattice. The graph vertex set is V = {1, . . . , n} and edges for tree exist

between itself and its lattice neighbors. The UAV agent model includes dynamics, communication

constraints, simple sensors, and schedule-related information.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 99

Dynamics. Each agent moves on the same lattice as the forest. The position of an agent k is

represented by ztk ∈ Z2. The agent action space contains nine possible actions which modify the

position, zt+1
k = ztk + utk with utk ∈ U and,

U =

{[
i

j

] ∣∣∣∣ (i, j) ∈ {−1, 0, 1} × {−1, 0, 1}

}
.

Sensors. Each agent has a downward facing camera which produces a noisy estimate of the

states of an h× w sized grid of trees. The agent is located at the center of the image.

Definition 8 (Camera Function I(q)). The function I(q) returns a set of size hw containing the

trees i ∈ V observed by a camera centered at location q.

The accuracy of each tree state in the image is parameterized by 0 ≤ pc ≤ 1, which is the

probability that the observation is the ground truth tree state xti. Each tree in the image is observed

independently of all other trees. Equation (6.3) summarizes the sensor model,

p(yti | xti) =

 1
2 (1− pc) + I(yti = xti)

(
3
2pc −

1
2

)
if i ∈ I(ztk),

1
3 otherwise.

(6.3)

In this model, observations of trees in the agent’s camera (i ∈ I(ztk)) have probability pc of matching

the ground truth (yti = xti) and have probability 1
2 (1− pc) of not matching (yti 6= xti). Observations

of trees outside the camera view have uniform uncertainty (probability 1
3) for each of the three tree

states.

Wildfire Belief. Agents maintain their own belief over the state of the wildfire that is updated

every time step using their observations with an approximate Bayesian filter. Agents merge beliefs

when in a meeting to improve coordination and wildfire tracking. Details on the belief update and

merge are provided in Section 6.2.4.

Communication. Agents only exchange information at prearranged meetings and information

is shared by using a Bayesian information fusion strategy so that all agents in the meeting have the

same belief. Agents then use their belief to schedule their next meeting and compute nominal paths

to the next meeting.

Schedule Information. Agents maintain information related to the meetings they participate

in, described by schedules S and S ′. Details on these quantities are provided in Section 6.2.5.

1. Time budget, dk. The amount of time remaining until the next meeting Fk will occur.

2. Next meeting location, Fk. A lattice location that the agent must be at in dk time steps to satisfy

the schedule.

3. Last meeting location, Lk. A lattice location that represents the meeting after the meeting at

location Fk.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 100

4. Stored paths, Rk. A set representing the nominal paths of other agents, which is used to improve

the individual path planning of an agent between meetings, when no communication occurs.

The agent modeling assumptions can be reasonably implemented for a sub-class of UAVs. For the

discrete motion model, a 3D trajectory and altitude controller [132] can be used to have quadrotors

maintain a constant altitude and move laterally. Agents also use a positioning system (e.g., GPS)

to maintain a common coordinate frame.

6.2.3 Decentralized Information Gathering Framework

The main idea behind our algorithm is to have pairs of agents schedule their next meeting during

their current meeting, subject to all previously scheduled meetings. The agents achieve this by

jointly solving a path optimization problem in which they are constrained to end their paths after

a prescribed time at the same location (i.e. the next meeting). The last meeting for each agent

appear as constraints in this optimization. The objective is to jointly maximize an information

gathering metric subject to these constraints. This algorithm guarantees that the future meetings

are always kept, even though they are planned in a pairwise distributed and asynchronous fashion.

In other words, pairs of agents plan meetings for themselves without knowledge of what all other

agents are doing. Between scheduled meetings, an agent can change its path based on new sensed

information, as long as the first and last meeting constraints are still satisfied. Our framework results

in a distributed, reactive information gathering system.

We only consider pairwise agent meetings in this work, with the aim of maximizing the team’s

tracking ability of the wildfire. Agents must move to a common location to share beliefs, which leads

to many observations of the same area. At the same time, the wildfire is spreading in all directions

and therefore the agents sacrifice tracking the wildfire in order to improve their collective belief. In

the case of aggressive wildfires, this trade-off may significantly impact the team’s performance. We

plan to investigate different meeting sizes, along with dynamic scheduling ideas, in future work.

Algorithm 10 provides an overview of the decentralized framework. When agents are meeting,

they fuse their individual beliefs, schedule a future meeting, and perform joint path planning to

generate nominal paths. Note that these steps can be performed individually (decentralized) or by

having one agent perform all steps (centralized) and sharing the results, since each agent has the

exact same set of information after fusing beliefs. Outside of meetings, agents do not communicate

and individually re-plan their nominal paths based on their own belief of the wildfire. Each agent

also updates their own belief at each time step using observations from their camera.

6.2.4 Process Filter and Merging Beliefs

We now describe a scalable approximate Bayesian filter that each agent uses to produce a belief

over the state of the wildfire at each time step. We note that the tree dynamics need to be modified

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 101

Algorithm 10 Decentralized Information Gathering Framework

1: Schedule initial meetings (Algorithm 11)
2: Deploy agents
3: for each time step t do
4: if a meeting s ∈ S ∪ S ′ occurs then
5: Merge agents’ k ∈ s beliefs using Eq. (6.5)
6: Schedule next meeting for s (Algorithm 12)
7: Perform team path planning (Algorithm 14)

8: for each agent k do
9: Plan path to next meeting Fk (Algorithm 15)

10: Move to first location of planned path
11: Reduce time budget, dk ← dk − 1
12: Take image and update individual belief

13: Update wildfire process every ρ time steps

to account for the relative speed of the agents moving and the wildfire spreading. We model this

relative speed by updating the wildfire every ρ time steps; between updates, the wildfire does not

change (Alg. 10, line 13). The dynamics of a tree are then,

pi(x
t+1
i | xti, xtN (i)) =

Table 2.2 every ρ time steps,

I(xt+1
i = xti) otherwise.

(6.4)

Let b(xt) = p(xt |
{
y1, . . . , yt

}
) represent the belief over the states of all trees given a history of

measurements
{
y1, . . . , yt

}
; here, yt represents a measurement of all trees at time t. Given the

dynamics (6.4) and sensor model (6.3), the exact recursive Bayesian filter [31] to update the belief

is,

b(xt) ∝
(n∏
i=1

pi(y
t
i | xti)

)∑
xt−1

b(xt−1)

n∏
i=1

pi(x
t
i | xt−1

i , xt−1
N (i)),

which is initialized by the prior b(x1). However, this filter requires the marginalization of all trees

which involves enumerating 3n values. This is not tractable for large forest sizes and thus we use

an approximate filter instead. The belief is a product of individual beliefs for each tree, b(xt) ≈∏n
i=1 b(x

t
i), where b(xti) = p(xti |

{
y1
i , . . . , y

t
i

}
). The belief update for each tree is,

b(xti) ∝ pi(yti | xti)
∑
xt−1
i

∑
xt−1
N(i)

pi(x
t
i | xt−1

i , xt−1
N (i))b(x

t−1
i)

∏
xt−1
N(i)

b(xt−1
j).

The cost of updating the forest belief per agent is now
∑n
i=1 3|N (i)|+1 operations, and storing the

belief requires O(n) space. The approximate filter can be interpreted as a first order approximation

to the true Bayesian filter [31].

We adopt a straightforward approach for fusing beliefs of multiple agents. Let bk(xti) represent

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 102

time

schedule

0

{3,4}
{1,2}

{4,5}
{2,3}

τ 2τ

{3,4}
{1,2} ...

...3τ

{4,5}
{2,3}

Figure 6.8: For C = 5 agents, the schedule is S = {{1, 2}, {3, 4}} and S ′ = {{2, 3}, {4, 5}}. The set
{i, j} indicates agents i and j will meet at the same lattice location and meetings between the same
pair of agents re-occur every 2τ time steps.

the belief of agent k about tree i at time t. For agents in a meeting s, a merged belief for a single

tree is the average of individual beliefs,

b̄(xti) =
1

|s|
∑
k∈s

bk(xti). (6.5)

The merged belief for all trees is then the application of (6.5) for each tree to produce {b̄(xti) ∀i ∈ V}.
Each agent in the meeting then replaces its own belief with the merged belief. We use averaging to

avoid assigning high confidence to poor beliefs, since agents observe a small fraction of the forest at

each time step and must rely on open-loop predictions of un-observed areas for planning. We stress

that belief fusion has been studied extensively [160], and is not the focus of our contribution in this

framework. Our focus is on the distributed, online scheduling of spatial meetings and informative

planning between meetings, and any particular belief fusion algorithm can be used within this

scheduling framework. We plan to investigate the use of other belief fusion methods in future work.

In the next section, we describe our novel scheduling framework.

6.2.5 Schedule Framework

We now propose a strategy to create a feasible schedule that can be executed in a decentralized

manner. A meeting consists of a location on the lattice and a time interval to describe when the

meeting should occur.

Meeting Intervals. We specify the timing of meetings with the parameter τ . Every τ time steps,

the schedule alternates between two sets of assigned meetings S and S ′,

S =

{
{1, 2}, . . . , {2i− 1, 2i} | i ∈

{
1, . . . ,

⌊
C

2

⌋}}
S ′ =

{
{2, 3}, . . . , {2i, 2i+ 1} | i ∈

{
1, . . . ,

⌊
C − 1

2

⌋}}
where set {i, j} indicates agents i and j will meet and C is the total number of agents. This

construction specifies which agents will meet. In addition, agents 1 and C each only have one

meeting in S ∪ S ′, while all other agents each have two. Fig. 6.8 shows an example schedule for

C = 5.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 103

Algorithm 11 Schedule Initial Meetings

1: Input: schedule S ′, meeting interval τ , agent initial positions z1
k

2: Output: next meeting locations {Lk | k ∈ S ′}
3: Initialize observed locations, B ← ∅
4: for each meeting s ∈ S ′ do
5: Find reachable meeting locations M1,

M1 =
{
i ∈ {1, . . . , d1d2} | τ = max

k∈s
‖qi − z1

k‖∞
}
.

6: Choose location qm where m = arg max
i∈M1

λi (6.6)

7: Set Lk = qm and dk = τ ∀k ∈ s
8: Update observed locations, B ← B ∪ I(qm)

Meeting Locations. Given the interval τ , agents must schedule a future meeting location which is

reachable, accounting for other meetings that occur in between as well. This is achieved by finding

the set of forest locations that can be reached in τ time steps. An information metric is computed

for all reachable locations and a “high value” location is chosen.

Initial Meetings. Prior to the deployment of agents, Algorithm 11 is used in a centralized manner

to assign meeting locations for all meetings in S ′. This procedure sets Lk as long as agent k has a

meeting in S ′ which ensures that schedule S ′ will be satisfied in τ time steps. Reachable meeting

locations (Alg. 11, line 5) are tree locations that are at most τ distance from any agent in the meeting

to ensure that all agents will be able to reach the location. The chosen meeting location (Alg. 11,

line 6) is based on the residual information λi at each location, which accounts for the previously

assigned locations B. Details on this metric are provided in Section 6.2.6.

Next, agents are deployed at locations in the forest according to the schedule S and individually

update their schedule information Fk and Lk. For example, for meeting {1, 2}, agents 1 and 2 are

deployed at the same location in the forest, both agents set Fk equal to their deployment location,

and also set Lk = ∅. Agents with no meeting in S are deployed by themselves and set Fk = Lk = ∅.
This construction ensures that agents will meet according to schedule S at the first time step.

Furthermore, agents are deployed such that any pair of agents with a meeting k ∈ S ′ are initially

within τ distance of each other.

After Algorithm 11, agents that have a meeting in S ′ and do not have a meeting in S will have

Fk = ∅. These agents set Fk ← Lk and dk = τ to have a reachable next meeting. Agents that have

a meeting in S and do not have a meeting in S ′ will have Lk = ∅. These agents set Lk ← Fk and

dk = 2τ to have the correct time budget for the next meeting.

Subsequent Meetings. For meetings that occur after the initial time step, agents use Algorithm 12

as a team to schedule future meetings after merging their belief. First, a predicted belief is created

by predicting forward τ time steps without any measurements; this corresponds to an open-loop

prediction of the wildfire. Next, each agent adds their first and last meeting locations, as well as

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 104

Algorithm 12 Schedule Next Meeting

1: Input: current meeting s, merged belief, meeting interval τ , agent data {Fk, Lk | k ∈ s}
2: Output: new meeting locations {Fk, Lk | k ∈ s}
3: Predict future belief

{
b(xt+τi) ∀i ∈ V

}
4: Initialize observed locations, B ←

⋃
k∈s I(Fk) ∪ I(Lk)

5: for each agent’s set of stored paths Rk do
6: for each path Pj ∈ Rk do
7: B ← B ∪ {I(q) | q ∈ Pj}
8: Find reachable meeting locations Mτ ,

Mτ =
{
i ∈ V | τ = max

k∈s\{1,C}
‖qi − Lk‖∞

}
.

9: for each location qi, i ∈Mτ do
10: for each agent k ∈ s do
11: if j ∈ {1, C} then use dk = 2τ else use dk = τ
12: P, wik ← Search(Lk, qi, dk, {b(xt+τi) ∀i ∈ V},B)

13: vi = 1
|s|
∑
k∈s wik

14: Choose meeting location qm with m chosen randomly from the set {i | vi ≥ γmaxj∈Mτ
vj}

15: for each agent k ∈ s do
16: if j ∈ {1, C} then Set Fk = Lk = qm and dk = 2τ
17: else Set Fk ← Lk then Lk ← qm and dk = τ

their stored nominal paths, to the set of observed locations B (Alg. 12, lines 4 and 5), to account

for locations that will be observed by other agents not participating in the agents’ meeting.

Reachable meeting locations (Alg. 12, line 8) are lattice locations that are τ time steps away

from the agents’ last meetings Lk to ensure that agents are also able to satisfy their other meetings.

Note that agents with only one meeting in S ∪ S ′ (i.e., agents j ∈ {1, C}) are excluded, as these

agents do not have another meeting in τ time steps. A weight for each meeting location (Alg. 12,

line 13) is computed by averaging the maximum weight paths each agent would take to the location.

A location is randomly chosen from a set of “high” weights (Alg. 12, line 14), where 0 ≤ γ ≤ 1, to

prevent multiple separate meetings from inadvertently choosing the same location. Once a location

is chosen, agents update their first and last meeting values and their time budget (Alg. 12, line 15).

An example of Algorithm 12 is provided in Fig. 6.9. Next, we provide details on the path planning

methods.

6.2.6 Individual and Joint Path Planning

Information Metric. We first describe an information metric for the value of observing different

areas of the wildfire. The entropy of the belief of a tree is,

Hi(x
t
i) =

∑
xti

b(xti) log b(xti),

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 105

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6.9: Example of scheduling a next meeting. (left) The expected conditional entropy is
visualized as a heatmap. The orange and red agents are meeting (circles) and each have another
meeting to satisfy (orange and red triangles, respectively). (center) The residual information after
each agent adds their stored paths and meeting locations. (right) The reachable meeting locations
and their weights, computed by averaging the highest weight paths by each agent. The chosen
meeting location is denoted by the white ×.

and the expected conditional entropy is,

Hi(x
t
i | yti) = −

∑
xti

∑
yti

p(yti)b(x
t
i) log b(xti) ≥ 0,

where p(yti) =
∑
xti
p(yti | xti)b(xti). This quantity describes the expected decrease in entropy in the

belief b(xti) after measuring tree i using the camera sensor model (6.3). The mutual information

gain for a path Pk [140] is,

T (Pk) =
∑
qi∈Pk

∑
j∈I(qi)

Hj(x
t
j)−Hj(x

t
j | ytj).

For the multi-agent informative planning problem, we use residual information [140, 141], T (B ∪
Pk)−T (B), where the set B accounts for other paths taken prior to planning path Pk. Intuitively, the

residual information motivates agents to observe different areas of the forest as multiple observations

of the same locations have diminishing returns. Each agent needs to compute a path which maximizes

the metric, starts at their current position, and passes through their meetings Fk and Lk at the

correct times. This problem can be re-framed as finding a maximum path weight given a length

constraint, as we discuss next.

Maximizing Path Weight Given Length Constraint. The problem of finding a maximum weight

path on a graph given a path length constraint and start and end locations is known as the orien-

teering problem. As the orienteering problem is NP-hard, prior work has focused on solutions with

sub-optimality bounds [161]. Since our framework relies on solving this problem many times to set

meeting locations and to plan paths to meetings, we use a fast heuristic. Agents then re-plan their

paths between meetings to improve their performance.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 106

Algorithm 13 Search

1: Input: start e, end f , length l, belief {b(xti) ∀i ∈ V}, observed locations B
2: Output: path P, path weight w
3: Compute weights for lattice locations (6.6)
4: Build directed acyclic graph with (e, l) as the root vertex
5: Use Bellman-Ford to find longest path P from vertex (e, l) to vertex (f, 0) and its associated

weight w

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6.10: Example of joint path planning, based on Fig. 6.9. (left) Residual information heatmap
and next meeting location (white ×). (center) The red agent first plans a path from its position to
its next meeting (solid line), then from its next meeting to its last meeting (dashed line). (right)
Given the red agent’s path, the orange agent plans its path. Each agent then stores the other agent’s
nominal path. Note that the Search heuristic produces backtracking paths. Paths are improved by
re-planning between meetings.

We now describe our heuristic approach. The value of moving to a tree is based on the residual

information,

λi = T (B ∪ {qi})− T (B). (6.6)

We also add a small positive bias ε to the expected conditional entropy to account for situations

where the conditional entropy is zero for all trees, e.g. when the initial belief of all agents is the

ground truth. Given the weights {λi ∀i ∈ V}, a start and end location, and a total path length, we

create a directed, acyclic graph (DAG) representation by augmenting each location with a distance.

For an agent to plan a path from location e to location h with a maximum length of l, the DAG

root vertex is (e, l). The children of this vertex are the locations f that satisfy ‖f −h‖∞ ≤ l−1 (i.e.

the agent moves closer to h) and ‖e− f‖∞ ≤ 1 (i.e. the new location satisfies the agent dynamics).

The location f is then added to the DAG by adding the vertex (f, l − 1) with edges from (e, l) to

(f, l−1) with weight λf . Likewise, the children of f are the locations g that satisfy ‖g−h‖∞ ≤ l−2

and ‖f − g‖∞ ≤ 1. This process continues until there are no more locations to add as decreasing

the distance after each new location is added enforces that the agent ends at h after l actions. The

Bellman-Ford algorithm is then used to find a maximum weight path (Alg. 13). The Search function

therefore has O(τ4) time complexity, which is also the dominating complexity in our framework, as

this function is used for both scheduling meetings and planning paths.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 107

Algorithm 14 Team Path Planning

1: Input: current meeting s, merged belief {b̄(xti) ∀i ∈ V},
meeting interval τ , agent data {ztk, Fk, Lk,Rk | k ∈ s}

2: Output: updated paths {Pk | k ∈ s}
3: Initialize observed locations, B ← ∅
4: for each agent’s set of stored paths Rk do
5: for each path Pj ∈ Rk do
6: B ← B ∪ {I(q) | q ∈ Pj}
7: for each agent k ∈ s do
8: if j ∈ {1, C} then
9: Pk, w ← Search(ztk, Lk, 2τ, {b̄(xti) ∀i ∈ V},B)

10: else
11: PF , w ← Search(ztk, Fk, τ, {b̄(xti) ∀i ∈ V},B)
12: PL, w ← Search(Fk, Lk, τ, {b̄(xti) ∀i ∈ V},B)
13: Pk ← PF ∪ PL
14: Update observed locations, B ← B ∪ {I(q) | q ∈ Pk}
15: for each agent k ∈ s do
16: Update paths, Rk ← Rk ∪ {Pj | j ∈ s, j 6= k}

Individual and Team Path Planning. Agents perform team path planning (Alg. 14) when meeting.

The team orienteering problem is challenging and we adopt the multi-agent strategy from Singh et

al. [140], which is a sequential allocation planning method. Sequential allocation is an appealing

approach as it is a relatively straightforward method to implement for a variety of multi-agent

planning problems, and there is significant research on sub-optimality bounds. Furthermore, as our

main contribution is a scheduling framework, this method can be changed to any other appropriate

planning method. First, one agent plans a path ignoring other agents and updates the set of observed

locations B. Each subsequent agent then plans a path, accounting for the previous paths through the

set B. To plan paths for two separate meetings, agents first plan from their current position to their

next meeting, and add a path from their next meeting to their last meeting (Alg. 14, lines 11 and 12).

If agents only have one meeting, a single path is planned with a longer length constraint (Alg. 14,

line 9). Agents store the nominal paths computed by the joint path planning to use when there is

no communication between meetings (Alg. 14, line 16), which requires O(τ) space. Agents remove

elements from the stored paths during individual path planning, as detailed next, and therefore Rk
does not grow unbounded. An example of Algorithm 14 is provided in Fig. 6.10.

Agents individually perform receding horizon style planning to account for the wildfire process

updating as they move (Alg. 15). Agents use and remove the first location in their stored nominal

paths to account for actions of other agents. The weights (6.6) are then calculated from the belief

and the set B. In the next section, we present simulation experiments to demonstrate the framework

performance.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 108

Algorithm 15 Individual Path Planning

1: Input: agent belief {b(xti) ∀i}, time budget dk,
stored paths Rk, position ztk

2: Output: planned agent path Pk
3: Initialize observed locations, B ← ∅
4: for each stored path Pj ∈ Rk do
5: Remove first location q from path, Pj \ q
6: Update observed locations, B ← B ∪ I(q)

7: Pk, w ← Search(ztk, Fk, dk, {b(xti) ∀i ∈ V},B)

6.2.7 Simulation Experiments

For the simulations, the forest is a lattice of size 25 × 25 for a total of n = 625 trees and a state

space of size 10298. The camera sensing area is h = w = 3 and the accuracy is pc = 0.95. While it

may seem that the camera is extremely accurate, there is a 0.959 = 0.63 probability that the image

returns the true state for all trees in the image. Furthermore, the relatively small field of view also

reduces the filter performance due to partial observability. All agents use the ground truth as the

initial belief. For scheduling meetings, γ = 0.9 was used (Alg. 12, line 14).

Performance Metric. Performance for information-based frameworks is typically based on the

remaining entropy after running the framework [140, 141]. In addition, the underlying model is

typically static (e.g. visual reconstruction) or slowly changing (e.g. on the scale of weeks or months),

and does not have an absorbing state. However, the wildfire process quickly reaches an absorbing

state which corresponds to no fires in the forest. If the agents never take measurements or move,

their belief will converge to 100% accuracy and zero entropy as the initial fire quickly burns down

the forest. As a result, poor coordination appears to be successful. Therefore, we introduce a metric

to evaluate the transient performance,

fmetric =
1

T

T∑
t=1

∣∣∣⋃k∈{1,...,C} {i ∈ I(ztk) | xti = F
}∣∣∣∣∣∣{i ∈ V | xti = F

}∣∣∣ ,

where T is the total number of simulation time steps. This metric represents the average fraction of

ground truth fires covered by the agents over a full simulation. For aggressive wildfires, this metric

is typically less than one due to the comparable rate of agents moving and the wildfire spreading.

When there are no fires at a given time step, the corresponding term in the summation is zero.

Comparison Methods. We compare with two baseline algorithms. First, there is no communica-

tion and at each time step, agents predict their belief 8 steps in the future and choose the highest

entropy location that is 8 actions away to move towards. Second, the agents are considered a single

team and always communicate; we again stress this is infeasible in practice as it requires long-range

communication and only serves as an ideal baseline. The agents have a single belief that is updated

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 109

2 5 10 15 20

Number of Agents

0

5

10

15

20

25

30

35

40
F

ir
e

C
ov

er
ag

e
(%

)

τ = 4

τ = 8

τ = 12

no comm.

team comm.

2 5 10 15 20

Number of Agents

0

5

10

15

20

25

30

35

40

F
ir

e
C

ov
er

ag
e

(%
)

Figure 6.11: Simulation results for different wildfire scenarios, (left) ρ = 1 with T = 60 and (right)
ρ = 2 with T = 120. The “no communication” baseline is ineffective for all cases, whereas the “team
communication” baseline benefits from additional communication. Our framework outperforms the
no communication baseline and is comparable to the team communication baseline for many cases.
In general, more agents and longer meeting intervals τ improve the framework performance, with
diminishing returns as τ increases.

in a centralized manner using all observations. Every 8 time steps, the agents use a sequential

allocation strategy, similar to Algorithm 12, to determine a unique Fk and a nominal path for each

agent. For other time steps, agents simply execute their planned path. Both baselines are heuristics,

as the multi-agent persistent exploration problem with and without unlimited communication are

open problems.

Results. Fig. 6.11 shows simulation results for two cases, (left) process update rate ρ = 1 with

T = 60 total time steps and (right) ρ = 2 with T = 120. For both cases, 10 simulations were run,

and the first quartile, median, and third quartile are shown for each configuration of parameters.

For all cases, the “no communication” baseline is ineffective. The “team communication” baseline

has the best performance, due to the benefit of communication between all agents at every time

step. Furthermore, the team communication baseline highlights the benefit of maintaining a single

belief using all agent observations without requiring agents to meet to communicate. Overall, our

framework is better than the no communication baseline given enough agents, and is comparable

to the team communication baseline for many cases. Finally, it is clear that the ρ = 1 case is a

challenging scenario which mainly requires more agents to be effective.

6.3 Consensus-based ADMM for Task Assignment

In this section, we move away from a specific application domain and instead consider a more general

class of optimization-based problems for cooperative autonomous teams. Cooperative team-based

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 110

problems in robotics frequently involve solving a constrained optimization problem in a decentralized

fashion, as in multi-robot formation control, task assignment, and target tracking. While the field

of distributed optimization has recently made significant strides, much of this work has yet to

be translated to the field of robotics. Typically, decentralized optimization methods for multi-

robot systems are tailored for specific problem aspects, such as robot dynamics, sensor models, and

communication architecture. In this work, we describe a more general framework for describing

cooperative robotics problems, propose decentralized algorithms, and provide conditions for robots

to determine the globally optimal solution. In particular, we discuss our approach in the context of

multi-robot task assignment where robots are required to cooperatively complete a set of tasks. We

consider two problem statements for the task assignment problem. First, there are equal number of

tasks and robots and each task is assigned a unique robot. Second, there are less tasks than robots

and each task must be assigned at least one robot. We consider a framework that naturally captures

both of these problem statements and allows for a single algorithmic approach for simplicity and

flexibility.

We leverage recent advances of the alternating direction method of multipliers (ADMM) frame-

work for our decentralized algorithms. ADMM has been studied extensively and applied to problems

mainly in machine learning and signal processing but few works have explored ADMM algorithms

in robotics. Notably, the abstractions in distributed optimization do not directly translate to the

abstractions typically considered in robotics. For example, agents in distributed optimization are

information processors (e.g. CPU and GPU cores or remote servers) whereas agents in robotics

are physical vehicles (e.g. mobile robots or drones) with limited processing and communication

resources. Therefore, we aim to provide a guide for other practitioners in robotics to take advan-

tage of the benefits of ADMM. We specifically discuss consensus-style variants of ADMM which

are appealing for multi-robot systems due to the robustness to robot failure and the relatively lim-

ited processing required by any one robot. Ultimately, we provide an iterative algorithm in which

each robot performs a local optimization and some update steps, communicates locally with neigh-

bors, and then repeats until convergence. This structure is similar to classic consensus methods in

multi-robot systems.

6.3.1 Related Work

The ADMM framework is well established and studied within the optimization community; see [162]

for a review. There has been a recent resurgence of ADMM approaches as many applications in

statistics and machine learning with large datasets can be formulated as structured convex opti-

mization problems amenable to parallel processing. Notably, the typical ADMM formulation with

a separable objective requires a centralized update step: a central node gathers information from

“worker” nodes, a global parameter is updated, and this parameter is communicated to the worker

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 111

nodes. The worker nodes then perform individual computations and the process repeats. This ab-

straction is fundamentally at odds with the abstractions in multi-robot applications where no single

robot has access to (or gathers) all information. Therefore, we leverage recent work on ADMM

[163, 164] to develop decentralized algorithms suitable for robotics.

Variations of ADMM have been developed that do not require a central node [165, 166]. However,

these approaches either require stricter conditions or consider a more specific optimization statement.

In contrast, we leverage recent work [163, 164] to formulate algorithms for a more general class of

problems in robotics.

There are few existing works in robotics that leverage ADMM. Park et al. [167] use the typical

ADMM approach for multi-target tracking which requires a central node. Choudhary et al. [168]

leverage ADMM as a parallelized optimization solver for distributed map storage and updates in

SLAM. Notably, Van Parys and Pipeleers [169] tailor an ADMM approach without a central node

to a specific motion planning problem for a team of vehicles and note that their approach has no

convergence guarantees.

For task assignment, the Hungarian algorithm [170] is the fastest known centralized algorithm; in

contrast, we propose ADMM as a decentralized optimization method for task assignment problems.

We specifically consider linear sum assignment problems (LSAPs). Branch and bound methods have

been used in the centralized case [171] however there are few decentralized versions. Falsone et al.

[172] propose an algorithm to solve a multi-robot mixed-integer linear program (MILP) but require a

centralized update step. Testa et al. [173] propose a decentralized cutting plane method but require

the objective function to be integer-valued. Lastly, Bürger et al. [174] propose a distributed simplex

method for MILPs but do not consider inequality constraints, as we do in this work.

Distributed variants of the Hungarian algorithm have been proposed [175, 176]. Both of these

methods recover the centralized performance and we use [176] as a benchmark method. We note that

these methods are more complicated to implement and analyze than the methods we develop. Lastly,

auction (or market) methods are also popular [177, 178, 179, 180] although some of these methods

require shared memory or a centralized coordinator. We also use [179] and [180] as benchmark

methods and note that [179] is known to provide sub-optimal assignments.

Our main objective is to develop decentralized ADMM algorithms for task assignment and to

demonstrate its competitive performance with other methods. More broadly, we aim to provide an

additional tool for solving multi-robot optimization problems.

6.3.2 Multi-robot Task Assignment

We begin by defining the task assignment problem and then discuss a more general optimization

statement that represents a range of cooperative multi-robot problems.

The multi-robot team consists of n robots that are required to cooperatively complete m tasks.

The vector xi ∈ {0, 1}m describes the tasks that robot i has been assigned. The elements of xi are

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 112

binary and [xi]j = 1 indicates robot i is assigned to task j. Conversely, [xi]j = 0 means robot i is

not assigned to task j. The cost of the assignment of a robot to different tasks is described by the

vector αi ∈ Rm. We also enforce robots to only be assigned to one task. We consider two variations

of an additional constraint,

(Case 1) there are an equal number of tasks and robots (n = m) and each task is assigned to only

one robot (and vice versa);

(Case 2) there are more robots than tasks (n > m) and each task must be assigned to at least one

robot.

The communication network for the team is represented by an undirected graph G = (V, E) with

vertex set V and edge set E . Each vertex corresponds to a robot thus V = {1, . . . , n} and an edge

e = (i, j) exists if robot i and robot j are in communication with each other. The neighbor set

N (i) = {j ∈ V | (i, j) ∈ E} describes the set of robots in communication with robot i.

Assumption 1 (Connected Network). We assume the communication network G is connected. In

other words, there exists a path between every pair of vertices i, j ∈ V which may consist of more

than one edge.

We note that some prior work assumes a fully-connected graph, in which each robot is con-

nected to every other robot, whereas we assume a less strict condition. The following optimization

summarizes the task assignment problem.

Problem 1 (Multi-robot Task Assignment).

minimize
x1,...,xn∈Rm

n∑
i=1

αᵀ
i xi (6.7a)

subject to [xi]j ∈ {0, 1} ∀j ∈ {1, . . . ,m}, i ∈ V (6.7b)

1ᵀ
mxi = 1 ∀i ∈ V (6.7c)

n∑
i=1

xi = 1m︸ ︷︷ ︸
Case 1

or

n∑
i=1

xi ≥ 1m︸ ︷︷ ︸
Case 2

(6.7d)

Problem 1 is an integer linear program (ILP). The most appropriate solution methods are those

that directly consider integer constraints (e.g., branch and bound or cutting plane methods), but it is

difficult to produce decentralized versions of these methods. Therefore, we instead consider a linear

programming relaxation where the integer constraint is replaced with a linear constraint. After

solving the relaxed program, the resulting solution is rounded to an integer solution. In Problem 1,

the constraint (6.7b) is replaced by,

[xi]j ∈ {0, 1} → 0 ≤ [xi]j ≤ 1 ∀j ∈ {1, . . . ,m}, i ∈ V. (6.8)

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 113

For Case 1, solving the relaxed problem results in an integer-valued solution with no need for

rounding. To see this, note that for each vector xi in Problem 1, the basis of the feasible set is the

standard basis {ei ∈ Rm | 1 ≤ i ≤ m}. By the fundamental theorem of linear programming, the

optimal solution x?i either lies at a vertex or on a face of the convex polytope defined by the feasible

set. The solution only lies on the polytope face if robots have equal cost of assignment for some (or

all) of the tasks which results in multiple optimal assignments with equal objective value. Handling

multiple optimal solutions is non-trivial [174, 176] and therefore we only consider problems with a

unique optimal solution.

For Case 2, there is no general characterization of when the relaxed solution will be integer-

valued. We adopt a simple rounding strategy and show through simulations that this strategy is

effective (see Section 6.3.6). The goal is to solve Problem 1 in a decentralized fashion. We first

discuss a class of problems that include the relaxed formulation of Problem 1.

6.3.3 General Cooperative Multi-robot Problems

We consider the following statement as a generalized optimization for multi-robot cooperative prob-

lems,

Problem 2 (Multi-robot Optimization Problem).

minimize
x1,...,xn∈Rm

n∑
i=1

fi(xi) + gi(xi)

subject to

n∑
i=1

Aixi = b and

n∑
i=1

Cixi ≤ d,

with Ai ∈ Rl1×m, b ∈ Rl1 , Ci ∈ Rl2×m, d ∈ Rl2 , fi : Rm → R, and gi : Rm → R.

In the objective function of Problem 2, the function fi encodes the cost function associated with

robot i. The function gi captures regularization or non-smooth components, such as constraint sets

on xi. Let Mi ∈ Rn×m be a matrix with row i containing all ones and the remaining entries are

zero. Then, Problem 2 is equivalent to the relaxation of Problem 1 when,

(Case 1) Ai =

[
Mi

Im

]
∈ R(n+m)×m, b = 1n+m, and Ci = d = 0; (6.9)

(Case 2) Ai = Mi, b = 1m, Ci = −Im, and d = −1m; (6.10)

and the functions fi(xi) and gi(xi) are,

fi(xi) = αᵀ
i xi, gi(xi) =

0 if 0 ≤ [xi]j ≤ 1 ∀j ∈ {1, . . . ,m},

∞ otherwise.
(6.11)

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 114

In the next section, we develop ADMM-based algorithms for Problem 2 and thus the relaxation of

Problem 1 as well. We first list the assumptions required for the guarantees of ADMM methods.

Assumption 2. The functions fi and gi are closed, proper, and strictly convex. For Problem 2, the

Lagrangian L has a saddle point, a unique minimum is obtained, and strong duality holds.

For the task assignment problem, fi and gi satisfy Assumption 2. The relaxation of the binary

constraint (6.8) allows for a convex formulation of the task assignment problem. Otherwise, this

constraint produces a non-convex problem which precludes the standard convergence guarantees of

ADMM.

6.3.4 Distributed Primal Problem Approach

We now develop distributed algorithms to solve Problem 2, starting with an approach for the primal

problem statement. Problem 2 can equivalently be expressed with the variables Xi ∈ Rm×n with

one such variable associated with each robot,

minimize
X1,...,Xn∈Rm×n

Yij∈Rm×n

n∑
i=1

φi(Xi) + ψi(Xi)

subject to

n∑
j=1

AjXiej = b and

n∑
j=1

CjXiej ≤ d, ∀i ∈ V

Xi = Yij and Xj = Yij ∀j ∈ N (i), i ∈ V,

(6.12)

where ej ∈ Rn is the standard basis vector, φi(Xi) = fi(Xiei), and ψi(Xi) = gi(Xiei). The

quantities Aj , b, Cj , and d are defined in (6.9) (Case 1) and (6.10) (Case 2) for task assignment.

The variables Yij enforce agreement of solutions between each robot and its neighbors. We have

introduced the functions φi and ψi to maintain the same abstraction as Problem 2: the objective

is a sum of functions where each function may only be known by a single robot i. For the primal

approach applied to task assignment, each robot reasons about the assignments of all robots in the

team and uses only its own assignments in its contribution to the objective value, since xi = Xiei

if Xi = [x1 · · ·xn]. In addition, ψi(Xi) can encode more problem structure. For example, in the

relaxed task assignment problem, all robot assignments must be in the [0, 1] interval. Therefore,

each robot i can constrain all entries of its solution Xi to be within this interval, rather than only

column i, to improve convergence.

It suffices to solve (6.12) in a decentralized fashion and the result will be optimal for Problem 2,

as we discuss next, due to the consensus variables Yij .

Proposition 4 ([163]). Optimization (6.12) is equivalent to Problem 2 with the same optimal ob-

jective value. If X?
i ∀i ∈ V is optimal for (6.12) and x?i ∀i ∈ V is optimal for Problem 2 then

X?
i = [x?1 · · ·x?n] ∀i ∈ V.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 115

Proof. By Assumption 1, the communication network is connected and all robots have the same

solution Xi = X ∀i ∈ V due to the consensus constraints Yij . Then, (6.12) simplifies to,

minimize
X∈Rm×n

n∑
i=1

φi(X) + ψi(X)

subject to

n∑
j=1

AjXej = b and

n∑
j=1

CjXej ≤ d.

Let X = [x1 · · ·xn] with xi ∈ Rm so Xej = xj . By definition of φi and ψi, Problem 2 and (6.12) are

equivalent statements. We also assume there is a unique optimal solution and thus both statements

have the same optimal solution.

The formulation in (2) allows us to apply the ADMM method. First, we form an augmented

Lagrangian La for (6.12),

La =

n∑
i=1

φi(Xi) + ψi(Xi) +
ρ

2

n∑
i=1

∑
j∈N (i)

∥∥Xi − Yij
∥∥2

F
+
∥∥Xj − Yij

∥∥2

F

+

n∑
i=1

∑
j∈N (i)

1ᵀ
m

(
Vij ◦ (Xi − Yij) +Wij ◦ (Xj − Yij)

)
1n.

We use the dual variables Vij ,Wij ∈ Rm×n for each local agreement constraint but have omitted

the other constraints in (6.12) (i.e., they have not been dualized). In addition, ρ > 0 is a penalty

parameter on violation of the robot agreement constraint. ADMM is an iterative process that

traditionally consists of three steps per iteration. First, La is minimized with respect to (w.r.t.)

the variables Xi ∀i ∈ V (subject to the remaining constraints in (6.12) that were not dualized)

considering the other variables Yij , Vij ,Wij to be fixed. A unique set of minimizers is guaranteed

to exist by the strict convexity of La and the assumption that Problem 2 is well-defined. Next, La
is minimized w.r.t. Yij with all other variables held constant. Finally, the multipliers Vij ,Wij are

updated via gradient scent. This process then repeats for subsequent iterations until convergence.

In the following discussion, we use superscript k to indicate iterations of ADMM. Note that La is

separable w.r.t. the robot solutions Xi and the variables Yij . With this decomposition, the update

of each solution Xi is,

Xk+1
i = arg min

Xi∈Rm×n
φi(Xi) + ψi(Xi) + 1ᵀ

m

(
(V kij +W k

ji) ◦Xi

)
1n

+ ρ
∑

j∈N (i)

∥∥∥∥Xi −
Xk
i +Xk

j

2

∥∥∥∥2

F

subject to

n∑
j=1

AjXiej = b and

n∑
i=1

CjXiej ≤ d.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 116

Algorithm 16 Primal Consensus ADMM

1: Given: initial X0
i ∈ Rn×m and Q0

i = 0 for each robot i; penalty parameter ρ > 0
2: repeat
3: for each i ∈ V do
4: Qk+1

i = Equation (6.13) and Xk+1
i = Equation (6.14)

5: until iteration limit reached or robot solutions converge

The variables Yij have a simple closed-form update, Y k+1
ij = 1

2ρ

(
V kij +W k

ij

)
+ 1

2

(
Xk+1
i +Xk+1

j

)
.

The dual variable updates are,

V k+1
ij = V kij +

ρ

2

(
Xk+1
i − Y k+1

ij

)
, W k+1

ij = W k
ij +

ρ

2

(
Xk+1
j − Y k+1

ij

)
.

If the dual variables are initialized to zero, then the dual update simplifies [163],

Qk+1
i = Qki + ρ

∑
j∈N (i)

(
Xk
i −Xk

j

)
, (6.13)

where Qki =
∑
j∈N (i) V

k
ij + W k

ji. Further, the Xi update for the task assignment problem can be

written as,

Xk+1
i = arg min

Xi∈Rm×n
αᵀ
iXiei + 1ᵀ

m

(
Qki ◦Xi

)
1n + ρ|N (i)|

∥∥Xi

∥∥2

F

− ρ1ᵀ
m

(∑
j∈N (i)

(
Xk
i +Xk

j

)
◦Xi

)
1n

subject to

n∑
j=1

AjXiej = b and

n∑
j=1

CjXiej ≤ d

0 ≤ Xiei ≤ 1

(6.14)

after substituting (6.11) and simplifying. Equation (6.14) is a constrained quadratic program (QP)

which can be solved efficiently with a general-purpose QP solver. Equations (6.13) and (6.14) consist

of local updates: each robot stores and updates two variables Qki , X
k
i ∈ Rm×n and communicates its

solution Xk
i with its neighbors N (i) at each iteration k. Algorithm 16 summarizes the decentralized

algorithm. Each robot is guaranteed to reach the optimal solution.

Proposition 5 ([162, §3.2-3.3], [163]). Given Assumptions 1 and 2, each robot solution converges

to the optimal solution: Xk
i → X? ∀i ∈ V as k → ∞ where {x?i | i ∈ V} is the optimal solution of

Problem 2 and X? = [x?1 · · ·x?n].

Our problem formulation (6.12) differs from prior work due to the constraints in (6.14). These

constraints do not modify the convergence argument since (6.14) is well-defined with a non-empty

feasible set (Assumption 2). Therefore, we refer to the arguments in Proposition 2 by Mateos et al.

[163] and omit the proof here. Next, we develop an algorithm based on duality.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 117

6.3.5 Distributed Dual Problem Approach

The dual formulation of Problem 2 is,

minimize
ν∈Rl1 ,λ∈Rl2

n∑
i=1

(
hi(ν, λ) +

1

n
νᵀb+

1

n
λᵀd

)
subject to λ ≥ 0

(6.15)

where hi(ν, λ) = maximize
xi∈Rm

− fi(xi)− gi(xi)− νᵀAixi − λᵀCixi, after simplification of the standard

dual problem derivation. An equivalent problem, amenable to decentralization due to a separable

structure, is the following statement,

minimize
ν1,...,νn∈Rl1
λ1,...,λn∈Rl2
tij∈Rl1 ,uij∈Rl2

n∑
i=1

(
hi(νi, λi) +

1

n
νᵀi b+

1

n
λᵀi d

)

subject to νi = tij , νj = tij , λi = uij , and λj = uij ∀j ∈ N (i), i ∈ V

λi ≥ 0 ∀i ∈ V

(6.16)

Each robot reasons about the variables νi and λi, from which its decision xi is recovered using hi.

Similar to Proposition 4, (6.15) and (6.16) are equivalent.

Corollary 1. Statements (6.15) and (6.16) have the same optimal solution.

We now follow the same derivation as the primal approach to develop the individual update steps

for each robot. An augmented Lagrangian is formed for (6.16) without the constraint λi ≥ 0 and

this function is again separable. Each robot individually solves the following optimization to update

νi and λi,

minimize
νi∈Rl1 ,λi∈Rl2

hi(νi, λi) +
1

n
νᵀi b+

1

n
λᵀi d+ νᵀi (vk1,ij + vk2,ji) + λᵀi (uk1,ij + uk2,ji)

+ ρ
∑

j∈N (i)

∥∥∥∥νi − νk−1
i + νk−1

j

2

∥∥∥∥2

2

+

∥∥∥∥λi − λk−1
i + λk−1

j

2

∥∥∥∥2

2

subject to λi ≥ 0,

(6.17)

where the quantities v1,ij , v2,ij ∈ Rl1 and w1,ij , w2,ij ∈ Rl1 are dual variables for the variables tij

and uij , respectively. The dual variable gradient ascent yields,

vk+1
1,ij = vk1,ij +

ρ

2

(
νk−1
i − νk−1

j

)
, vk+1

2,ij = vk2,ij +
ρ

2

(
νk−1
j − νk−1

i

)
,

wk+1
1,ij = wk1,ij +

ρ

2

(
λk−1
i − λk−1

j

)
, wk+1

2,ij = wk2,ij +
ρ

2

(
λk−1
j − λk−1

i

)
.

Let qki =
∑
j∈N (i) v

k
1,ij+vk2,ji and rki =

∑
j∈N (i) w

k
1,ij+wk2,ji. Then the previous updates are replaced

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 118

by,

qki = qk−1
i + ρ

∑
j∈N (i)

νk−1
i − νk−1

j , rki = rk−1
i + ρ

∑
j∈N (i)

λk−1
i − λk−1

j , (6.18)

if all variables v1,ij , v2,ij , w1,ij , w2,ij are initialized to zero [163]. We again omit the variables tij , uij

as they are redundant given the other variables νi, λi, xi.

We note that solving (6.17) is difficult for task assignment as each robot must also solve the

optimization,

hi(νi, λi) = maximize
xi∈Rm

− αᵀ
i xi − ν

ᵀ
i Aixi − λ

ᵀ
i Cixi

subject to 0 ≤ xi ≤ 1,

using (6.11) and either (6.9) (Case 1) or (6.10) (Case 2). Therefore, we leverage problem structure to

produce tractable updates for νi, λi, and xi. The objective in (6.17) is concave in xi given values of

νi, λi and is convex in the augmented variable
[
νi λi

]ᵀ
given a value of xi. Therefore, the minimax

theorem [181, §2.6] can be applied to solve (6.17) by considering the maximization first along with

the existence of a saddle point. For clarity in the following discussion, we define,

θ(w, z, s, εi) =
1

ρ
w − 1

ρn
z − 1

ρ
s+

∑
j∈N (i)

εi + εj .

Applying the minimax theorem, substituting the definition of hi, and completing the square for both

νi and λi modifies (6.17) to,

maximize
xi∈Rm

minimize
νi∈Rl1 ,λi∈Rl2

− αᵀ
i xi

+ ρ|N (i)|
∥∥∥νi − 1

2|N (i)|
θ(Aixi, b, q

k
i , ν

k−1
i)

∥∥∥2

2
− ρ

4|N (i)|

∥∥∥θ(Aixi, b, qki , νk−1
i)

∥∥∥2

2

+ ρ|N (i)|
∥∥∥λi − 1

2|N (i)|
θ(Cixi, d, r

k
i , λ

k−1
i)

∥∥∥∥2

2

− ρ

4|N (i)|

∥∥∥θ(Cixi, d, rki , λk−1
i)

∥∥∥2

2

subject to 0 ≤ xi ≤ 1.

The inner minimization is separable in νi and λi given xi = xki , which leads to,

νki =
1

2|N (i)|
θ(Aix

k
i , b, q

k
i , ν

k−1
i), (6.19)

λki = arg min
λi∈Rl2

∥∥∥λi − 1

2|N (i)|
θ(Cix

k
i , d, r

k
i , λ

k−1
i)

∥∥∥2

2
subject to λi ≥ 0. (6.20)

The λki update has a simple solution: set λki = 1
2|N (i)|θ(Cix

k
i , d, r

k
i , λ

k−1
i) and change any elements

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 119

Algorithm 17 Dual Consensus ADMM

1: Given: initial x0
i ∈ Rm, ν0

i ∈ Rl1 , λ0
i ∈ Rl2 and q0

i = r0
i = 0 for each robot i; penalty parameter

ρ > 0
2: repeat
3: for each i ∈ V do
4: Update qki , rki using Equation (6.18)
5: xki = Equation (6.21), νki = Equation (6.19), and λki = Equation (6.20)

6: until iteration limit reached or robot solutions converge

of λki that are negative to zero. Given νi = νki and λi = λki , the outer maximization is then,

xki = arg min
xi∈Rm

αᵀ
i xi +

ρ

4|N (i)|

∥∥∥θ(Aixi, b, qki , νk−1
i)

∥∥∥2

2
+

1

2
(λki)ᵀCixi

subject to 0 ≤ xi ≤ 1,

(6.21)

after simplification; this form is also a constrained QP which can be solved efficiently. The solution

of (6.17) is found by choosing a variable update order: the primal variable is updated using λk−1
i and

then the dual variables νki ,λki are updated with xki . Algorithm 17 summarizes the dual consensus

method.

Proposition 6 ([164]). Given Assumptions 1 and 2, each robot solution converges to the optimal

solution: νki → ν?, λki → λ? ∀i ∈ V as k →∞ where ν?, λ? is optimal for (6.15). Further, any limit

point of {xki | i ∈ V} is optimal for Problem 2.

Our formulation (6.16) differs from the approach by Chang et al. [164] due to the dual variables

λi introduced for the inequality constraints in Problem 2. Using an augmented variable
[
νi λi

]ᵀ
yields a comparable formulation to the prior approach [164, §4]. The additional constraint λi ≥ 0

does not modify the convergence argument as it is satisfied at each iteration by the update equation

(6.20). We refer to Theorem 2 by Chang et al. [164] and omit the details here.

In many applications, it is desirable to eliminate optimization statements like (6.21) in favor of

closed-form solutions. We now use proximal gradients [182] to achieve this. A first-order proximal

update around xk−1
i of the objective in (6.21) leads to the modified objective,

[
αi +

1

2|N (i)|
Aᵀ
i θ(Aix

k−1
i , b, qki , ν

k−1
i) +

1

2
Cᵀ
i λ

k
i

]ᵀ
(xi − xk−1

i)

+
γi
2

∥∥xi − xk−1
i

∥∥2

2
,

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 120

Table 6.2: Average number of iterations for convergence for the task assignment problem with 20
robots and 20 tasks over 50 trials of randomly generated costs.

Primal Dual Inexact Dual

Average Iterations 28 159 387

where γi > 0 is a penalty parameter. This objective leads to the optimization,

xki = arg min
xi∈Rm

γi
2

∥∥∥xi − xk−1
i +

1

γi
αi +

1

2γi|N (i)|
Aᵀ
i θ(Aix

k−1
i , b, qki , ν

k−1
i)

+
1

2γi
Cᵀ
i λ

k
i

∥∥∥2

2
+ gi(xi),

since the additional terms are constant w.r.t. xi. The constraint in (6.21) is now enforced by gi

(6.11) in the objective as this form resembles the proximal operator [182],

prox(z; γi, gi) = arg min
y∈Rm

γi
2
‖y − z‖22 + gi(y).

This projection has a simple solution for (6.11): each element of z is clipped to the interval [0, 1].

Thus, the xi update (6.21) is replaced by the following strategy: set xki = x−i where,

x−i = xk−1
i − 1

γi
αi −

1

2γi|N (i)|
Aᵀ
i θ(Aix

k−1
i , b, qki , ν

k−1
i)− 1

2γi
Cᵀ
i λ

k
i .

Then, change elements of xki that are less than zero to zero and change elements greater than one to

one. Convergence of Algorithm 17 with this modified update is guaranteed if the parameters γi are

sufficiently large [164]. A similar idea of proximal updates for the primal approach is also possible.

In the next section, we present simulations comparing the performance of the ADMM methods.

6.3.6 Simulation Experiments

In the following discussion, we refer to the algorithms we previously developed as ADMM task as-

signment (ADMM-TA). First, we examine the convergence rate of the ADMM-TA methods when

using the primal (Algorithm 16), dual (Algorithm 17), and inexact dual (proximal gradient modifi-

cation) formulations. For this study, we use these methods to solve the relaxation of Problem 1 with

20 robots and 20 tasks. Table 6.2 shows the average number of iterations required to reach 0.1%

of the optimal centralized objective value. Convergence is slowest on the inexact dual ADMM-TA

method but benefits from having very simple update equations. The primal ADMM-TA method

achieves the fastest convergence rate and therefore we use this method for the remaining simulation

studies. We also exploit structure for the primal method by constraining all entries of each robot’s

solution to be in the interval [0, 1].

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 121

0 5 10 15 20 25 30 35 40 45 50

iterations

0

5

10

15

20

25

30

35

40

o
b
je

c
ti
v
e
 c

o
s
t

Hungarian cost

ADMM-TA cost (ours)

50 100 150 200 250

iterations

0

5

10

15

20

25

30

35

40

ob
je

ct
iv

e
co

st

centralized cost
fully connected graph
chain graph
random connected graph

Figure 6.12: (left) The ADMM-TA estimate converges to the Hungarian solution of the task assign-
ment problem within 50 iterations for 50 robots and tasks. (right) Convergence of the ADMM-TA
solution to the centralized solution on different communication graphs. The slowest rate of conver-
gence is observed on the linear-chain graph.

Convergence of ADMM to Optimal Solution. Next, we examine the convergence of the primal

ADMM-TA method to the optimal centralized solution of the task assignment problem. The Hun-

garian method is used to solve the task assignment problem without relaxations [170]. We consider

50 robots and 50 tasks using a fully-connected graph where the assignment costs were randomly

generated. Figure 6.12 (left) shows the convergence to the optimal cost. During the first few it-

erations, each robot selects tasks with minimal cost without consensus on the global assignments.

The consensus constraints enforce agreement on the assignments for all robots and consequently,

each robot adjusts its solution to achieve global consensus. After convergence, the assignments are

consistent with the problem constraints.

Performance on Various Graph Topologies. We also compare the performance of our method

on different connected communication networks. The worst-case scenario for consensus methods is

linear-chain graphs since information propagates slowly between the first and last robot. We compare

the convergence rate of linear-chain to randomly generated and fully-connected graphs and also show

that all topologies converge to the centralized optimal cost. We consider the case of 50 robots and

30 tasks, which our method easily accommodates, and randomly generated costs. Figure 6.12 (right)

compares the convergence rates of the different topologies. The ADMM-TA estimate converges to the

optimal solution on all the communication graphs. Notably, the rate of convergence of the ADMM-

TA solution to the optimal solution does not depend significantly on the graph topology with the

exception of the linear-chain graph. Even in the worst-case graph topology the ADMM-TA method

converges in about 200 iterations. On more general graph topologies, convergence of the ADMM-

TA method requires roughly 30 iterations. We noticed faster convergence to the optimal solution

on randomly-generated connected graphs which is counter-intuitive as typically the fully-connected

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 122

graph topology produces the fastest convergence rate. We plan to investigate this behavior in future

work.

Comparison with Benchmark Methods. We now compare the scaling of our ADMM-TA approach

to other distributed methods for task assignment with respect to number of robots. For each team

size, we use an equal number of tasks to as most prior work is designed for this case. We used the

consensus-based auction approach (CBAA) [179], market-based consensus [180], and a distributed

Hungarian method [176]. The CBAA method does not guarantee optimality after it terminates; in all

of the trials we considered, CBAA did not give the optimal solution. In contrast, the market-based

consensus and distributed Hungarian methods are optimal. Figure 6.13 (left) shows the number of

iterations required by each method to converge (by their own criteria) on a fully-connected graph.

For ADMM-TA, we again check if the cost is within 0.1% of the optimal cost to provide a worst-case

scaling trend. ADMM-TA scales comparably to the distributed Hungarian method, better than

the market-consensus method, and worse than CBAA. We emphasize that CBAA is sub-optimal

and also note that the distributed Hungarian method is limited to linear sum assignment problems

(LSAPs), whereas our method can be used with more general objective functions.

Next, we compared the performance of our method to the distributed Hungarian method on

randomly-generated connected graphs. We did not use the CBAA method since it did not produce

optimal estimates as previously discussed. In addition, we did not include the market-consensus

method as the algorithm was not amenable to changes for arbitrary communication graphs. Figure

6.13 (right) shows the number of iterations required for each method to produce the optimal task

assignments. For small network sizes, ADMM-TA scales better than the distributed Hungarian

method. Both methods require about the same number of iterations for much larger network sizes.

Case Study: Persistent Surveillance. We have focused on single (or one-shot) assignments in the

preceding studies. Realistic multi-robot systems might require assignments to be made periodically

as tasks are accomplished or as the environment changes. One such situation is persistent surveillance

subject to battery constraints. We consider the case in which a group of robots with a fully-connected

communication graph must maintain coverage over a region while periodically swapping between

surveillance paths and charging stations to ensure that no batteries fully discharge. To accomplish

this objective, each robot computes a cost value based on battery levels and travel distances. To

ensure persistent coverage, robots at surveillance stations can only charge if another robot chooses

to swap with the surveillance robot. We consider ten robots maintaining coverage of two surveillance

stations. At each assignment episode, we compute the assignments using our proposed ADMM-TA

method and compare the resulting cost to the optimal cost obtained from the Hungarian method.

Figure 6.14 shows the assignment costs over 1000 assignment episodes and the ADMM-TA method

converges to an assignment with the optimal cost at every episode. As the simulation runs, the

robots reach an oscillating pattern of swapping between surveillance and charging stations, resulting

in a limit cycle of the total cost.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 123

101 102

Number of robots

100

101

102

103

104

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

CBAA (sub-optimal)

Market-consensus

ADMM-TA (ours)

Distributed-Hungarian

101 102

Number of robots

100

101

102

103

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

ADMM-TA (ours)

Distributed-Hungarian

Figure 6.13: (left) Comparison of the ADMM-TA method to other distributed methods for task
assignment on a fully-connected graph. The ADMM-TA method produces the optimal solution
after fewer iterations compared to the CBAA (sub-optimal) and market-consensus methods. (right)
Comparison of the ADMM-TA method to the distributed Hungarian method on randomly-generated
connected graphs.

6.4 Summary

In this chapter, we first introduced two different frameworks based on cooperative teams of au-

tonomous aerial vehicles. We showed that it is possible to develop frameworks consisting of large

teams which are applied to large GMDPs, and that they be designed to scale independently of

number of agents in the team or the size of the GMDP. This property is particularly important

as autonomous agents are expected to take over dangerous and difficult jobs currently performed

by humans. However, it is also clear that a more general design approach is also needed to enable

additional analysis of cooperative autonomous teams, as certain guarantees must be provided to

deploy robots in real world scenarios. We took the first steps in addressing a more general problem

statement for cooperative team problems in the final framework of this chapter. Our distributed

optimizations methods are relatively simple and can easily be analyzed under different conditions.

Ultimately, our frameworks will need to be improved by carrying out hardware experiments, since

current hardware limitations will dictate algorithmic design choices. As on-board processing power,

embedded sensors, and robot design continue to evolve, we expect our algorithms provide a basis to

develop suitable frameworks with guarantees for environmental models represented by a graph-based

Markov decision process.

CHAPTER 6. INTERACTING WITH GMDPS USING TEAMS OF ROBOTS 124

0 100 200 300 400 500 600 700 800 900 1000

Assignment episodes

-2.5

-2

-1.5

-1

-0.5

0

T
o
ta

l
a
s
s
ig

n
m

e
n
t
c
o
s
t

×106

Hungarian cost

ADMM-TA cost (overlays Hungarian cost)

Figure 6.14: The ADMM-TA method on a surveillance task with ten robots and two surveillance
stations. The ADMM-TA method produces the optimal cost at all assignment episodes and the
costs reach a limit cycle after equilibrium is attained.

Chapter 7

Conclusions and Future Directions

7.1 Current Feasibility and Technologies

There are a number of avenues to apply the methods developed in this thesis to current and future

problems. Currently, there are many aerial vehicle platforms, such as quadrotors, which are popular

for both consumer and academic use. Thus, an appealing and relatively straightforward setup is to

deploy a team of quadrotors in combination with our methods, in particular for assisting in disaster

response for forest wildfires. In 2020 alone, California experienced its worst fire season in modern

state history [183], in part due to climate change and poor forest management. Furthermore, the

number of fires and their intensity have long been predicted to increase [136]. Therefore, a critical

short-term goal is to combine our algorithms with readily available hardware to assist first respon-

ders in managing and suppressing a forest fire. There are several challenges to producing such a

solution, the first of which is to enable aerial robots to survive a caustic environment involving

extreme temperatures and hazardous particulates, such as ash and smoke. Prior work on hardware

platforms for fighting fires suggests possible strategies to develop suitable aerial vehicles (see [184]

and references therein), along with efforts to develop autonomous helicopters to address forest fires

[185]. Next, a suitable sensor is also required to gather information and to enable autonomous de-

cision making. A significant amount of work in literature has developed computer vision techniques

specifically for fire surveillance, suggesting that sensing modalities from these works could be di-

rectly applied [117, 118, 119, 120, 121, 122, 186]. In the long term, we believe our decision making

strategies will streamline the response to disasters such as forest fires, by improving coordination

and information gathering between robots and human resources. Our other examples, the COVID-

19 pandemic and understanding user activity in social networks, are also current pressing problems

which we are able to address through the methods in this thesis. We are able to propose models

with influence structures and understand how well a given model fits the observed data. At this

point, we are able to gain insight from the data and provide recommendations for addressing the

125

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 126

spread of a virus and understanding opinion dynamics in complex networks. Given the increasing

prevalence of public data on these important processes, future work can focus on improving model

assumptions and developing further analysis techniques.

7.2 Summary

The future of modeling frameworks will include increasingly complex and detailed representations for

processes and interactions with robots and humans, for tasks such as disaster response, infrastructure

inspection, warehouse automation, and more. In this thesis, we have proposed algorithms to enable

the use of large graph-based Markov decision processes (GMDPs) as a modeling framework to address

these applications. We considered the necessary problems to eliminate the barriers to using GMDPs:

optimally controlling a GMDP with limited control effort, online state estimation of GMDPs given

uncertain measurements, and learning the model parameters of a GMDP using time histories of

data. We also introduced frameworks that utilized a cooperative team of autonomous agents to

illustrate potential design methods and notable challenges.

Modeling approaches in prior work, including network models, have many limitations. Typically,

the model is proposed for a specific application, limiting the extension to other processes which

may be described by a similar model. In addition, it is difficult to find complete frameworks for a

given model, e.g., a control strategy is developed with the assumption that a suitable filter exists to

reason about state and model uncertainty. As a result, it is unclear on how to use a given model in

a practical setting, where all aspects of the algorithmic pipeline must be considered.

Overall, our algorithms emphasize efficiency and scalability to address significantly large GMDPs,

as we have considered discrete models that are substantially larger than those presented in relevant

prior work. We have applied our methods to some of today’s most pressing issues, including natural

disasters and public health crises, and demonstrated a complete algorithmic pipeline to provide

solutions to these problems. We believe that our work will spur additional interest in using large

structured Markov models to model processes and human-robot interactions. Although we have used

some additional structural assumptions, our methodology can be applied to more general model and

problem formulations. Continuing to address the challenges of large-scale systems will enable a

streamlined approach to future public crises and natural disasters.

7.3 Future Directions

Based on the results of this thesis, we have developed a strong foundation for the general use of

GMDPs, and there are still many interesting directions for future work.

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 127

7.3.1 Parameterized Policies

For the optimal control problem with a capacity constraint, we derive an approximate dynamic pro-

gramming approach which is computationally tractable and has a metric to evaluate the approximate

quality. Nevertheless, additional structure is required to derive the constrained policy. At a high

level, we are more interested in producing a constrained policy which allow for theoretical analysis

than having to first produce a value or state-action function. Therefore, it would be instructive to

consider policy iteration or similar methods to achieve this. Furthermore, it would be very useful to

have a policy parameterized by the model parameters, so that the policy does not need to be recom-

puted if the model parameters are updated online. While our percolation-based control framework

addresses some of these shortcomings, the theoretical analysis is somewhat limited and a structured

lattice representation of the GMDP is required. Although percolation techniques exist for a more

general class of models called isoradial graphs, it is not straightforward to consider arbitrary graph

structure. Investigating relaxations or modifications to achieve this is an interesting direction to

explore.

7.3.2 Graph-based POMDPs

With regard to the online filtering problem, we have shown that a fast accurate filter is necessary

to enable effective solutions for other problems, though it was necessary to introduce several ap-

proximations to derive our method. Continuing to explore variational inference methods with more

theoretical analysis or insight would be extremely useful as a result. A more fruitful direction to

explore may be factored or graph-based POMDP solution techniques, as considering state uncer-

tainty is a critical component of this modeling framework. Prior work has suggested methods to

address factored POMDP representations and it is clear that approximate methods will be required

given the complexity of the full problem. Additional research on graph-based POMDPs would also

be useful for robotics problems which must deal with model parameter and state uncertainty due to

sensor limitations.

7.3.3 Structural Assumptions

Leveraging the Anonymous Influence property has been key for improving the complexity of our

algorithms. We note that our methods can also handle general GMDPs without this property,

but at the cost of reducing the model size for which the algorithms will finish in reasonable time.

Considering hybrid models, where some vertices in the graph do not have the Anonymous Influence

property, would be an interesting extension of our work. Furthermore, applying our methods to

more applications which may or may not contain Anonymous Influence would help evaluate the

effect of using this property as a simplifying assumption.

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 128

7.3.4 Additional Models

Additional applications are valuable for furthering validating the ideas in this thesis. One example

is modeling and predicting the trajectories of a crowd of people in order to enable the use of socially-

aware robots. Graph-based models are a popular representation in this domain and a number of

solution methods have been proposed as well, such as recurrent neural networks [187, 188]. A GMDP

can be used to represent the social interactions in a crowd by considering a discrete set of possible

outcomes, e.g., passing on the left or the right, or choosing to interact, with a particular autonomous

agent. This agent-centered model description also allows for reasoning about interactions as a control

action, e.g., choosing to interact or to navigate without collision. It may be necessary to allow for a

time-varying graph to model the interactions, and prior work suggests methods to incorporate this

aspect [26].

7.3.5 Model Abstraction and Validation

We have proposed a variety of models in this thesis, with a varying number of individual MDPs and

different formulations of the individual state and action spaces. Striking a balance between fine detail

and high-level abstraction is necessary to minimize computational complexity while still providing

meaningful insight into a process. Therefore, it will be necessary to develop analysis techniques to

understand this trade-off for different models, e.g., modeling a pandemic in the United States at

the city, county, or state level. Once we learn a model with data, we must also be able to validate

how well it reflects the data and how well we expect the model to predict future trajectories. There

is a wealth of literature on model verification and validation techniques, and this work should be

leveraged to develop appropriate metrics to evaluate our learned models.

7.3.6 Hardware Experiments

Finding robotics-related applications where it is possible to design and execute hardware experiments

would provide essential validation and feedback for our algorithms. A significant amount of insight

can be gained using physical hardware due to the limitations of current state-of-the-art sensors and

locomotion hardware. We believe experiments with an autonomous fleet of mobile or aerial robots

should be the next step to continue the work we have presented.

Bibliography

[1] A. A. Pervozvanskii and I. N. Smirnov, “Stationary-state evaluation for a complex system with

slowly varying couplings,” Cybernetics, vol. 10, no. 4, pp. 603–611, Jul 1974.

[2] V. G. Gaitsgori and A. A. Pervozvanskii, “Aggregation of states in a Markov chain with weak

interactions,” Cybernetics, vol. 11, no. 3, pp. 441–450, May 1975.

[3] F. Delebecque and J.-P. Quadrat, “Optimal control of Markov chains admitting strong and

weak interactions,” Automatica, vol. 17, no. 2, pp. 281 – 296, 1981.

[4] Q. Zhang, G. Yin, and E. K. Boukas, “Controlled Markov chains with weak and strong inter-

actions: Asymptotic optimality and applications to manufacturing,” Journal of Optimization

Theory and Applications, vol. 94, no. 1, pp. 169–194, Jul 1997.

[5] N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. P. Kaelbling, T. Dean, and C. Boutilier,

“Solving very large weakly coupled Markov decision processes,” in AAAI Conference on Arti-

ficial Intelligence, 1998, pp. 165–172.

[6] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale dynamic program-

ming,” Machine Learning, vol. 22, no. 1, pp. 59–94, Mar 1996.

[7] C. Boutilier and R. Dearden, “Approximating value trees in structured dynamic program-

ming,” in Proc. 13th International Conference on Machine Learning. Morgan Kaufmann,

1996, pp. 54–62.

[8] C. Boutilier, R. Dearden, and M. Goldszmidt, “Stochastic dynamic programming with factored

representations,” Artificial Intelligence, vol. 121, no. 1-2, pp. 49–107, 2000.

[9] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate in-

ference: An empirical study,” in Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence, 1999, pp. 467–475.

[10] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in Advances in

Neural Information Processing Systems 13. MIT Press, 2001, pp. 689–695.

129

BIBLIOGRAPHY 130

[11] Z. Ghahramani and M. I. Jordan, “Factorial hidden Markov models,” in Advances in Neural

Information Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds.

MIT Press, 1996, pp. 472–478.

[12] A. Pentland, N. Oliver, and M. Brand, “Coupled hidden Markov models for complex action

recognition,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition. Los

Alamitos, CA, USA: IEEE Computer Society, jun 1997, p. 994.

[13] S. Zhong and J. Ghosh, “A new formulation of coupled hidden Markov models,” Tech. Rep.,

2001.

[14] X. Boyen and D. Koller, “Tractable inference for complex stochastic processes,” in Proceedings

of the Fourteenth Conference on Uncertainty in Artificial Intelligence, ser. UAI’98. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, p. 33–42.

[15] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Structural assumptions

and computational leverage,” Journal of Artificial Intelligence Research, vol. 11, pp. 1–94,

1999.

[16] D. Koller and R. Parr, “Computing factored value functions for policies in structured MDPs,”

in Proceedings of the International Joint Conference on Artificial Intelligence, 1999, pp. 1332–

1339.

[17] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solution algorithms for

factored MDPs,” Journal of Artificial Intelligence Research, vol. 19, pp. 399–468, 2003.

[18] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored MDPs,” in Advances

in Neural Information Processing Systems, 2002.

[19] D. P. De Farias and B. Van Roy, “The linear programming approach to approximate dynamic

programming,” Operations research, vol. 51, no. 6, pp. 850–865, 2003.

[20] Z. Feng and E. A. Hansen, “Approximate planning for factored POMDPs,” in Proceedings of

the 6th European Conference on Planning, 2001.

[21] C. Guestrin, D. Koller, and R. Parr, “Solving factored POMDPs with linear value functions,”

in Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01) workshop

on Planning under Uncertainty and Incomplete Information, 2001, pp. 67–75.

[22] N. Forsell and R. Sabbadin, “Approximate linear-programming algorithms for graph-based

Markov decision processes,” in Proceedings of the European Conference on Artificial Intelli-

gence, 2006, pp. 590–594.

BIBLIOGRAPHY 131

[23] R. Sabbadin, N. Peyrard, and N. Forsell, “A framework and a mean-field algorithm for the

local control of spatial processes,” International Journal of Approximate Reasoning, vol. 53,

no. 1, pp. 66–86, 2012.

[24] Q. Cheng, Q. Liu, F. Chen, and A. T. Ihler, “Variational planning for graph-based MDPs,”

in Advances in Neural Information Processing Systems, 2013, pp. 2976–2984.

[25] F. Chen, Q. Cheng, J. Dong, Z. Yu, G. Wang, and W. Xu, “Efficient approximate linear

programming for factored MDPs,” International Journal of Approximate Reasoning, vol. 63,

pp. 101–121, 2015.

[26] W. Dong, A. S. Pentland, and K. A. Heller, “Graph-coupled HMMs for modeling the spread

of infection,” in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial

Intelligence, 2012, pp. 227–236.

[27] K. Fan, C. Li, and K. A. Heller, “A unifying variational inference framework for hierarchi-

cal graph-coupled HMM with an application to influenza infection,” in AAAI Conference on

Artificial Intelligence, 2016, pp. 3828–3834.

[28] P. Robbel, F. Oliehoek, and M. Kochenderfer, “Exploiting anonymity in approximate linear

programming: Scaling to large multiagent MDPs,” in AAAI Conference on Artificial Intelli-

gence, 2016, pp. 2537–2543.

[29] R. N. Haksar and M. Schwager, “Controlling large, graph-based MDPs with global control

capacity constraints: An approximate LP solution,” in 57th IEEE Conference on Decision

and Control (CDC), Dec 2018, pp. 35–42.

[30] R. N. Haksar, F. Solowjow, S. Trimpe, and M. Schwager, “Controlling heterogeneous stochastic

growth processes on lattices with limited resources,” in 2019 IEEE 58th Conference on Decision

and Control (CDC), Dec 2019, pp. 1315–1322.

[31] R. N. Haksar, J. Lorenzetti, and M. Schwager, “Scalable filtering of large graph-coupled hidden

Markov models,” in 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, pp.

1307–1314.

[32] R. N. Haksar and M. Schwager, “Constrained control of large graph-based MDPs under mea-

surement uncertainty,” IEEE Transactions on Automatic Control (TAC), 2020, under review.

[33] ——, “Learning large graph-based MDPs with historical data,” IEEE Transactions on Control

of Network Systems (TCNS), 2020, in preparation.

[34] ——, “Distributed deep reinforcement learning for fighting forest fires with a network of

aerial robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), Oct 2018, pp. 1067–1074.

BIBLIOGRAPHY 132

[35] R. N. Haksar, S. Trimpe, and M. Schwager, “Spatial scheduling of informative meetings for

multi-agent persistent coverage,” IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 2,

pp. 3027–3034, April 2020.

[36] R. N. Haksar, O. Shorinwa, P. Washington, and M. Schwager, “Consensus-based ADMM for

task assignment in multi-robot teams,” in 2019 International Symposium on Robotics Research

(ISRR), Oct 2019, in press.

[37] I. I. Dikin, “Iterative solution of problems of linear and quadratic programming,” Dokl. Akad.

Nauk SSSR, vol. 174, pp. 747–748, 1967.

[38] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica,

vol. 4, no. 4, pp. 373–395, Dec 1984.

[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[40] M. Kochenderfer, Decision making under uncertainty : theory and application. Cambridge,

Massachusetts: The MIT Press, 2015.

[41] V. Raghavan, G. ver Steeg, A. Galstyan, and A. G. Tartakovsky, “Coupled hidden Markov

models for user activity in social networks,” in IEEE International Conference on Multimedia

and Expo Workshops (ICMEW), 2013, pp. 1–6.

[42] D. Blatner, Spectrums: Our Mind-boggling Universe from Infinitesimal to Infinity. A&C

Black, 2013.

[43] B. Szabó and I. Babus̆ka, Introduction to Finite Element Analysis: Formulation, Verification

and Validation. Hoboken, N.J.: Wiley, 2011.

[44] Y. Efendiev and T. Hou, Multiscale finite element methods: theory and applications. New

York, NY: Springer, 2009.

[45] D. Boychuk, W. J. Braun, R. J. Kulperger, Z. L. Krougly, and D. A. Stanford, “A stochastic

forest fire growth model,” Environmental and Ecological Statistics, vol. 16, no. 2, pp. 133–151,

Jun 2009.

[46] J. D. Griffith, M. J. Kochenderfer, R. J. Moss, V. V. Misic, V. Gupta, and D. Bertsimas,

“Automated dynamic resource allocation for wildfire suppression,” Lincoln Laboratory Journal,

vol. 22, no. 2, pp. 38–59, 2017.

[47] M. A. Finney, “Mechanistic modeling of landscape fire patterns,” Spatial Modeling of Forest

Landscapes: Approaches and Applications. Cambridge University Press, Cambridge, pp. 186–

209, 1999.

BIBLIOGRAPHY 133

[48] V. Raghavan, G. Ver Steeg, A. Galstyan, and A. G. Tartakovsky, “Modeling temporal activity

patterns in dynamic social networks,” IEEE Transactions on Computational Social Systems,

vol. 1, no. 1, pp. 89–107, 2014.

[49] C. Baier, H. Hermanns, and J.-P. Katoen, The 10,000 Facets of MDP Model Checking. Cham:

Springer International Publishing, 2019, pp. 420–451.

[50] C. Moore and M. E. J. Newman, “Epidemics and percolation in small-world networks,” Phys.

Rev. E, vol. 61, pp. 5678–5682, May 2000.

[51] C. Favier, “Percolation model of fire dynamic,” Physics Letters A, vol. 330, no. 5, pp. 396–401,

2004.

[52] J. Balthrop, S. Forrest, M. E. J. Newman, and M. M. Williamson, “Technological networks

and the spread of computer viruses,” Science, vol. 304, no. 5670, pp. 527–529, 2004.

[53] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Con-

nected World. USA: Cambridge University Press, 2010.

[54] D. Acemoglu and A. Ozdaglar, “Opinion dynamics and learning in social networks,” Dynamic

Games and Applications, vol. 1, no. 1, pp. 3–49, Mar 2011.

[55] World Health Organization (WHO), “Ebola data and statistics,” http://apps.who.int/gho/

data/node.ebola-sitrep, accessed 2018-03-19.

[56] E. Altman, Constrained Markov decision processes. CRC Press, 1999.

[57] D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled stochastic dynamic pro-

grams,” Operations Research, vol. 56, no. 3, pp. 712–727, 2008.

[58] F. Ye, H. Zhu, and E. Zhou, “Weakly coupled dynamic program: Information and Lagrangian

relaxations,” IEEE Transactions on Automatic Control, vol. 63, no. 3, pp. 698–713, 2018.

[59] H.-J. Schütz and R. Kolisch, “Approximate dynamic programming for capacity allocation in

the service industry,” European Journal of Operational Research, vol. 218, no. 1, pp. 239 –

250, 2012.

[60] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of Monte Carlo tree search

methods,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1,

pp. 1–43, 2012.

[61] D. F. Ciocan and V. Farias, “Model predictive control for dynamic resource allocation,” Math-

ematics of Operations Research, vol. 37, no. 3, pp. 501–525, 2012.

http://apps.who.int/gho/data/node.ebola-sitrep
http://apps.who.int/gho/data/node.ebola-sitrep

BIBLIOGRAPHY 134

[62] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control of epidemics: A survey

of spreading processes on complex networks,” IEEE Control Systems Magazine, vol. 36, no. 1,

pp. 26–46, Feb 2016.

[63] J. W. Essam, “Percolation theory,” Reports on Progress in Physics, vol. 43, no. 7, pp. 833–912,

July 1980.

[64] M. Sahini and M. Sahimi, Applications of percolation theory. CRC Press, 1994.

[65] S. Solomon, G. Weisbuch, L. de Arcangelis, N. Jan, and D. Stauffer, “Social percolation

models,” Physica A: Statistical Mechanics and its Applications, vol. 277, no. 1, pp. 239 – 247,

2000.

[66] A. Somanath, S. Karaman, and K. Youcef-Toumi, “Controlling stochastic growth processes on

lattices: Wildfire management with robotic fire extinguishers,” in 53rd IEEE Conference on

Decision and Control (CDC), Dec 2014, pp. 1432–1437.

[67] A. Somanath and S. Karaman, “An optimal randomized policy for controlling stochastic

growth processes on lattices,” in 55th IEEE Conference on Decision and Control (CDC),

Dec 2016, pp. 6240–6245.

[68] R. Williams and L. C. Baird, “Tight performance bounds on greedy policies based on imperfect

value functions,” Tech. Rep., 1993.

[69] H. Kesten, “The critical probability of bond percolation on the square lattice equals 1/2,”

Communications in Mathematical Physics, vol. 74, no. 1, pp. 41–59, 1980.

[70] G. R. Grimmett and I. Manolescu, “Bond percolation on isoradial graphs: criticality and

universality,” Probability Theory and Related Fields, vol. 159, no. 1, pp. 273–327, Jun 2014.

[71] K. B. Athreya and P. E. Ney, Branching Processes. Springer, Berlin, Heidelberg, 1972.

[72] D. Assaf, L. Goldstein, and E. Samuel-Cahn, “An unexpected connection between branching

processes and optimal stopping,” Journal of applied probability, vol. 37, no. 3, pp. 613–626,

2000.

[73] A. Fog, “Calculation methods for Wallenius’ noncentral hypergeometric distribution,” Com-

munications in Statistics: Simulation and Computation, vol. 37, no. 2, pp. 258–273, 2008.

[74] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for

Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208, July 2000.

[75] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian

Bayesian state estimation,” IEE Proceedings F - Radar and Signal Processing, vol. 140, no. 2,

pp. 107–113, 1993.

BIBLIOGRAPHY 135

[76] N. Vaswani, A. Yezzi, Y. Rathi, and A. Tannenbaum, “Particle filters for infinite (or large)

dimensional state spaces- part 1,” in IEEE International Conference on Acoustics Speech and

Signal Processing Proceedings, vol. 3, May 2006, pp. III–III.

[77] T. Seo, T. T. Tchrakian, S. Zhuk, and A. M. Bayen, “Filter comparison for estimation on

discretized PDEs modeling traffic: Ensemble Kalman filter and minimax filter,” in 55th IEEE

Conference on Decision and Control (CDC), Dec 2016, pp. 3979–3984.

[78] A. Beskos, D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou, “A stable particle filter for a class

of high-dimensional state-space models,” Advances in Applied Probability, vol. 49, no. 1, p.

24–48, 2017.

[79] A. Jasra, S. S. Singh, J. S. Martin, and E. McCoy, “Filtering via approximate Bayesian

computation,” Statistics and Computing, vol. 22, no. 6, pp. 1223–1237, Nov 2012.

[80] D. M. Blei, M. I. Jordan, and J. W. Paisley, “Variational Bayesian inference with stochastic

search,” in Proceedings of the 29th International Conference on Machine Learning (ICML),

ser. Proceedings of Machine Learning Research. PMLR, 2012, pp. 1367–1374.

[81] M. Hoffman and D. Blei, “Stochastic Structured Variational Inference,” in Proceedings of the

Eighteenth International Conference on Artificial Intelligence and Statistics, ser. Proceedings

of Machine Learning Research, G. Lebanon and S. V. N. Vishwanathan, Eds., vol. 38. San

Diego, California, USA: PMLR, 09–12 May 2015, pp. 361–369.

[82] A. Saeedi, T. D. Kulkarni, V. K. Mansinghka, and S. J. Gershman, “Variational particle

approximations,” Journal of Machine Learning Research, vol. 18, no. 1, pp. 2328–2356, Jan.

2017.

[83] M. Yin and M. Zhou, “Semi-implicit variational inference,” in Proceedings of the 35th Inter-

national Conference on Machine Learning. PMLR, 2018, pp. 5660–5669.

[84] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” Journal

of Machine Learning Research, vol. 14, no. 1, pp. 1303–1347, 2013.

[85] V. Smidl and A. Quinn, “Variational Bayesian filtering,” IEEE Transactions on Signal Pro-

cessing, vol. 56, no. 10, pp. 5020–5030, 2008.

[86] J. Winn and C. M. Bishop, “Variational message passing,” Journal of Machine Learning

Research, vol. 6, pp. 661–694, Dec. 2005.

[87] P. Poupart and C. Boutilier, “VDCBPI: an approximate scalable algorithm for large

POMDPs,” in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss,

and L. Bottou, Eds. MIT Press, 2005, pp. 1081–1088.

BIBLIOGRAPHY 136

[88] T. S. Veiga, M. T. J. Spaan, and P. U. Lima, “Point-based POMDP solving with factored value

function approximation,” in Proceedings of the Twenty-Eighth AAAI Conference on Artificial

Intelligence, ser. AAAI’14. AAAI Press, 2014, p. 2512–2518.

[89] J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo, “Efficient planning in large

POMDPs through policy graph based factorized approximations,” in Machine Learning and

Knowledge Discovery in Databases, J. L. Balcázar, F. Bonchi, A. Gionis, and M. Sebag, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–16.

[90] A. H. Jazwinski, Stochastic processes and filtering theory. Courier Corporation, 2007.

[91] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for statisti-

cians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–877, 2017.

[92] J. Hensman, M. Rattray, and N. D. Lawrence, “Fast variational inference in the conjugate

exponential family,” in Advances in Neural Information Processing Systems 25, F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp.

2888–2896.

[93] L. K. Saul and M. I. Jordan, “Exploiting tractable substructures in intractable networks,” in

Advances in Neural Information Processing Systems 8. MIT Press, 1996, pp. 486–492.

[94] M. Simon. (2018) The terrifying science behind California’s mas-

sive Camp fire. [Online]. Available: https://www.wired.com/story/

the-terrifying-science-behind-californias-massive-camp-fire/

[95] S. M. Chu and T. S. Huang, “Bimodal speech recognition using coupled hidden Markov mod-

els,” in ICSLP-2000, vol. 2, 2000, pp. 747–750.

[96] I. Rezek and S. J. Roberts, “Estimation of coupled hidden Markov models with application

to biosignal interaction modelling,” in Neural Networks for Signal Processing X. Proceedings

of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501), vol. 2, 2000, pp.

804–813.

[97] I. Rezek, P. Sykacek, and S. J. Roberts, “Learning interaction dynamics with coupled hidden

Markov models,” IEE Proceedings - Science, Measurement and Technology, vol. 147, no. 6, pp.

345–350, 2000.

[98] J. Kwon and K. Murphy, “Modeling freeway traffic with coupled HMMs,” Tech. Rep., 2000.

[99] M. I. Jordan, Z. Ghahramani, and L. K. Saul, “Hidden Markov decision trees,” in Advances

in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds.

MIT Press, 1997, pp. 501–507.

https://www.wired.com/story/the-terrifying-science-behind-californias-massive-camp-fire/
https://www.wired.com/story/the-terrifying-science-behind-californias-massive-camp-fire/

BIBLIOGRAPHY 137

[100] R. D. Malmgren, J. M. Hofman, L. A. Amaral, and D. J. Watts, “Characterizing individual

communication patterns,” in Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’09. New York, NY, USA: Association

for Computing Machinery, 2009, p. 607–616.

[101] T. Chis and P. G. Harrison, “Modeling multi-user behaviour in social networks,” in 2014

IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and

Telecommunication Systems, 2014, pp. 168–173.

[102] A. De, I. Valera, N. Ganguly, S. Bhattacharya, and M. Gomez-Rodriguez, “Learning and

forecasting opinion dynamics in social networks,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16. Red Hook, NY, USA:

Curran Associates Inc., 2016, p. 397–405.

[103] C. Williams and G. Hinton, “Mean field networks that learn to discriminate temporally dis-

torted strings,” in Connectionist Models, 1991, pp. 18–22.

[104] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[105] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data

via the EM algorithm,” Journal of the Royal Statistical Society, Series B, vol. 39, no. 1, pp.

1–38, 1977.

[106] A. P. Dunmur and D. M. Titterington, “On a modification to the mean field EM algorithm

in factorial learning,” in Advances in Neural Information Processing Systems 9, M. C. Mozer,

M. I. Jordan, and T. Petsche, Eds. MIT Press, 1997, pp. 431–437.

[107] L. K. Saul and M. I. Jordan, “Mixed memory Markov models: Decomposing complex stochastic

processes as mixtures of simpler ones,” Mach. Learn., vol. 37, no. 1, p. 75–87, Oct 1999.

[108] California Department of Public Health, “COVID-19 cases,” https://data.ca.gov/dataset/

covid-19-cases, accessed 2020-10-28.

[109] Textblob, “Textblob: Simplified text processing,” https://textblob.readthedocs.io/en/dev/.

[110] E. Summers, “Fake news tweets,” https://archive.org/details/fakenews-tweets, accessed 2020-

11-04.

[111] A. Hannak, E. Anderson, L. F. Barrett, S. Lehmann, A. Mislove, and M. Riedewald, “Tweetin’

in the rain: Exploring societal-scale effects of weather on mood,” in International AAAI

Conference on Web and Social Media, 2012.

[112] J. M. Diaz, “Economic impacts of wildfire,” Southern Fire Exchange, 2012.

https://data.ca.gov/dataset/covid-19-cases
https://data.ca.gov/dataset/covid-19-cases
https://textblob.readthedocs.io/en/dev/
https://archive.org/details/fakenews-tweets

BIBLIOGRAPHY 138

[113] G. D. Richards, “An elliptical growth model of forest fire fronts and its numerical solution,”

International Journal for Numerical Methods in Engineering, vol. 30, no. 6, pp. 1163–1179,

1990.

[114] M. A. Finney, “Farsite: Fire area simulator-model development and evaluation,” 1998.

[115] D. Boychuk, W. J. Braun, R. J. Kulperger, Z. L. Krougly, and D. A. Stanford, “A stochastic

forest fire growth model,” Environmental and Ecological Statistics, vol. 16, no. 2, pp. 133–151,

2009.

[116] J. R. Martinez-de Dios, B. C. Arrue, A. Ollero, L. Merino, and F. Gómez-Rodŕıguez, “Com-

puter vision techniques for forest fire perception,” Image and vision computing, vol. 26, no. 4,

pp. 550–562, 2008.

[117] D. Stipaničev, M. Štula, D. Krstinić, L. Šerić, T. Jakovčević, and M. Bugarić, “Advanced

automatic wildfire surveillance and monitoring network,” in 6th International Conference on

Forest Fire Research’, Coimbra, Portugal.(Ed. D. Viegas), 2010.

[118] P. B. Sujit, D. Kingston, and R. Beard, “Cooperative forest fire monitoring using multiple

UAVs,” in 2007 46th IEEE Conference on Decision and Control, Dec 2007, pp. 4875–4880.

[119] L. Merino, F. Caballero, J. R. Mart́ınez-de Dios, J. Ferruz, and A. Ollero, “A cooperative

perception system for multiple UAVs: Application to automatic detection of forest fires,”

Journal of Field Robotics, vol. 23, no. 3-4, pp. 165–184, 2006.

[120] L. Merino, F. Caballero, J. R. Mart́ınez-de Dios, I. Maza, and A. Ollero, “An unmanned

aircraft system for automatic forest fire monitoring and measurement,” Journal of Intelligent

& Robotic Systems, vol. 65, no. 1, pp. 533–548, 2012.

[121] D. W. Casbeer, R. W. Beard, T. W. McLain, S.-M. Li, and R. K. Mehra, “Forest fire monitoring

with multiple small UAVs,” in Proceedings of the 2005, American Control Conference, 2005.,

June 2005, pp. 3530–3535 vol. 5.

[122] D. W. Casbeer, D. B. Kingston, R. W. Beard, and T. W. McLain, “Cooperative forest fire

surveillance using a team of small unmanned air vehicles,” International Journal of Systems

Science, vol. 37, no. 6, pp. 351–360, 2006.

[123] M. Kumar, K. Cohen, and B. HomChaudhuri, “Cooperative control of multiple uninhabited

aerial vehicles for monitoring and fighting wildfires,” Journal of Aerospace Computing, Infor-

mation, and Communication, vol. 8, no. 1, pp. 1–16, 2011.

[124] C. Phan and H. H. T. Liu, “A cooperative UAV/UGV platform for wildfire detection and fight-

ing,” in 2008 Asia Simulation Conference - 7th International Conference on System Simulation

and Scientific Computing, Oct 2008, pp. 494–498.

BIBLIOGRAPHY 139

[125] L. Ntaimo, J. A. Gallego-Arrubla, J. Gan, C. Stripling, J. Young, and T. Spencer, “A simula-

tion and stochastic integer programming approach to wildfire initial attack planning,” Forest

Science, vol. 59, no. 1, pp. 105–117, 2013.

[126] X. Hu and L. Ntaimo, “Integrated simulation and optimization for wildfire containment,”

ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 19, no. 4, p. 19,

2009.

[127] N. K. Ure, S. Omidshafiei, B. T. Lopez, A. a. Agha-Mohammadi, J. P. How, and J. Vian,

“Online heterogeneous multiagent learning under limited communication with applications to

forest fire management,” in 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Sept 2015, pp. 5181–5188.

[128] K. D. Julian and M. J. Kochenderfer, “Autonomous distributed wildfire surveillance using

deep reinforcement learning,” in 2018 AIAA Guidance, Navigation, and Control Conference,

2018, p. 1589.

[129] D. Bertsimas, J. D. Griffith, V. Gupta, M. J. Kochenderfer, and V. V. Mǐsić, “A comparison

of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource

allocation problems,” European Journal of Operational Research, 2017.

[130] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hierarchical deep reinforce-

ment learning: Integrating temporal abstraction and intrinsic motivation,” in Advances in

Neural Information Processing Systems 29, 2016, pp. 3675–3683.

[131] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” in International

Conference on Machine Learning, 2017, pp. 3540–3549.

[132] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for precise ag-

gressive maneuvers with quadrotors,” The International Journal of Robotics Research, vol. 31,

no. 5, pp. 664–674, 2012.

[133] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing Atari with deep reinforcement learning,” in NIPS Deep Learning Workshop, 2013.

[134] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt, “The rob-

otarium: A remotely accessible swarm robotics research testbed,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), May 2017, pp. 1699–1706.

[135] CAL FIRE, “California fire historical incident statistics,” http://cdfdata.fire.ca.gov/incidents/

incidents statsevents, Accessed 2019-02-22.

http://cdfdata.fire.ca.gov/incidents/incidents_statsevents
http://cdfdata.fire.ca.gov/incidents/incidents_statsevents

BIBLIOGRAPHY 140

[136] U. G. C. R. Program, “National climate assessment report,” https://nca2014.globalchange.

gov/report, Accessed 2019-03-05.

[137] Y. Meng, J. V. Nickerson, and J. Gan, “Multi-robot aggregation strategies with limited com-

munication,” in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,

Oct 2006, pp. 2691–2696.

[138] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks for optimal deploy-

ment,” Automatica, vol. 48, no. 6, pp. 1077 – 1087, 2012.

[139] Y. Kantaros and M. M. Zavlanos, “Distributed communication-aware coverage control by

mobile sensor networks,” Automatica, vol. 63, pp. 209 – 220, 2016.

[140] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using

multiple robots,” Journal of Artificial Intelligence Research, vol. 34, no. 1, pp. 707–755, Apr.

2009.

[141] M. Corah and N. Michael, “Efficient online multi-robot exploration via distributed sequen-

tial greedy assignment,” in Proceedings of Robotics: Science and Systems, Cambridge, Mas-

sachusetts, July 2017.

[142] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “A scalable information theoretic

approach to distributed robot coordination,” in 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sep. 2011, pp. 5187–5194.

[143] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-MCTS: Decentralized

planning for multi-robot active perception,” The International Journal of Robotics Research,

vol. 38, no. 2-3, pp. 316–337, 2019.

[144] S. Moon and E. W. Frew, “A communication-aware mutual information measure for distributed

autonomous robotic information gathering,” IEEE Robotics and Automation Letters, vol. 4,

no. 4, pp. 3137–3144, Oct 2019.

[145] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its application to

persistent monitoring tasks,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1106–1118,

Oct 2016.

[146] C. Phan and H. H. T. Liu, “A cooperative UAV/UGV platform for wildfire detection and fight-

ing,” in 2008 Asia Simulation Conference - 7th International Conference on System Simulation

and Scientific Computing, Oct 2008, pp. 494–498.

[147] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance with autonomous

aircraft using deep reinforcement learning,” Journal of Guidance, Control, and Dynamics,

vol. 42, no. 8, pp. 1768–1778, 2019.

https://nca2014.globalchange.gov/report
https://nca2014.globalchange.gov/report

BIBLIOGRAPHY 141

[148] S. Susca, F. Bullo, and S. Martinez, “Monitoring environmental boundaries with a robotic

sensor network,” IEEE Transactions on Control Systems Technology, vol. 16, no. 2, pp. 288–

296, March 2008.

[149] S. W. Feng, S. D. Hand, and J. Yu, “Efficient algorithms for optimal perimeter guarding,” in

Proceedings of Robotics: Science and Systems, June 2019.

[150] L. Merino, F. Caballero, J. R. Mart́ınez-de Dios, I. Maza, and A. Ollero, “An unmanned

aircraft system for automatic forest fire monitoring and measurement,” Journal of Intelligent

& Robotic Systems, vol. 65, no. 1, pp. 533–548, Jan 2012.

[151] N. K. Ure, S. Omidshafiei, B. T. Lopez, A. Agha-Mohammadi, J. P. How, and J. Vian, “Online

heterogeneous multiagent learning under limited communication with applications to forest fire

management,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), Sep. 2015, pp. 5181–5188.

[152] M. Kumar, K. Cohen, and B. Homchaudhuri, “Cooperative control of multiple uninhabited

aerial vehicles for monitoring and fighting wildfires,” Journal of Aerospace Computing, Infor-

mation, and Communication, vol. 8, no. 1, pp. 1–16, 2011.

[153] H. X. Pham, H. M. La, D. Feil-Seifer, and M. C. Deans, “A distributed control framework

of multiple unmanned aerial vehicles for dynamic wildfire tracking,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, pp. 1–12, 2018.

[154] P. B. Sujit, D. Kingston, and R. Beard, “Cooperative forest fire monitoring using multiple

UAVs,” in 2007 46th IEEE Conference on Decision and Control, Dec 2007, pp. 4875–4880.

[155] K. A. Ghamry, M. A. Kamel, and Y. Zhang, “Cooperative forest monitoring and fire detec-

tion using a team of UAVs-UGVs,” in 2016 International Conference on Unmanned Aircraft

Systems (ICUAS), June 2016, pp. 1206–1211.

[156] P. Stone and M. Veloso, “Task decomposition, dynamic role assignment, and low-bandwidth

communication for real-time strategic teamwork,” Artificial Intelligence, vol. 110, no. 2, pp.

241 – 273, 1999.

[157] N. Roy and G. Dudek, “Collaborative robot exploration and rendezvous: Algorithms, per-

formance bounds and observations,” Autonomous Robots, vol. 11, no. 2, pp. 117–136, Sep

2001.

[158] D. W. Casbeer, D. B. Kingston, R. W. Beard, and T. W. McLain, “Cooperative forest fire

surveillance using a team of small unmanned air vehicles,” International Journal of Systems

Science, vol. 37, no. 6, pp. 351–360, 2006.

BIBLIOGRAPHY 142

[159] M. Lauri and R. Ritala, “Planning for robotic exploration based on forward simulation,”

Robotics and Autonomous Systems, vol. 83, pp. 15 – 31, 2016.

[160] T. P. Hill, “Conflations of probability distributions,” Transactions of the American Mathe-

matical Society, vol. 363, no. 6, pp. 3351–3372, 2011.

[161] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem: A survey of recent

variants, solution approaches and applications,” European Journal of Operational Research,

vol. 255, no. 2, pp. 315 – 332, 2016.

[162] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and sta-

tistical learning via the alternating direction method of multipliers,” Foundations and Trends

in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[163] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,” IEEE

Transactions on Signal Processing, vol. 58, no. 10, pp. 5262–5276, 2010.

[164] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via inexact consensus

ADMM,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, 2015.

[165] E. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,” in 51st

IEEE Conference on Decision and Control (CDC), 2012, pp. 5445–5450.

[166] S. Hosseini, A. Chapman, and M. Mesbahi, “Online distributed ADMM via dual averaging,”

in 53rd IEEE Conference on Decision and Control (CDC), 2014, pp. 904–909.

[167] S. Park, Y. Min, J. Ha, D. Cho, and H. Choi, “A distributed ADMM approach to non-myopic

path planning for multi-target tracking,” IEEE Access, vol. 7, pp. 163 589–163 603, 2019.

[168] S. Choudhary, L. Carlone, H. I. Christensen, and F. Dellaert, “Exactly sparse memory efficient

SLAM using the multi-block alternating direction method of multipliers,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 1349–1356.

[169] R. Van Parys and G. Pipeleers, “Online distributed motion planning for multi-vehicle systems,”

in 2016 European Control Conference (ECC), 2016, pp. 1580–1585.

[170] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics

Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[171] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell, “Branch-and-bound algorithms:

A survey of recent advances in searching, branching, and pruning,” Discrete Optimization,

vol. 19, pp. 79–102, 2016.

[172] A. Falsone, K. Margellos, and M. Prandini, “A decentralized approach to multi-agent MILPs:

Finite-time feasibility and performance guarantees,” Automatica, vol. 103, pp. 141–150, 2019.

BIBLIOGRAPHY 143

[173] A. Testa, A. Rucco, and G. Notarstefano, “A finite-time cutting plane algorithm for distributed

mixed integer linear programming,” in 2017 IEEE 56th Annual Conference on Decision and

Control (CDC), 2017, pp. 3847–3852.

[174] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed simplex algorithm

for degenerate linear programs and multi-agent assignments,” Automatica, vol. 48, no. 9, pp.

2298–2304, 2012.

[175] S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for the multi-robot task

allocation problem,” in Trends in Applied Intelligent Systems, N. Garćıa-Pedrajas, F. Herrera,

C. Fyfe, J. M. Beńıtez, and M. Ali, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 721–730.

[176] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed version of the Hun-

garian method for multirobot assignment,” IEEE Transactions on Robotics, vol. 33, no. 4, pp.

932–947, 2017.

[177] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A distributed auction algorithm for the

assignment problem,” in 2008 47th IEEE Conference on Decision and Control, 2008, pp.

1212–1217.

[178] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed multi-robot task

assignment and formation control,” in 2008 IEEE International Conference on Robotics and

Automation, 2008, pp. 128–133.

[179] H. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized auctions for robust task

allocation,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 912–926, 2009.

[180] L. Liu and D. Shell, “Optimal market-based multi-robot task allocation via strategic pricing,”

in Proceedings of Robotics: Science and Systems, 2013.

[181] D. Bertsekas, Convex analysis and optimization. Belmont, Mass: Athena Scientific, 2003.

[182] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends R© in Optimization,

vol. 1, no. 3, pp. 127–239, 2014.

[183] H. Yan, C. Mossburg, A. Moshtaghlan, and P. Vercammen, “California sets new

record for land torched by wildfires as 224 people escape by air from a

‘hellish’ inferno,” Sept 2020. [Online]. Available: https://www.cnn.com/2020/09/05/

us/california-mammoth-pool-reservoir-camp-fire/index.html

[184] V. Nikitin, S. Golubin, R. Belov, V. Gusev, and N. Andrianov, “Development of a robotic

vehicle complex for wildfire-fighting by means of fire-protection roll screens,” IOP Conference

Series: Earth and Environmental Science, vol. 226, p. 012003, feb 2019.

https://www.cnn.com/2020/09/05/us/california-mammoth-pool-reservoir-camp-fire/index.html
https://www.cnn.com/2020/09/05/us/california-mammoth-pool-reservoir-camp-fire/index.html

BIBLIOGRAPHY 144

[185] A. Davies, “These self-flying helicopters team up to fight fires and

save lives,” Oct 2017. [Online]. Available: https://www.wired.com/2016/11/

lockheed-martin-kmax-sara-indago-firefighting-drones/

[186] J. M. de Dios, B. Arrue, A. Ollero, L. Merino, and F. Gómez-Rodŕıguez, “Computer vision

techniques for forest fire perception,” Image and Vision Computing, vol. 26, no. 4, pp. 550 –

562, 2008.

[187] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social lstm:

Human trajectory prediction in crowded spaces,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016, pp. 961–971.

[188] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention in human crowds,”

in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4601–

4607.

https://www.wired.com/2016/11/lockheed-martin-kmax-sara-indago-firefighting-drones/
https://www.wired.com/2016/11/lockheed-martin-kmax-sara-indago-firefighting-drones/

	Abstract
	Acknowledgments
	Introduction
	Related Work
	Approach
	Applications
	Contributions
	Organization

	GMDP Model Formulation and Problem Description
	Mathematical Preliminaries
	Graph Theory
	Optimization
	Markov Models
	Graph-based Markov Models
	Anonymous Influence

	Process Models
	Forest Wildfires
	Virus Epidemics
	Social Networks
	Model Complexity

	Model Abstractions

	Control Policies with Global Capacity Constraints
	Introduction
	Related Work
	Constrained Value and State-Action Functions Via Approximate Linear Programming
	Approximate Constrained Value Functions
	Approximate Constrained State-Action Functions
	Deriving the Resulting Constrained Policy
	Exploiting Anonymity in Linear Programs

	Rule-based Policies and Analysis with Bond Percolation
	Heterogeneous Bond Percolation
	Galton-Watson Branching Process Model
	Defining Control Policies and Stability Analysis

	Simulation Experiments
	ACSAR Performance
	Percolation Framework Performance

	Summary

	Fast Online Filtering
	Introduction
	Related Work
	Variational Message-Passing Filter Scheme
	Approximating the ELBO
	Message-passing Scheme
	Simplifying with Anonymous Influence
	Additional Measurement Model Derivation

	Constrained Control Under Measurement Uncertainty
	Simulation Experiments
	Filter Performance
	Closed-loop Filter and Controller Performance

	Summary

	Learning Model Parameters with Historical Data
	Introduction
	Related Work
	Model Learning Problem
	Approximate Expectation-Maximization Approach
	Datasets and Results
	Performance Metrics
	Novel Coronavirus 2019 (COVID) in California
	Tweets on a Topic
	Data Considerations

	Summary

	Interacting with GMDPs using Teams of Robots
	Distributed Deep Reinforcement Learning for Persistent Control
	Related Work
	Agent Model
	Heuristic Approach
	Multi-Agent Deep Q Network
	Simulation and Hardware Experiments

	Spatial Scheduling of Informative Meetings for Persistent Coverage
	Related Work
	Agent Model
	Decentralized Information Gathering Framework
	Process Filter and Merging Beliefs
	Schedule Framework
	Individual and Joint Path Planning
	Simulation Experiments

	Consensus-based ADMM for Task Assignment
	Related Work
	Multi-robot Task Assignment
	General Cooperative Multi-robot Problems
	Distributed Primal Problem Approach
	Distributed Dual Problem Approach
	Simulation Experiments

	Summary

	Conclusions and Future Directions
	Current Feasibility and Technologies
	Summary
	Future Directions
	Parameterized Policies
	Graph-based POMDPs
	Structural Assumptions
	Additional Models
	Model Abstraction and Validation
	Hardware Experiments

	Bibliography

