
Improving Efficiency and Efficacy in
Reinforcement Learning through Deep

Model-Based Algorithms: An Exploration of
Online, Expressive, Offline, and Safe Learning

Approaches

Junxia Deng
University of Southern California

California, USA

Ceil Hong. Zhang
Massachusetts Institute of Technology

Massachusetts, USA
zhanghongceil@pku.org.cn

 ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
 International Journal of Research in Engineering and Science (IJRES)

 www.ijres.org Volume 10 Issue 8 ǁAugust 2022 ǁPP. 01-186

Disclaimer:
The content of the paper belongs to the original author and is only used

as a handout for the Advanced Intensive Learning course.

Abstract

Recent advances in deep reinforcement learning have demonstrated its great potential

for real-world problems. However, two concerns prevent reinforcement learning from

being applied: Efficiency and Efficacy. This dissertation studies how to improve

the efficiency and efficacy of reinforcement learning by designing deep model-based

algorithms. The access to dynamics models empowers the algorithms to plan, which

is key to sequential decision making. This dissertation covers four topics: online rein-

forcement learning, the expressivity of neural networks in deep reinforcement learning,

offline reinforcement learning, and safe reinforcement learning. For online reinforce-

ment learning, we present an algorithmic framework with theoretical guarantees by

utilizing a lower bound of performance the policy learned in the learned environment

can obtain in the real environment. We also empirically verify the efficiency of our

proposed method. For expressivity of neural networks in deep reinforcement learning,

we prove that in some scenarios, the model-based approaches can require much less

representation power to approximate a near-optimal policy than model-free approaches,

and empirically show that this can be an issue in simulated robotics environments

and a model-based planner can help. For offline reinforcement learning, we devise an

algorithm that enables the policy to stay close to the provided expert demonstration

set to reduce distribution shift, and we also conduct experiments to demonstrate the

efficacy of our methods to improve the success rate for robotic arm manipulation tasks

in simulated environments. For safe reinforcement learning, we propose a method that

uses the learned dynamics model to certify safe states, and our experiments show that

our method can learn a decent policy without a single safety violation during training

in a set of simple but challenging tasks, while baseline algorithms have hundreds of

safety violations.

iii

iv

v

Contents

Abstract . iii

Acknowledgements . iv

List of Tables . ix

List of Figures . x

1 Introduction 1

1.1 Overview . 3

1.2 Previously Published Works . 5

1.3 Notations and General Setup . 5

2 Algorithmic Framework with Theoretical Guarantees 8

2.1 Background . 9

2.2 Related Work . 12

2.3 Preliminaries . 14

2.4 Algorithmic Framework . 15

2.4.1 Sample Complexity Bounds 20

2.5 Discrepancy Bounds Design . 23

2.5.1 Norm-based Prediction Error Bounds 24

2.5.2 Representation-invariant Discrepancy Bounds 28

2.5.3 Refined Bounds . 36

2.6 Practical Implementation and Experiments 44

vi

2.6.1 Practical Implementation . 44

2.6.2 Experimental Results . 46

2.6.3 Ablation Study . 48

2.6.4 Implementation Details . 50

2.7 Conclusion . 54

3 Expressivity of Neural Networks in Deep Reinforcement Learning 55

3.1 Background . 56

3.2 Related Work . 59

3.3 Preliminaries . 61

3.4 Approximability of Q-functions and Dynamics 62

3.4.1 A Provable Construction of MDPs with Complex Q 63

3.4.2 Extension of the Constructed Family 69

3.4.3 Approximability of Q-function 74

3.4.4 Sample Complexity Lower Bound of Q-learning 81

3.4.5 Approximability of Q-functions of Randomly Generated MDPs 87

3.5 Model-based Bootstrapping Planner 91

3.6 Experiments . 95

3.6.1 Ablation Study . 96

3.6.2 Implementation Details . 98

3.7 Conclusion . 102

4 Imitation Learning via Negative Sampling 104

4.1 Background . 104

4.2 Related Work . 107

4.3 Problem Setup and Challenges . 110

4.4 Theoretical Motivations . 113

4.5 Main Approach . 121

vii

4.6 Experiments . 124

4.6.1 Experimental Setup . 124

4.6.2 Experiment Results . 127

4.6.3 Ablation Study . 128

4.6.4 Implementation Details . 128

4.7 Conclusion . 131

5 Safe Reinforcement Learning with Zero Training-time Violations 132

5.1 Background . 133

5.2 Related Work . 135

5.3 Problem Setup and Preliminaries . 137

5.3.1 Barrier Certificate . 138

5.3.2 Metropolis-Adjusted Langevin Algorithm (MALA) 139

5.4 Learning Barrier Certificates via Adversarial Training 140

5.5 Main Approach . 144

5.5.1 Safe Exploration with Certified Safeguard Policy 144

5.5.2 Regularizing Barrrier Certificates 146

5.5.3 Learning a Calibrated Dynamics Model 147

5.5.4 Policy Optimization . 148

5.6 High-risk, High-reward Environments 150

5.7 Experiments . 152

5.7.1 Implementation Details . 155

5.8 Conclusion . 158

Bibliography 160

viii

List of Tables

2.1 TRPO Hyperparameters. 53

4.1 The success rate for VINS and BC without environment interactions . 127

4.2 Ablation study of VINS without environment interactions 129

ix

List of Figures

2.1 Comparison between SLBO and baselines 47

2.2 Ablation study on multi-step model training 48

2.3 Ablation study on entropy regularization 49

2.4 Comparison among SLBO and baselines with more samples 50

3.1 Dyanmics and Q-function for randomly generately MDPs 57

3.2 A visualization of the MDP defined in Definition 3.4.1 64

3.3 The histogram of number of pieces in optimal policy 89

3.4 Performance of different algorithms with/without planning 90

3.5 Comparison on Ant and Humanoid 92

3.6 Comparison of BOOTS and baselines on Humanoid 95

3.7 BOOTS with oracle dynamics on various environments 97

3.8 The relative gain of BOOTS on various environments 97

3.9 Different BOOTS planning horizon on Humanoid 98

4.1 The learned value function in a toy environment 105

4.2 Illustration of the correction effect . 113

4.3 The learning curve of VINS+RL on Pick-And-Place and Push 127

5.1 Illustration of environments . 150

5.2 Comparision between CRABS and baselines 152

5.3 Visualization of the growing viable subsets learned by CRABS 153

x

Chapter 1

Introduction

Reinforcement learning (RL) is a natural formulation of sequential decision making.

Unlike supervised learning which requires a labeled dataset, reinforcement learning

works by interacting with the environment and learning from the signals received

during the interactions. In the past few years, reinforcement learning has received a

tremendous amount of attention due to its empirical success.

Among these RL algorithms, two classes are of special interest to researchers:

• Model-based RL algorithms extend RL algorithms by a dynamics model, which

predicts the change of the environment after taking one action. The additional

dynamics model empowers the algorithm to plan effectively, which is key to

sequential decision making.

• Deep RL algorithms employ artificial neural networks, which are powerful

function approximators, to deal with continuous state space and action space.

Although we lack theoretical understanding of deep RL algorithms, they work

surprisingly well in practice.

Deep model-based RL algorithms take the intersection of these two classes, hoping to

combine the best of two worlds. What is more interesting is that instead of relying on

1

a given dynamics model, artificial neural networks enable RL algorithms to learn a

dynamics model, which is highly non-linear in practice.

When applying RL algorithms to real-world problems, two significant aspects

might impede the application: Efficiency and Efficacy. Efficiency indicates how

good RL algorithms are at using the inputs, such as online data, offline data, and

domain knowledge, while efficacy indicates how good RL algorithms have the desired

properties, such as high total rewards, safety, and scalability. Without efficiency, RL

algorithms may be immoderate, consuming too many resources; without efficacy, RL

algorithms may be impotent, failing to produce expected properties. How can we

design RL algorithms that are both efficient and effective?

In this dissertation, we focus on the following two concerns by designing deep

model-based RL algorithms.

• Low sample efficiency. Current reinforcement learning algorithms require many

samples to learn the policy, but samples can be expensive to obtain. A few

solutions have been proposed for this concern. For example, one might consider

using existing offline data or using online data more efficiently. The model-based

approaches can use the dynamics model to plan, so it can often improve the

sample efficiency.

• Training-time safety violations. In some scenarios, safety is critical, and violations

lead to very undesired consequences. Thus, we would like to design RL algorithms

that focus on safety. Here we not only care about the safety of the final policy

but also care about the whole training process. The model-based methods can

have great potential as they may foresee the possible danger and take actions to

prevent it from happening.

2

1.1 Overview

This dissertation covers four topics in RL: online RL, the expressivity of neural

networks in deep RL, offline RL, and safe RL. We will give an overview of each topic

in the rest of the section.

One problem for model-based RL is how the dynamics model should be chosen, so

that the policy learned on the learned dynamics models can generalize, as the wrong

prediction of critical transitions might be exploited by the policy. The conventional

loss for model learning is the mean squared error (MSE), but a small MSE doesn’t

mean good generalization as it cares about the average performance and doesn’t

emphasize critical transitions. To resolve the concern for generalization, in Chapter 2

we theoretically design an algorithmic framework to learn the model and policy simul-

taneously under the principle of optimism-in-face-of-the-uncertainty. We instantiate

our algorithmic framework into a practical algorithm and conduct experiments to

show that it can achieve high total rewards on a set of common continuous control

benchmark tasks when the number of collected samples is limited.

Chapter 2 proposes a general theory for deep model-based RL, but one essential

part of deep model-based methods, the neural network, remains mysterious. A deeper

understanding of neural networks sheds light on designing better deep model-based RL

algorithms. In Chapter 3, we study model-based RL through the lens of expressivity

of neural networks. The more units a network has, the better it can approximate a

function. In model-based RL algorithms, the dynamics model is approximated, while

in model-free RL algorithms, the value function and the policy are approximated.

Do these two classes of algorithms require the same level of expressivity to get near-

optimal performance? The answer to the question helps us find out when model-based

approaches have an advantage over model-free approaches. We answer this question

by showing that model-based approaches require far less expressivity to achieve near-

optimal performance in certain scenarios. We construct cases where the value function

3

and policy require an exponential (in horizon) large neural network with a constant

depth to get near-optimal performance, while the dynamics model requires only a

constant large neural network. This finding hints that expressivity might be an issue

for model-free approaches. To mitigate this issue, we propose an algorithm that simply

uses the dynamics model to bootstrap the weak value function to a stronger policy.

Our algorithm is only involved during test and can be applied on top of many existing

model-based/model-free algorithms. The empirical results show that it can improve

the underlying algorithm on continuous control benchmark tasks.

With the theoretical understanding in Chapters 2 and 3, one might seek other

methods to reduce the required samples. One popular choice is to make use of existing

offline data. The main issue for traditional methods is distribution shift, which means

that the distribution of states in training is different from the distribution of states

during test. As a result, the errors of the policy accumulate and prevent the policy

from obtaining high total rewards. To this end, in Chapter 4 we propose an algorithm

to make local corrections so that the distribution of states during test stays close to

the training distribution. Our algorithm can run both with and without interactions

with the environment. Our empirical result shows that our algorithm can achieve

higher success rates given the same offline data than baselines when the interactions

with the environment are prohibited, and it can learn faster and have better sample

efficiency when the interactions with the environment are permitted.

Finally we move on to the safety concern. The previous chapters, along with

many other concurrent works, improve the sample efficiency of deep model-based

RL algorithms by a lot, but it might be insufficient to address the safety concern as

safety violations can have very serious consequences. Moreover, safety during the

training process is also crucial. In Chapter 5, we aim to design a deep model-based

RL algorithm to learn a policy without any training-time safety violations. One

challenge is unknown irrecoverable states, which leads to a safety violation no matter

4

what actions to take. Our idea is that we use the learned dynamics model to certify

“recoverable” states and limit ourselves to only exploring the certified states. We

propose an algorithm to co-train a policy and the certificate to a growing set of states.

Our experiments show that in a set of simple but challenging tasks, the proposed

algorithm can learn a decent policy without a single safety violation, while the baselines

have hundreds of safety violations.

1.2 Previously Published Works

Chapter 2 is based on the joint work with Huazhe Xu, Yuanzhi Li, Yuandong Tian,

Trevor Darrell and Tengyu Ma, and is published in ICLR 2019 [Luo et al., 2019a].

Chapter 3 is based on the joint work with Kefan Dong and Tengyu Ma, and is

published in ICML 2021 [Dong et al., 2020].

Chapter 4 is based on the joint work with Huazhe Xu and Tengyu Ma, and is

published in ICLR 2020 [Luo et al., 2019b].

Chapter 5 is based on the joint work with Tengyu Ma, and is published in NeurIPS

2021 [Luo and Ma, 2021].

1.3 Notations and General Setup

Throughout the dissertation, we consider the standard RL setup with an infinite-

horizon Markov Decision Process (MDP). An MDP is specified by a tuple

(S,A,M, r, γ, µ0), where S is the state space, A is the action space,M : S×A → ∆(S)

is the transition function which maps a state action pair to a probability distribution of

the next state, γ is the discount factor and r : S ×A → R is the reward function, µ0 is

the distribution of the initial state. Here ∆(X) denotes the family of distributions over

a set X . Unless otherwise specified, we assume the transition function is deterministic,

which means M(·|s, a) is a Dirac measure. In this case, we use M(s, a) to denote

5

the unique value of s′ and view M as a function from S × A to S. In model-based

reinforcement learning, we typically have two models, one of which is M∗, the true

transition model in the environment. The other transition model is either given or

learned, which we denote by M̂ .

A policy π : S → ∆(A) maps a state to a distribution of actions, while a

deterministic policy π : S → A maps a state to an action. The value function V for

the policy is defined as is defined

V π,M(s) , E

[
∞∑
t=0

γtr(st, at)

∣∣∣∣∣s0 = s, at ∼ π(st), st+1 ∼M(st, at)

]
.

Moreover, we define the state-action value function Q:

Qπ,M(s, a) , E

[
∞∑
t=0

γtr(st, at)

∣∣∣∣∣s0 = s, a0 = a, at ∼ π(st), st+1 ∼M(st, at)

]
.

The superscript π and/or M might be omitted for clarity.

An RL agent aims to find a policy π that maximizes the expected total reward

defined as

η(π) , Es0∼µ0 [V π(s0)] ,

where µ0 is the distribution of the initial state. The optimal policy π∗ is the one that

maximizes η(π):

π∗ , argmax
π

η(π),

and we use Q∗ (and V ∗) as the shorthand of Qπ∗ (and V π∗).

We use I[·] to denote the indicator function. Let bxc denote the floor function of

x, that is, the greatest integer less than or equal to x. The Kullback-Leibler (KL)

divergence between two distributions p and q are defined as

DKL(p ‖ q) = Ex∼p
[
log

p(x)

q(x)

]
.

6

We use ‖ · ‖ to denote a norm in Euclidean space Rd.

7

Chapter 2

Algorithmic Framework with

Theoretical Guarantees

Model-based reinforcement learning (RL) is considered to be a promising approach to

reduce the sample complexity that hinders model-free RL. However, the theoretical

understanding of such methods has been rather limited. This chapter introduces a

novel algorithmic framework for designing and analyzing model-based RL algorithms

with theoretical guarantees. We design a meta-algorithm with a theoretical guarantee

of monotone improvement to a local maximum of the expected reward. The meta-

algorithm iteratively builds a lower bound of the expected reward based on the

estimated dynamics model and sample trajectories, and then maximizes the lower

bound jointly over the policy and the model. The framework extends the optimism-in-

face-of-uncertainty principle to non-linear dynamics models in a way that requires no

explicit uncertainty quantification. Instantiating our framework with simplification

gives a variant of model-based RL algorithms Stochastic Lower Bounds Optimization

(SLBO). Experiments demonstrate that SLBO achieves high performance when only

one million or fewer samples are permitted on a range of continuous control benchmark

tasks.

8

2.1 Background

In recent years deep reinforcement learning has achieved strong empirical success,

including super-human performances on Atari games and Go [Mnih et al., 2015, Silver

et al., 2017a] and learning locomotion and manipulation skills in robotics [Levine

et al., 2016, Schulman et al., 2015b, Lillicrap et al., 2016]. Many of these results

are achieved by model-free RL algorithms that often require a massive number of

samples, and therefore their applications are mostly limited to simulated environments.

Model-based deep reinforcement learning, in contrast, exploits the information from

state observations explicitly — by planning with an estimated dynamics model — and

is considered to be a promising approach to reduce the sample complexity. Indeed,

empirical results [Deisenroth and Rasmussen, 2011, Deisenroth et al., 2013, Levine

et al., 2016, Nagabandi et al., 2018, Kurutach et al., 2018, Pong et al., 2018a] have

shown strong improvements in sample efficiency.

Despite promising empirical findings, many of theoretical properties of model-based

deep reinforcement learning are not well-understood. For example, how does the error

of the estimated model affect the estimation of the value function and the planning?

Can model-based RL algorithms be guaranteed to improve the policy monotonically

and converge to a local maximum of the value function? How do we quantify the

uncertainty in the dynamics models?

It’s challenging to address these questions theoretically in the context of deep RL

with continuous state and action space and non-linear dynamics models. Due to the

high-dimensionality, learning models from observations in one part of the state space

and extrapolating to another part sometimes involves a leap of faith. The uncertainty

quantification of the non-linear parameterized dynamics models is difficult — even

without the RL components, it is an active but widely-open research area. Prior work

in model-based RL mostly quantifies uncertainty with either heuristics or simpler

models [Moldovan et al., 2015, Xie et al., 2016, Deisenroth and Rasmussen, 2011].

9

Previous theoretical work on model-based RL mostly focuses on either the finite-

state MDPs [Jaksch et al., 2010, Bartlett and Tewari, 2009, Fruit et al., 2018, Laksh-

manan et al., 2015, Hinderer, 2005, Pirotta et al., 2015, 2013], or the linear parametriza-

tion of the dynamics, policy, or value function [Abbasi-Yadkori and Szepesvári, 2011,

Simchowitz et al., 2018, Deisenroth and Rasmussen, 2011, Sutton et al., 2012, Tamar

et al., 2012], but not much on non-linear models. Even with an oracle prediction

intervals1 or posterior estimation, to the best of our knowledge, there was no previous

algorithm with convergence guarantees for model-based deep RL.

Towards addressing these challenges, the main contribution of this chapter is to

propose a novel algorithmic framework for model-based deep RL with theoretical

guarantees. Our meta-algorithm (Algorithm 1) extends the optimism-in-face-of-

uncertainty principle to non-linear dynamics models in a way that requires no explicit

uncertainty quantification of the dynamics models.

In this chapter, we denote V π = V π,M∗ as the value function of a policy π on the

true environment M∗, and denote V̂ π = V π,M̂ as the value function of the policy π

on the estimated model M̂ . We design provable upper bounds, denoted by Dπ,M̂ , on

how much the error can compound and divert the expected value V̂ π of the imaginary

rollouts from their real value V π, in a neighborhood of some reference policy. Such

upper bounds capture the intrinsic difference between the estimated and real dynamics

model with respect to the particular reward function under consideration.

The discrepancy bounds Dπ,M̂ naturally leads to a lower bound for the true value

function:

V π ≥ V̂ π −Dπ,M̂ . (2.1.1)

1We note that the confidence interval of parameters are likely meaningless for over-parameterized
neural networks models.

10

Our algorithm iteratively collects batches of samples from the interactions with

environments, builds the lower bound above, and then maximizes it over both the

dynamics model M̂ and the policy π. We can use any RL algorithms to optimize the

lower bounds, because it will be designed to only depend on the sample trajectories

from a fixed reference policy (as opposed to requiring new interactions with the policy

iterate.)

We show that the performance of the policy is guaranteed to monotonically increase,

assuming the optimization within each iteration succeeds (see Theorem 2.4.1.) To the

best of our knowledge, this is the first theoretical guarantee of monotone improvement

for model-based deep RL.

Readers may have realized that optimizing a robust lower bound is reminiscent of

robust control and robust optimization. The distinction is that we optimistically and

iteratively maximize the RHS of (2.1.1) jointly over the model and the policy. The

iterative approach allows the algorithms to collect higher quality trajectory adaptively,

and the optimism in model optimization encourages explorations of the parts of space

that are not covered by the current discrepancy bounds.

To instantiate the meta-algorithm, we design a few valid discrepancy bounds in

Section 2.5. In Section 2.5.1, we recover the norm-based model loss by imposing the

additional assumption of a Lipschitz value function. The result suggests a norm is

preferred compared to the square of the norm. Indeed in Section 2.6.2, we show that

experimentally learning with `2 loss significantly outperforms the mean-squared error

loss (`2
2).

In Section 2.5.2, we design a discrepancy bound that is invariant to the represen-

tation of the state space. Here we measure the loss of the model by the difference

between the value of the predicted next state and the value of the true next state.

Such a loss function is shown to be invariant to one-to-one transformation of the

state space. Thus we argue that the loss is an intrinsic measure for the model error

11

without any information beyond observing the rewards. We also refine our bounds in

Section 2.5.3 by utilizing some mathematical tools of measuring the difference between

policies in χ2-divergence (instead of KL divergence or TV distance).

Our analysis also sheds light on the comparison between model-based RL and

on-policy model-free RL algorithms such as policy gradient or TRPO [Schulman et al.,

2015a]. The RHS of Equation (2.1.1) is likely to be a good approximator of V π in a

larger neighborhood than the linear approximation of V π used in policy gradient is

(see Remark 2.5.5.)

Finally, inspired by our framework and analysis, we design a variant of model-

based RL algorithms Stochastic Lower Bounds Optimization (SLBO). Experiments

demonstrate that SLBO achieves high performance when only one million samples are

permitted on a range of continuous control benchmark tasks.

2.2 Related Work

Model-based reinforcement learning is expected to require fewer samples than model-

free algorithms [Deisenroth et al., 2013] and has been successfully applied to robotics

in both simulation and in the real world [Deisenroth and Rasmussen, 2011, Morimoto

and Atkeson, 2003, Deisenroth et al., 2011] using dynamics models ranging from

Gaussian process [Deisenroth and Rasmussen, 2011, Ko and Fox, 2009], time-varying

linear models [Levine and Koltun, 2013, Lioutikov et al., 2014, Levine and Abbeel,

2014, Yip and Camarillo, 2014], mixture of Gaussians [Khansari-Zadeh and Billard,

2011], to neural networks [Hunt et al., 1992, Nagabandi et al., 2018, Kurutach et al.,

2018, Tangkaratt et al., 2014, Sanchez-Gonzalez et al., 2018, Pascanu et al., 2017]. In

particular, the work of Kurutach et al. [2018] uses an ensemble of neural networks to

learn the dynamics model, and significantly reduces the sample complexity compared

to model-free approaches. The work of Chua et al. [2018b] makes further improvement

12

by using a probabilistic model ensemble. Clavera et al. [2018] extended this method

with meta-policy optimization and improve the robustness to model error. In contrast,

we focus on theoretical understanding of model-based RL and the design of new

algorithms, and our experiments use a single neural network to estimate the dynamics

model.

Our discrepancy bound in Section 2.5 is closely related to the work of Farahmand

et al. [2017] on the value-aware model loss. Our approach differs from it in three

details: a) we use the absolute value of the value difference instead of the squared

difference; b) we use the imaginary value function from the estimated dynamics model

to define the loss, which makes the loss purely a function of the estimated model

and the policy; c) we show that the iterative algorithm, using the loss function as a

building block, can converge to a local maximum, partly by cause of the particular

choices made in a) and b). Asadi et al. [2018] also study the discrepancy bounds

under Lipschitz condition of the MDP.

Prior work explores a variety of ways of combining model-free and model-based

ideas to achieve the best of the two methods [Sutton, 1991, 1990b, Racanière et al.,

2017, Mordatch et al., 2016, Sun et al., 2018b]. For example, estimated models [Levine

and Koltun, 2013, Gu et al., 2016b, Kalweit and Boedecker, 2017] are used to enrich

the replay buffer in the model-free off-policy RL. Pong et al. [2018b] proposes goal-

conditioned value functions trained by model-free algorithms and uses it for model-

based controls. Feinberg et al. [2018b], Buckman et al. [2018] use dynamics models to

improve the estimation of the value functions in the model-free algorithms.

On the control theory side, Dean et al. [2018, 2020] provide strong finite sample

complexity bounds for solving linear quadratic regulator using model-based approach.

Boczar et al. [2018] provide finite-data guarantees for the “coarse-ID control” pipeline,

which is composed of a system identification step followed by a robust controller

synthesis procedure. Our method is inspired by the general idea of maximizing a low

13

bound of the reward in Dean et al. [2020]. By contrast, our work applies to non-linear

dynamical systems. Our algorithms also estimate the models iteratively based on

trajectory samples from the learned policies.

Strong model-based and model-free sample complexity bounds have been achieved

in the tabular case (finite state space). We refer the readers to Kakade et al. [2018],

Dann et al. [2017], Szita and Szepesvári [2010], Kearns and Singh [2002], Jaksch et al.

[2010], Agrawal and Jia [2017] and the reference therein. Our work focus on continuous

and high-dimensional state space (though the results also apply to tabular case).

Another line of work of model-based reinforcement learning is to learn a dynamic

model in a hidden representation space, which is especially necessary for pixel state

spaces [Kakade et al., 2018, Dann et al., 2017, Szita and Szepesvári, 2010, Kearns

and Singh, 2002, Jaksch et al., 2010]. Srinivas et al. [2018] shows the possibility to

learn an abstract transition model to imitate expert policy. Oh et al. [2017] learns the

hidden state of a dynamics model to predict the value of the future states and applies

RL or planning on top of it. Serban et al. [2018], Ha and Schmidhuber [2018] learns a

bottleneck representation of the states. Our framework can be potentially combined

with this line of research.

2.3 Preliminaries

We use the same setup in Section 1.3. The target applications are problems with

the continuous state and action space, although the results apply to discrete state or

action space as well. LetM denote a (parameterized) family of models that we are

interested in, and Π denote a (parameterized) family of policies.

Unless otherwise stated, for random variable X, we will use pX to denote its density

function.

14

Let S0 be the random variable for the initial state. Let Sπ,Mt to denote the random

variable of the states at steps t when we execute the policy π on the dynamic model

M stating with S0. Note that Sπ,M0 = S0 unless otherwise stated. We will omit

the subscript when it’s clear from the context. We use At to denote the actions at

step t similarly. We often use τ to denote the random variable for the trajectory

(S0, A1, . . . , St, At, . . .). We assume the reward function R is known throughout the

chapter, although R can be also considered as part of the model if unknown.

Recall that V π,M be the value function on the model M and policy π is defined as:

V π,M(s) , E
∀t≥0,At∼π(·|St)
St+1∼M(·|St,At)

[
∞∑
t=0

γtR(St, At) | S0 = s

]
(2.3.1)

We define V π,M , E
[
V π,M(S0)

]
as the expected reward-to-go at Step 0 (averaged

over the random initial states). Our goal is to maximize the reward-to-go on the true

dynamics model, that is, V π,M? , over the policy π. For simplicity, throughout the

chapter, we set κ = γ(1 − γ)−1 since it occurs frequently in our equations. Every

policy π induces a distribution of states visited by policy π:

Definition 2.3.1. For a policy π, define ρπ,M as the discounted distribution of the

states visited by π on M . Let ρπ be a shorthand for ρπ,M? and we omit the superscript

M? throughout the chapter. Concretely, we have ρπ , (1− γ)
∑∞

t=0 γ
t · pSπt

2.4 Algorithmic Framework

As mentioned in the introduction, towards optimizing V π,M? ,2 our plan is to build a

lower bound for V π,M? of the following type and optimize it iteratively:

V π,M? ≥ V π,M̂ −D(M̂, π) (2.4.1)

2Note that in the introduction we used V π for simplicity, and in the rest of the chapter we will
make the dependency on M? explicit.

15

where D(M̂, π) ∈ R≥0 bounds from above the discrepancy between V π,M̂ and V π,M? .

Building such an optimizable discrepancy bound globally that holds for all M̂ and π

turns out to be rather difficult, if not impossible. Instead, we shoot for establishing

such a bound over the neighborhood of a reference policy πref.

V π,M? ≥ V π,M̂ −Dπref,δ(M̂, π), ∀π s.t. d(π, πref) ≤ δ (R1)

Here d(·, ·) is a function that measures the closeness of two policies, which will be

chosen later in alignment with the choice of D. We will mostly omit the subscript δ

in D for simplicity in the rest of the chapter. We will require our discrepancy bound

to vanish when M̂ is an accurate model:

M̂ = M? =⇒ Dπref(M̂, π) = 0, ∀π, πref (R2)

The third requirement for the discrepancy bound D is that it can be estimated

and optimized in the sense that

Dπref(M̂, π) is of the form E
τ∼πref,M?

[f(M̂, π, τ)] (R3)

where f is a known differentiable function. We can estimate such discrepancy bounds

for every π in the neighborhood of πref by sampling empirical trajectories τ (1), . . . , τ (n)

from executing policy πref on the real environment M? and compute the average

of f(M̂, π, τ (i))’s. We would have to insist that the expectation cannot be over the

randomness of trajectories from π on M?, because then we would have to re-sample

trajectories for every possible π encountered.

For example, assuming the dynamics models are all deterministic, one of the valid

discrepancy bounds (under some strong assumptions) that will prove in Section 2.5 is

16

a multiple of the error of the prediction of M̂ on the trajectories from πref:

Dπref(M̂, π) = L · E
S0,...,St,∼πref,M?

[
‖M̂(St)− St+1‖

]
(2.4.2)

Suppose we can establish such an discrepancy bound D (and the distance function

d) with properties (R1), (R2), and (R3), — which will be the main focus of Section 2.5

—, then we can devise the following meta-algorithm (Algorithm 1). We iteratively

optimize the lower bound over the policy πk+1 and the model Mk+1, subject to the

constraint that the policy is not very far from the reference policy πk obtained in

the previous iteration. For simplicity, we only state the population version with the

exact computation of Dπref(M̂, π), though empirically it is estimated by sampling

trajectories.

Algorithm 1 Meta-Algorithm for Model-based RL
Inputs: Initial policy π0. Discrepancy bound D and distance function d that satisfy
(R1) and (R2).
For k = 0 to T :

πk+1,Mk+1 = argmax
π∈Π, M∈M

V π,M −Dπk,δ(M,π) (2.4.3)

s.t. d(π, πk) ≤ δ (2.4.4)

We first remark that the discrepancy bound Dπk(M,π) in the objective plays the

role of learning the dynamics model by ensuring the model to fit to the sampled

trajectories. For example, using the discrepancy bound in the form of Equation (2.4.2),

we roughly recover the standard objective for model learning, with the caveat that we

only have the norm instead of the square of the norm in MSE. Such distinction turns

out to be empirically important for better performance (see Section 2.6.2).

Second, our algorithm can be viewed as an extension of the optimism-in-face-of-

uncertainty (OFU) principle to non-linear parameterized setting: jointly optimizing

M and π encourages the algorithm to choose the most optimistic model among those

17

that can be used to accurately estimate the value function. (See [Jaksch et al., 2010,

Bartlett and Tewari, 2009, Fruit et al., 2018, Lakshmanan et al., 2015, Pirotta et al.,

2015, 2013] and references therein for the OFU principle in finite-state MDPs.) The

main novelty here is to optimize the lower bound directly, without explicitly building

any confidence intervals, which turns out to be challenging in deep learning. In other

words, the uncertainty is measured straightforwardly by how the error would affect

the estimation of the value function.

Thirdly, the maximization of V π,M , when M is fixed, can be solved by any model-

free RL algorithms with M as the environment without querying any real samples.

Optimizing V π,M jointly over π,M can be also viewed as another RL problem with

an extended actions space using the known “extended MDP technique”. See Jaksch

et al. [2010, Section 3.1] for details.

Our main theorem shows formally that the policy performance in the real environ-

ment is non-decreasing under the assumption that the real dynamics belongs to our

parameterized familyM.3

Theorem 2.4.1. Suppose that M? ∈ M, that D and d satisfy Equations (R1)

and (R2), and the optimization problem in Equation (2.4.3) is solvable at each iteration.

Then, Algorithm 1 produces a sequence of policies π0, . . . , πT with monotonically

increasing values:

V π0,M? ≤ V π1,M? ≤ · · · ≤ V πT ,M
?

(2.4.5)

Moreover, as k →∞, the value V πk,M
? converges to some V π̄,M?, where π̄ is a local

maximum of V π,M? in domain Π.
3We note that such an assumption, though restricted, may not be very far from reality: optimisti-

cally speaking, we only need to approximate the dynamics model accurately on the trajectories of
the optimal policy. This might be much easier than approximating the dynamics model globally.

18

The theorem above can also be extended to a finite sample complexity result

with standard concentration inequalities. We show in Theorem 2.4.3 that we can

obtain an approximate local maximum in O(1/ε) iterations with sample complexity

(in the number of trajectories) that is polynomial in dimension and accuracy ε and is

logarithmic in certain smoothness parameters.

Proof of Theorem 2.4.1. Since D and d satisfy (R1), we have that

V πk+1,M
? ≥ V πk+1,Mk+1 −Dπk(Mk+1, πk+1)

By the definition that πk+1 and Mk+1 are the optimizers of Equation (2.4.3), we have

that

V πk+1,Mk+1 −Dπk(Mk+1, πk+1) ≥ V πk,M
? −Dπk(M

?, πk) = V πk,M
?

(by (R2))

Combing the two equations above we complete the proof of Equation (2.4.5).

For the second part of the theorem, by compactness, we have that a subsequence

of πk converges to some π̄. By the monotonicity we have V πk,M
? ≤ V π̄,M? for every

k ≥ 0. For the sake of contradiction, we assume π̄ is a not a local maximum, then in

the neighborhood of π̄ there exists π′ such that V π′,M?
> V π̄,M? and d(π̄, π′) < δ/2.

Let t be such that πt is in the δ/2-neighborhood of π̄. Then we see that (π′,M?) is

a better solution than (πt+1,Mt+1) for the optimization problem (2.4.3) in iteration

t because V π′,M?
> V π̄,M? ≥ V πt+1,M? ≥ V πt+1,Mt+1 −Dπt(Mt+1, πt+1). (Here the last

inequality uses (R1) with πt as πref.) The fact (π′,M?) is a strictly better solution

than (πt+1,Mt+1) contradicts the fact that (πt+1,Mt+1) is defined to be the optimal

solution of (2.4.3) . Therefore π̄ is a local maximum and we complete the proof.

19

Particularly, the condition (R2) and (R3) are at odds with each other—(R3)

essentially says that the discrepancy bound D can only carry information about M?

through the sampled data, and the non-trivial uncertainty about M? from observing

only sampled data implies that the discrepancy bound Dπref(M̂, π) can never be zero

(regardless of M? = M̂ or not). We can formally see this from the linear bandit setting

(which corresponds to the horizon H = 1 case.)

In the linear bandit setting, with a bit abuse of notation, we still use M ∈ Rd for

the model parameters and use π for the action in Rd. We assume that the reward is

linear: V π,M = 〈π,M〉. In the sequel, we will show that (R3) and (R1) imply the “⇐”

direction in (R2), and therefore we have,

M̂ = M∗ ⇐⇒ ∀π, πref , Dπref
(M̂, π) = 0, (2.4.6)

Note that (2.4.6) is statistically impossible because it allows us to find the true model

M∗ directly through checking if D is zero for all policies π, πref , which is not possible

given finite data (at least not before we have sufficient data).

Now we prove the reverse direction of (R2). For the sake of contradiction, we assume

that there exists M̂ 6= M∗ such that for all policies π, πref , we have d(π, πref) ≤ δ and

Dπref
(M̂, π) = 0. There exists a policy π such that V π,M̂ = 〈π, M̂〉 > 〈π,M?〉 = V π,M∗

because we can take a policy π that correlates with M̂ more than M? (and this is the

only place that we use linearity.) By (R1), we have 0 ≥ Dπref
(M̂, π) ≥ V π,M̂ − V π,M∗ ,

which is a contradiction.

2.4.1 Sample Complexity Bounds

In this subsection, we extend Theorem 2.4.1 to a final sample complexity result. For

simplicity, let Lπ,Mπref,δ
= V π,M −Dπk,δ(M,π) be the lower bound of V π,M? . We omit the

20

subscript δ when it’s clear from contexts. When D satisfies (R1), we have that,

V π,M? ≥ Lπ,Mπref,δ
∀π s.t. d(π, πref) ≤ δ (2.4.7)

When D satisfies (R3), we use L̂π,Mπref,δ
to denotes its empirical estimates. Namely, we

replace the expectation in (R3) by empirical samples τ (1), . . . , τ (n). In other words,

we optimize

πk+1,Mk+1 = argmax
π∈Π, M∈M

L̂π,Mπref,δ
= V π,M − 1

n

n∑
i=1

f(M̂, π, τ (i)) (2.4.8)

instead of Equation (2.4.3).

Let p be the total number of parameters in the policy and model parameterization.

We assume that we have a discrepancy bound Dπref(π,M) satisfying (R3) with a

function f that is bounded with [−Bf , Bf] and that is Lf -Lipschitz in the parameters

of π and M . That is, suppose π is parameterized by θ and M is parameterized by

φ, then we require |f(Mφ, φθ, τ)− f(Mφ′ , φθ′ , τ)| ≤ Lf(‖φ− φ′‖2
2 + ‖θ − θ′‖2) for all

τ , θ, θ′, φ, φ′. We note that Lf is likely to be exponential in dimension due to the

recursive nature of the problem, but our bounds only depends on its logarithm. We

also restrict our attention to parameters in an Euclidean ball {θ : ‖θ‖2 ≤ B} and

{φ : ‖φ‖2 ≤ B}. Our bounds will be logarithmic in B.

We need the following definition of approximate local maximum since with sampling

error we cannot hope to converge to the exact local maximum.

Definition 2.4.2. We say π is a (δ, ε)-local maximum of V π,M? with respect to

the constraint set Π and metric d, if for any π′ ∈ Π with d(π, π′) ≤ δ, we have

V π,M? ≥ V π′,M? − ε.

We show a sample complexity bounds that scales linearly in p and logarithmically

in Lf , B and Bf .

21

Theorem 2.4.3. Let ε > 0. In the setting of Theorem 2.4.1, under the additional

assumptions above, suppose we use n = O(Bfp log(BLf/ε)/ε
2) trajectories to estimate

the discrepancy bound in Algorithm 1. Then, for any t, if πt is not a (δ, ε)-local

maximum, then the total reward will increase in the next step: with high probability,

V πt+1,M? ≥ V πt,M?

+ ε/2 (2.4.9)

As a direct consequence, suppose the maximum possible total reward is BR and the

initial total reward is 0, then for some T = O(BR/ε), we have that πT is a (δ, ε)-local

maximum of the V π,M?.

Proof of Theorem 2.4.3. By Hoeffiding’s inequality, we have for fix π and M̂ , with

probability 1− nO(1) over the randomness of τ (1), . . . , τ (n),

∣∣∣∣∣ 1n
n∑
i=1

f(M̂, π, τ (i))− E
τ∼πref,M?

[f(M̂, π, τ)]

∣∣∣∣∣ ≤ 4

√
Bf log n

n
. (2.4.10)

In more succinct notations, we have |D̂πk,δ(M,π) − Dπk,δ(M,π)| ≤ 4
√

Bf logn

n
, and

therefore

|L̂π,M − Lπ,M | ≤ 4

√
Bf log n

n
. (2.4.11)

By a standard ε-cover + union bound argument, we can prove the uniform convergence:

with high probability (at least 1− nO(1)) over the choice of τ (1), . . . , τ (n), for all policy

and model, for all policy π and dynamics M ,

|L̂π,M − Lπ,M | ≤ 4

√
Bfp log(nBLf)

n
= ε/4. (2.4.12)

22

Suppose at iteration t, we are at policy πt which is not a (δ, ε)-local maximum of

V π,M? . Then, there exists π′ such that d(π′, πt) ≤ δ and

V π′,M? ≥ V πt,M?

+ ε. (2.4.13)

Then, we have that

V πt+1,M? ≥ Lπt+1,Mt+1
πt (by Equation (2.4.7))

≥ L̂πt+1,Mt+1
πt − ε/4 (by uniform convergence, Equation (2.4.12))

≥ L̂π
′,M?

πt − ε/4 (by the definition of πt+1,Mt+1)

≥ Lπ
′,M?

πt − ε/2 (by uniform convergence, Equation (2.4.12))

= V π′,M? − ε/2 (by (R2))

= V πt,M?

+ ε/2 (by Equation (2.4.13))

Note that the total reward can only improve by ε/2 for at most O(BR/ε) steps.

Therefore, in the first O(BR/ε) iterations, we must have hit a solution that is a

(δ, ε)-local maximum. This completes the proof.

2.5 Discrepancy Bounds Design

In this section, we design discrepancy bounds that can provably satisfy the require-

ments (R1), (R2), and (R3). We design increasingly stronger discrepancy bounds

from Section 2.5.1 to Section 2.5.3.

23

2.5.1 Norm-based Prediction Error Bounds

In this subsection, we assume the dynamics model M? is deterministic and we also

learn with a deterministic model M̂ . Under assumptions defined below, we derive a

discrepancy bound D of the form ‖M̂(S,A)−M?(S,A)‖ averaged over the observed

state-action pair (S,A) on the dynamics model M̂ . This suggests that the norm is a

better metric than the mean-squared error for learning the model, which is empirically

shown in Section 2.6.2. Through the derivation, we will also introduce a telescoping

lemma, which serves as the main building block towards other finer discrepancy

bounds.

We make the (strong) assumption that the value function V π,M̂ on the estimated

dynamics model is L-Lipschitz w.r.t to some norm ‖ · ‖ in the sense that

∀s, s′ ∈ S,
∣∣V π,M̂(s)− V π,M̂(s′)

∣∣ ≤ L · ‖s− s′‖ (2.5.1)

In other words, nearby starting points should give reward-to-go under the same

policy π. We note that not every real environment M? has this property, let alone

the estimated dynamics models. However, once the real dynamics model induces a

Lipschitz value function, we may penalize the Lipschitz-ness of the value function of

the estimated model during the training.

We start off with a lemma showing that the expected prediction error is an upper

bound of the discrepancy between the real and imaginary values.

Lemma 2.5.1. Suppose V π,M̂ is L-Lipschitz (in the sense of Equation (2.5.1)). Recall

κ = γ(1− γ)−1.

∣∣V π,M̂ − V π,M?∣∣ ≤ κL E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
(2.5.2)

The proof of Lemma 2.5.1 is deferred to the end of the subsection.

24

However, in RHS in Equation (2.5.2) cannot serve as a discrepancy bound because

it does not satisfy the requirement (R3) — to optimize it over π we need to collect

samples from ρπ for every iterate π — the state distribution of the policy π on the

real model M?. The main proposition of this subsection stated next shows that for

every π in the neighborhood of a reference policy πref, we can replace the distribution

ρπ be a fixed distribution ρπref with incurring only a higher order approximation. We

use the expected KL divergence between two π and πref to define the neighborhood:

dKL(π, πref) , E
S∼ρπ

[
DKL(π(·|S) ‖ πref(·|S))1/2

]
(2.5.3)

Proposition 2.5.2. In the same setting of Lemma 2.5.1, assume in addition that π

is close to a reference policy πref in the sense that dKL(π, πref) ≤ δ, and that the states

in S are uniformly bounded in the sense that ‖s‖ ≤ B, ∀s ∈ S. Then,

∣∣V π,M̂ − V π,M?∣∣ ≤ κL E
S∼ρπref

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ 2κ2δB (2.5.4)

In a benign scenario, the second term in the RHS of Equation (2.5.4) should

be dominated by the first term when the neighborhood size δ is sufficiently small.

Moreover, the term B can also be replaced by maxS,A‖M̂(S,A) −M?(S,A)‖ (see

the proof at the end of this subsection.). The dependency on κ may not be tight

for real-life instances, but we note that most analysis of similar nature loses the

additional κ factor [Schulman et al., 2015a, Achiam et al., 2017], and it’s inevitable in

the worst-case.

A telescoping lemma Towards proving Proposition 2.5.2 and deriving stronger

discrepancy bound, we define the following quantity that captures the discrepancy

25

between M̂ and M? on a single state-action pair (s, a).

Gπ,M̂(s, a) , E
ŝ′∼M̂(·|s,a)

V π,M̂(ŝ′)− E
s′∼M?(·|s,a)

V π,M̂(s′) (2.5.5)

Note that if M, M̂ are deterministic, then Gπ,M̂(s, a) = V π,M̂(M̂(s, a)) −

V π,M̂ (M?(s, a)). We give a telescoping lemma that decompose the discrepancy between

V π,M and V π,M? into the expected single-step discrepancy G.

Lemma 2.5.3. [Telescoping Lemma] Recall that κ , γ(1− γ)−1. For any policy π

and dynamics models M, M̂ , we have that

V π,M̂ − V π,M = κ E
S∼ρπ,M
A∼π(·|S)

[
Gπ,M̂ (S,A)

]
(2.5.6)

The proof is reminiscent of the telescoping expansion in Kakade and Langford

[2002] (c.f. Schulman et al. [2015a]) for characterizing the value difference of two

policies, but we apply it to deal with the discrepancy between models. With the

telescoping Lemma 2.5.3, Lemma 2.5.1 follows straightforwardly from Lipschitzness

of the imaginary value function. Proposition 2.5.2 follows from that ρπ and ρπref are

close.

Proof of Lemma 2.5.3. LetWj be the cumulative reward when we use dynamics model

M for j steps and then M̂ for the rest of the steps, that is,

Wj , E
∀t≥0,At∼π(·|St)

∀j>t≥0,St+1∼M(·|St,At)
∀t≥j,St+1∼M̂(·|St,At)

[
∞∑
t=0

γtR(St, At) | S0 = s

]

26

By definition, we have that W∞ = V π,M(s) and W0 = V π,M̂(s). Then, we decompose

the target into a telescoping sum,

V π,M(s)− V π,M̂(s) =
∞∑
j=0

(Wj+1 −Wj) (2.5.7)

Now we re-write each of the summands Wj+1 − Wj. Comparing the trajectory

distribution in the definition of Wj+1 and Wj, we see that they only differ in

the dynamics model applied in j-th step. Concretely, Wj and Wj+1 can be

rewritten as Wj = R + ESj ,Aj∼π,M
[
EŜj+1∼M̂(·|Sj ,Aj)

[
γj+1V π,M̂(Ŝj+1)

]]
and Wj+1 =

R+ESj ,Aj∼π,M?

[
ESj+1∼M(·|Sj ,Aj)

[
γj+1V π,M̂(Sj+1)

]]
where R denotes the reward from

the first j steps from policy π and model M?. Canceling the shared term in the two

equations above, we get

Wj+1 −Wj = γj+1 E
Sj ,Aj∼π,M

 E
Ŝj+1∼M̂(·|Sj ,Aj)
Sj+1∼M(·|Sj ,Aj)

[
V π,M̂(Sj+1)− V π,M̂(Ŝj+1)

]
Combining the equation above with Equation (2.5.7) concludes that

V π,M − V π,M̂ =
γ

1− γ E
S∼ρπ ,A∼π(S)

[
E

S′∼M?(·|S,A)
V π,M̂(S ′)− E

Ŝ′∼M̂(·|S,A)

V π,M̂(Ŝ ′)

]

Proof of Lemma 2.5.1 and proposition 2.5.2 . By definition of G and the Lipschitz-

ness of V π,M̂ , we have that |Gπ,M̂ (s, a)| ≤ L|M̂(s, a)−M?(s, a)|. Then, by Lemma 2.5.3

and triangle inequality, we have that

∣∣V π,M̂ − V π,M?∣∣ = κ ·
∣∣ E
S∼ρπ,M
A∼π(·|S)

[
Gπ,M̂(S,A)

] ∣∣ ≤ κ E
S∼ρπ,M
A∼π(·|S)

[∣∣Gπ,M̂(S,A)
∣∣]

27

≤ κ E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
. (2.5.8)

Next we prove the main part of the proposition. Thus we proved Lemma 2.5.1. Note

that for any distribution ρ and ρ′ and function f , we have ES∼ρ f(S) = ES∼ρ′ f(S) +

〈ρ− ρ′, f〉 ≤ ES∼ρ′ f(S) + ‖ρ− ρ′‖1‖f‖∞. Thus applying this inequality with f(S) =

EA∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
, we obtain that

E
S∼ρπ

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
≤ E

S∼ρπref

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ ‖ρπref − ρ‖1 max

S
E

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
≤ E

S∼ρπref

A∼π(·|S)

[
‖M̂(S,A)−M?(S,A)‖

]
+ 2δκB

(2.5.9)

where the last inequality uses the inequalities (see Corollary 2.5.13) that ‖ρπ−ρπref‖1 ≤
γ

1−γ ES∼ρπref

[
DKL(π(S) ‖ πref(S))1/2|S

]
= δκ and that ‖M̂(S,A) −M?(S,A)‖ ≤ 2B.

Combining Equations (2.5.8) and (2.5.9) we complete the proof of Proposition 2.5.2.

2.5.2 Representation-invariant Discrepancy Bounds

The main limitation of the norm-based discrepancy bounds in previous subsection is

that it depends on the state representation. Let T be a one-to-one map from the state

space S to some other space S ′, and for simplicity of this discussion let’s assume a model

M is deterministic. Then if we represent every state s by its transformed representation

T s, then the transformed model MT defined as MT (s, a) , TM(T −1s, a) together

with the transformed reward RT (s, a) , R(T −1s, a) and transformed policy πT (s) ,

π(T −1s) is equivalent to the original set of the model, reward, and policy in terms

of the performance (Lemma 2.5.6). Thus such transformation T is not identifiable

28

from only observing the reward. However, the norm in the state space is a notion that

depends on the hidden choice of the transformation T . 4

Another limitation is that the loss for the model learning should also depend on

the state itself instead of only on the difference M̂(S,A)−M?(S,A). It is possible

that when S is at a critical position, the prediction error needs to be highly accurate

so that the model M̂ can be useful for planning. On the other hand, at other states,

the dynamics model is allowed to make bigger mistakes because they are not essential

to the reward.

We propose the following discrepancy bound towards addressing the limita-

tions above. Recall the definition of Gπ,M̂(s, a) , V π,M̂(M̂(s, a)) − V π,M̂(M?(s, a))

which measures the difference between M̂(s, a)) and M?(s, a) according to their

imaginary rewards. We construct a discrepancy bound using the absolute

value of G. Let’s define ε1 and εmax as the average of |Gπ,M̂ | and its maxi-

mum: ε1 , ES∼ρπref

[∣∣∣Gπ,M̂(S,A)
∣∣∣] and εmax , maxS

∣∣∣Gπ,M̂(S)
∣∣∣ where Gπ,M̂(S) ,

EA∼π
[
Gπ,M̂(S,A)

]
. We will show that the following discrepancy bound DG

πref
(M̂, π)

satisfies the property (R1), (R2).

DG
πref

(M̂, π) = κ · ε1 + κ2δεmax (2.5.10)

Proposition 2.5.4. Let dKL and DG be defined as in Equations (2.5.3) and (2.5.10).

Then the choice d = dKL and D = DG satisfies the basic requirements (Equations (R1)

and (R2)). Moreover, G is invariant w.r.t any one-to-one transformation of the state

space (in the sense of Equation (2.5.13) in the proof).

The proof follows from the telescoping lemma (Lemma 2.5.3) and is deferred to

the end of the subsection. We remark that the first term κε1 can in principle be

estimated and optimized approximately: the expectation be replaced by empirical
4That said, in many cases the reward function itself is known, and the states have physical

meanings, and therefore we may be able to use the domain knowledge to figure out the best norm.

29

samples from ρπref , and Gπ,M̂ is an analytical function of π and M̂ when they are

both deterministic, and therefore can be optimized by back-propagation through time

(BPTT). (When π and M̂ and are stochastic with a re-parameterizable noise such as

Gaussian distribution [Kingma and Welling, 2013], we can also use back-propagation

to estimate the gradient.) The second term in Equation (2.5.10) is difficult to optimize

because it involves the maximum. However, it can be in theory considered as a

second-order term because δ can be chosen to be a fairly small number. (In the refined

bound in Section 2.5.3, the dependency on δ is even milder.)

Remark 2.5.5. Proposition 2.5.4 intuitively suggests a technical reason of why model-

based approach can be more sample-efficient than policy gradient based algorithms

such as TRPO or PPO [Schulman et al., 2015a, 2017]. The approximation error of

V π,M̂ in model-based approach decreases as the model error ε1, εmax decrease or the

neighborhood size δ decreases, whereas the approximation error in policy gradient

only linearly depends on the the neighborhood size [Schulman et al., 2015a]. In other

words, model-based algorithms can trade model accuracy for a larger neighborhood

size, and therefore the convergence can be faster (in terms of outer iterations.) This is

consistent with our empirical observation that the model can be accurate in a descent

neighborhood of the current policy so that the constraint (2.4.4) can be empirically

dropped. We also refine our bonds in Section 2.5.3, where the discrepancy bounds is

proved to decay faster in δ.

Proof of Proposition 2.5.4

Towards proving the second part of Proposition 2.5.4 regarding the invariance, we

state the following lemma:

Lemma 2.5.6. Suppose for simplicity the model and the policy are both determinis-

tic. For any one-to-one transformation from S to S ′, let MT (s, a) , TM(T −1s, a),

RT (s, a) , R(T −1s, a), and πT (s) , π(T −1s) be a set of transformed model, reward
30

and policy. Then we have that (M,π,R) is equivalent to (MT , πT , RT) in the sense

that

V πT ,MT (T s) = V π,M(s)

where the value function V πT ,MT is defined with respect to RT .

Proof of Proposition 2.5.4. Let sT0 = T s, . . . , be the sequence of states visited by

policy πT on model MT starting from s. We have that sT0 = T s = T s0. We prove by

induction that sTt = T st. Assume this is true for some value t, then we prove that

st+1T = T st+1 holds:

sTt+1 = MT (sTt , π
T (sTt)) = MT (T st, πT (T st)) (by inductive hypothesis)

= TM(st, π(st)) (by defintion of MT , πT)

= T st+1

Thus we have RT (sTt , a
T
t) = R(st, at). Therefore V πT ,MT (T s) = V π,M(s).

Next, we will introduce a few supporting lemmas regarding to χ2 distances.

Definition 2.5.7 (χ2 distance, c.f. Nielsen and Nock [2014], Cover and Thomas

[2012]). The Neyman χ2 distance between two distributions p and q is defined as

χ2(p, q) ,
∫

(p(x)− q(x))2

q(x)
dx =

∫
p(x)2

q(x)
dx− 1

For notational simplicity, suppose two random variables X and Y has distributions

pX and pY , we often write χ2(X, Y) as a simplification for χ2(pX , pY).

Theorem 2.5.8 (Sason and Verdú [2016]). The Kullback-Leibler (KL) divergence

between two distributions p, q is bounded from above by the χ2 distance:

DKL(p ‖ q) ≤ χ2(p, q)

31

Proof of Theorem 2.5.8. Since log is a concave function, by Jensen inequality we have

DKL(p ‖ q) =

∫
p(x) log

p(x)

q(x)
dx ≤ log

∫
p(x) · p(x)

q(x)
dx

= log(χ2(p, q) + 1) ≤ χ2(p, q)

Definition 2.5.9 (χ2 distance between transitions). Given two transition kernels

P, P ′. For any distribution µ, we define χ2
µ(P ′, P) as:

χ2
µ(P ′, P) ,

∫
µ(x)χ2(P ′(·|X = x), P (·|X = x))dx

Theorem 2.5.10. Suppose random variables (X, Y) and (X ′, Y ′) satisfy that pY |X =

pY ′|X′. Then

χ2(Y, Y ′) ≤ χ2(X,X ′)

Or equivalently, for any transition kernel P and distribution µ, µ′, we have

χ2(Pµ, Pµ′) ≤ χ2(µ, µ′)

Proof of Theorem 2.5.10. Denote pY |X(y | x) = pY ′|X′(y | x) by p(y | x), and we

rewrite pX as p and pX′ as p′. By Cauchy-Schwarz inequality, we have:

pY (y)2 =

(∫
p(y|x)p(x)dx

)2

≤
(∫

p(y|x)p′(x)dx

)(∫
p(y|x)

p(x)2

p′(x)
dx

)
= pY ′(y)

(∫
p(y|x)

p(x)2

p′(x)
dx

)
(2.5.11)

32

It follows that

χ2(Y, Y ′) =

∫
pY (y)2

pY ′(y)
dy − 1 ≤

∫
dy

∫
p(y|x)

p(x)2

p′(x)
dx− 1 = χ2(X,X ′)

Theorem 2.5.11. Let X, Y, Y ′ are three random variables. Then,

χ2(Y, Y ′) ≤ E
[
χ2(Y |X, Y ′|X)

]
We note that the expectation on the right hand side is over the randomness of X.5 As

a direct corollary, we have for transition kernel P ′ and P and distribution µ,

χ2(P ′µ, Pµ) ≤ χ2
µ(P ′, P)

Proof of Theorem 2.5.11. We denote pY ′|X(y|x) by p′(y | x) and pY |X(y|x) by p(y|x),

and let p(x) be a simplification for pX(x). We have by Cauchy-Schwarz,

pY (y)2

pY ′(y)
=

(∫
p(y|x)p(x)dx

)2∫
p′(y | x)p(x)dx

≤
∫
p(y|x)2

p′(y|x)
p(x)dx

It follows that

χ2(Y, Y ′) =

∫
pY (y)2

pY ′(y)
dy − 1 ≤

∫
p(y|x)2

p′(y|x)
p(x)dxdy − 1 = E

[
χ2(Y |X, Y ′|X) | X

]

Lemma 2.5.12. Let µ be a distribution over the state space S. Let P and P ′ be

two transition kernels. G ,
∑∞

k=0(γP)k = (Id − γP)−1 and G′ ,
∑∞

k=0(γP
′)k =

(Id− γP ′)−1. Let d , (1− γ)Gµ and d′ , (1− γ)G′µ be the discounted distribution
5Observe χ2(Y |X,Y ′|X) deterministically depends on X.

33

starting from µ induced by the transition kernels G and G′. Then,

|d− d′|1 ≤
1

1− γ
|∆d|1

Moreover, let γ(P ′ − P) = ∆. Then, we have

G′ −G =
∞∑
k=1

(G∆)kG

Proof of Lemma 2.5.12. With algebraic manipulation, we obtain,

G′ −G = (Id− γP ′)−1((Id− γP)− (Id− γP ′)(Id− γP)−1

= G′∆G (2.5.12)

It follows that

|d− d′|1 = (1− γ)|G′∆Gµ|1 ≤ |∆Gµ|1 (since (1− γ)|G′|1→1 ≤ 1)

=
1

1− γ
|∆d|1

Replacing G′ in the RHS of the Equation (2.5.12) by G′ = G+G′∆G, and doing

this recursively gives

G′ −G =
∞∑
k=1

(G∆)kG

Corollary 2.5.13. Let π and π′ be two policies and let ρπ be defined as in Defini-

tion 2.3.1. Then,

|ρπ − ρ′|1 ≤
γ

1− γ E
S∼ρπ

[
DKL(π(S) ‖ π′(S))1/2 | S

]
34

Proof of Corollary 2.5.13. Let P and P ′ be the state-state transition matrix under

policy π and π′ and ∆ , γ(P ′ − P). By Lemma 2.5.12, we have that

|ρπ − ρπ′|1 ≤
1

1− γ
|∆ρπ|1 =

γ

1− γ E
S∼ρπ

[
|pM?(S,π(S))|S − pM?(S,π′(S))|S|1

]
≤ γ

1− γ E
S∼ρπ

[
|pπ(S)|S − pπ′(S)|S|1

]
≤ γ

1− γ E
S∼ρπ

[
DKL(π(S) ‖ π′(S))1/2 | S

]
(by Pinkser’s inequality)

Now we present the proof of Proposition 2.5.4;

Proof of Proposition 2.5.4. We first show the invariant of G under deterministic mod-

els and policies. The same result applies to stochastic policies with slight modification.

Let sT = T s. We consider the transformation applied to M and M? and the resulting

G function

GT (sT , a) , |V πT ,MT (MT (sT , a))− V πT ,MT (M?,T (sT , a))|

Note that by Lemma 2.5.6, we have that V πT ,MT (MT (sT , a)) =

V π,M(T −1MT (sT , a)) = V π,M(M(s, a)). Similarly, V πT ,MT (M?,T (sT , a)) =

V π,M(M?(s, a)). Therefore we obtain that

GT (sT , a) = G(s, a) (2.5.13)

By Lemma 2.5.3 and triangle inequality, we have that

1− γ
γ

∣∣∣V π,M − V π,M̂
∣∣∣ ≤ E

S∼ρπ

[∣∣∣Gπ,M̂(S)
∣∣∣] (triangle inequality)

35

≤ E
S∼ρπref

[∣∣∣Gπ,M̂(S)
∣∣∣]+ |ρπ − ρπref|1 ·max

S

∣∣∣Gπ,M̂(S)
∣∣∣

(Holder inequality)

By Corollary 2.5.13 we have that |ρπ − ρπref|1 ≤
γ

1−γ ES∼ρπref

[
DKL(π(S) ‖ πref(S))1/2|S

]
= δγ

1−γ . Combining this with the equa-

tion above, we complete the proof.

2.5.3 Refined Bounds

The theoretical limitation of the discrepancy bound DG(M̂, π) is that the second

term involving εmax is not rigorously optimizable by stochastic samples. In the worst

case, there seem to exist situations where such infinity norm of Gπ,M̂ is inevitable.

In this section we tighten the discrepancy bounds with a different closeness measure

d, χ2-divergence, in the policy space, and the dependency on the εmax is smaller

(though not entirely removed.) We note that χ2-divergence has the same second order

approximation as KL divergence around the local neighborhood the reference policy

and thus locally affects the optimization much.

We start by defining a re-weighted version βπ of the distribution ρπ where examples

in later step are slightly weighted up. We can effectively sample from βπ by importance

sampling from ρπ

Definition 2.5.14. For a policy π, define βπ as the re-weighted version of discounted

distribution of the states visited by π on M?. Recall that pSπt is the distribution of

the state at step t, we define βπ , (1− γ)2
∑∞

t=1 tγ
t−1pSπt .

Then we are ready to state our discrepancy bound. Let

dχ
2

(π, πref) , max{ E
S∼ρπref

[
χ2(π(·|S), πref(·|S))

]
, E
S∼βπref

[
χ2(π(·|S), πref(·|S))

]
}

(2.5.14)

36

Dχ2

πref
(M̂, π) , (1− γ)−1ε1 + (1− γ)−2δε2 + (1− γ)−5/2δ3/2εmax (2.5.15)

where ε2 , ES∼βπref

[
Gπ,M̂(S,A)2

]
and ε1, εmax are defined in Section 2.5.2.

Proposition 2.5.15. The discrepancy bound Dχ2 and closeness measure dχ2 satisfies

requirements (R1) and (R2).

To prove Proposition 2.5.15, we start by presenting our toolboxes.

χ2-Divergence Based Inequalities

Lemma 2.5.16. Let S be a random variable over the domain S. Let π and π′ be

two policies and and A ∼ π(· | S) and A′ ∼ π′(· | S). Let Y ∼ M(· | S,A) and

Y ′ ∼M(· | S,A′) be the random variables for the next states under two policies. Then,

E
[
χ2(Y |S, Y ′|S)

]
≤ E

[
χ2(A|S,A′|S)

]
Proof of Lemma 2.5.16. By definition, we have that Y |S = s, A = a has the same

density as Y ′|S = s, A′ = a for any a and s. Therefore by Theorem 2.5.10 (setting

X,X ′, Y, Y ′ in Theorem 2.5.10 by A|S = s, A′|S = s, Y |S = s, Y ′|S = s respectively),

we have

χ2(Y |S = s, Y ′|S = s) ≤ χ2(A|S = s, A′|S = s)

Taking expectation over the randomness of S we complete the proof.

Properties of Markov Processes

We consider bounded the difference of the distributions induced by two markov process

starting from the same initial distributions µ. Let P, P ′ be two transition kernels.

37

Let G ,
∑∞

k=0 γ
kP k and Ḡ , (1 − γ)G. Define G′ and Ḡ′ similarly. Therefore we

have that Ḡµ is the discounted distribution of states visited by the markov process

starting from distribution µ. In other words, if µ is the distribution of S0, and P is

the transition kernel induced by some policy π, then Ḡµ = ρπ.

First of all, let ∆ = γ(P ′−P) and we note that with simple algebraic manipulation,

Ḡ′ − Ḡ = (1− γ)−1Ḡ′∆Ḡ (2.5.16)

Let f be some function. We will mostly interested in the difference between

ES∼Ḡµ [f] and ES∼Ḡ′µ [f], which can be rewritten as 〈(Ḡ′ − G)µ, f〉. We will bound

this quantity from above by some divergence measure between P ′ and P .

We start off with a simple lemma that controls the form 〈p − q, f〉 by the χ2

divergence between p and q. With this lemma we can reduce our problem of bounding

〈(Ḡ′ −G)µ, f〉 to characterizing the χ2 divergence between Ḡ′µ and Ḡµ.

Lemma 2.5.17. Let p and q be probability distributions. Then we have

〈q − p, f〉2 ≤ χ2(q, p) · 〈p, f 2〉

Proof of Lemma 2.5.17. By Cauchy-Schwartz inequality, we have

〈q − p, f〉2 ≤
(∫

(q(x)− p(x))2

p(x)
dx

)(∫
p(x)f(x)2

)
= χ2(q, p) · 〈p, f 2〉

The following Lemma is a refinement of the lemma above. It deals with the

distributions p and q with the special structure p = WP ′µ and q = WPµ.

Lemma 2.5.18. Let W,P ′, P be transition kernels and µ be a distribution. Then,

〈W (P ′ − P)µ, f〉2 ≤ χ2
µ(P ′, P)〈WPµ, f 2〉

38

where χ2
µ(P ′, P) is a divergence between transitions defined in Definition 2.5.9.

Proof of Lemma 2.5.18. By Lemma 2.5.17 with p = WPµ and q = WP ′µ, we con-

clude that

〈W (P ′ − P)µ, f〉2 ≤ χ2(q, p) · 〈p, f 2〉 ≤ χ2(WP ′µ,WPµ)〈WPµ, f 2〉

By Theorem 2.5.10 and Theorem 2.5.11 we have that χ2(WP ′µ,WPµ) ≤

χ2(P ′µ, Pµ) ≤ χ2
µ(P ′, P), plugging this into the equation above we complete the

proof.

Now we are ready to state the main result of this subsection.

Lemma 2.5.19. Let Ḡ, Ḡ′, P ′, P, f as defined in the beginning of this section. Let

δ1 = (1− γ)−1χ2
Ḡµ

(P ′, P)1/2 and δ2 = (1− γ)−1χ2
ḠP Ḡµ

(P ′, P)1/2. Then,

∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1‖f‖∞ (2.5.17)∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ
1/2
2 ‖f‖∞

Proof of Lemma 2.5.19. Recall by Equation (2.5.16), we have

〈(Ḡ′ − Ḡ)µ, f〉 = (1− γ)−1〈Ḡ′∆Ḡµ, f〉 (2.5.18)

By Lemma 2.5.18,

〈Ḡ′∆Ḡµ, f〉 ≤ χ2
Ḡµ(P ′, P)1/2〈Ḡ′PḠµ, f 2〉1/2 (2.5.19)

By Holder inequality and the fact that ‖Ḡ‖1→1 = 1, ‖Ḡ′‖1→1 = 1 and ‖P‖1→1 = 1,

we have

〈Ḡ′∆Ḡµ, f〉 ≤ χ2
Ḡµ(P ′, P)1/2〈Ḡ′PḠµ, f 2〉1/2

39

≤ χ2
Ḡµ(P ′, P)1/2‖Ḡ′PḠµ‖1/2

1 ‖f 2‖1/2
∞

≤ χ2
Ḡµ(P ′, P)1/2‖f‖∞

(by ‖Ḡ′PḠµ‖1 ≤ ‖Ḡ′‖1→1‖P‖1→1‖Ḡ‖1→1‖µ‖1 ≤ 1)

≤ (1− γ)δ1‖f‖∞ (2.5.20)

Combining Equations (2.5.18) and (2.5.20) we complete the proof of Equa-

tion (2.5.17).

Next we bound 〈Ḡ′PḠµ, f 2〉1/2 in a more refined manner. By Equation (2.5.16),

we have

〈Ḡ′PḠµ, f 2〉1/2 =

(
〈ḠP Ḡµ, f 2〉+

1

1− γ
〈Ḡ′∆ḠP Ḡµ, f 2〉

)1/2

≤ 〈ḠP Ḡµ, f 2〉1/2 + (1− γ)−1/2〈Ḡ′∆ḠP Ḡµ, f 2〉1/2 (2.5.21)

By Lemma 2.5.18 again, we have that

〈Ḡ′∆ḠP Ḡ, f 2〉2 ≤ χ2
ḠP Ḡµ(P ′, P)〈Ḡ′PḠPḠµ, f 4〉 (2.5.22)

By Holder inequality and the fact that ‖Ḡ‖1→1 = 1, ‖Ḡ′‖1→1 = 1 and ‖P‖1→1 = 1,

we have

〈Ḡ′PḠPḠµ, f 4〉 ≤ ‖Ḡ′PḠPḠµ‖1‖f 4‖∞ ≤ ‖f‖4
∞ (2.5.23)

Combining Equation (2.5.21), (2.5.23) gives

(1− γ)−1/2〈Ḡ′∆ḠP Ḡ, f 2〉1/2 ≤ ((1− γ)−1χ2
ḠP Ḡµ(P ′, P)1/2)1/2‖f‖∞ = δ

1/2
2 ‖f‖∞

(2.5.24)

40

Then, combining Equations (2.5.18), (2.5.19) and (2.5.24), we have

〈(Ḡ′ − Ḡ)µ, f〉 = (1− γ)−1χ2
Ḡµ(P ′, P)1/2〈Ḡ′PḠµ, f 2〉1/2

(by Equations (2.5.18) and (2.5.19))

= δ1〈Ḡ′PḠµ, f 2〉1/2

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1(1− γ)−1/2〈Ḡ′∆ḠP Ḡµ, f 2〉1/2

(by Equation (2.5.21))

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ
1/2
2 ‖f‖∞ (by Equation (2.5.24))

The following lemma is a stronger extension of Lemma 2.5.19, which can be used

to future improve Proposition 2.5.15, and may be of other potential independent

interests. We state it for completeness.

Lemma 2.5.20. Let Ḡ, Ḡ′, P ′, P, f as defined in the beginning of this section. Let

dk , (ḠP)kḠµ and δk , (1− γ)−1χ2
dk−1

(P ′, P)1/2, then we have that for any K,

∣∣〈Ḡ′µ, f〉 − 〈Ḡµ, f〉∣∣ ≤ δ1〈d1, f
2〉−1/2 + δ1δ

1/2
2 〈d2, f

4〉−1/4

+ δ1 . . . δ
2−K+1

K 〈dk, f 2K 〉2−K + δ1 . . . δ
2−K+1

K ‖f‖∞

Proof of Lemma 2.5.20. We first use induction to prove that:

|〈(Ḡ′ − Ḡ)µ, f〉| ≤
K∑
k=1

(∏
0≤s≤k−1

δ2−s

s+1

)
〈dk, f 2k〉2−k

+

(∏
0≤s≤K−1

δ2−s

s+1

)
〈Ḡ′∆(ḠP)KḠµ, f 2K 〉2−K (2.5.25)

41

By the first equation of Lemma 2.5.19, we got the case for K = 1. Assuming we have

proved the case for K, then applying

〈Ḡ′∆(ḠP)KḠµ, f 2K 〉 = 〈Ḡ∆(ḠP)KḠµ, f 2K 〉+ (1− γ)−1〈Ḡ∆(ḠP)K+1Ḡµ, f 2K 〉

(2.5.26)

≤ 〈Ḡ∆(ḠP)KḠµ, f 2K 〉

+ (1− γ)−1χ2
dK

(P ′, P)1/2〈Ḡ′∆(ḠP)K+1Ḡµ, f 2K+1〉1/2

≤ 〈Ḡ∆(ḠP)KḠµ, f 2K 〉+ δK+1〈Ḡ′∆(ḠP)K+1Ḡµ, f 2K+1〉1/2

By Cauchy-Schwartz inequality, we obtain that

〈Ḡ′∆(ḠP)KḠµ, f 2K 〉2−K ≤ 〈Ḡ∆(ḠP)KḠµ, f 2K 〉2−K

+ δK+1〈Ḡ′∆(ḠP)K+1Ḡµ, f 2K+1〉2−K−1

Plugging the equation above into Equation (2.5.25), we provide the induction hypoth-

esis for the case with K + 1.

Now applying 〈Ḡ′∆(ḠP)KḠµ, f 2K 〉2−K ≤ ‖f‖∞ with Equation (2.5.25) we com-

plete the proof.

With all supporting lemma above, we may prove Proposition 2.5.15.

Proof of Proposition 2.5.15. Let µ be the distribution of the initial state S0, and

let P ′ and P be the state-to-state transition kernel under policy π and πref. Let

Ḡ , (1− γ)
∑∞

k=0 γ
kP k and Ḡ′ , (1− γ)

∑∞
k=0 γ

kP ′k. Under these notations, we can

re-write ρπref = Ḡµ and ρπ = Ḡ′µ. Moreover, we observe that βπref = ḠP Ḡµ.

Let δ1 , (1 − γ)−1χ2
Ḡµ

(P ′, P)1/2 and δ2 , (1 − γ)−1χ2
ḠP Ḡµ

(P ′, P)1/2 by the χ2

divergence between P ′ and P , measured with respect to distributions Ḡµ = ρπref and

42

ḠP Ḡµ = βπref . By Lemma 2.5.16, we have that the χ2-divergence between the states

can be bounded by the χ2-divergence between the actions in the sense that:

χ2
Ḡµ(P ′, P)1/2 = χ2

ρπref (P
′, P)1/2 ≤ E

S∼ρπref

[
χ2(π(·|S), πref(·|S))

]1/2
χ2
ḠP Ḡµ(P ′, P)1/2 = χ2

βπref (P
′, P)1/2 ≤ E

S∼βπref

[
χ2(π(·|S), πref(·|S))

]1/2
Therefore we obtain that δ1 ≤ (1− γ)−1δ, δ2 ≤ (1− γ)−1δ. Let f(s) = Gπ,M̂(s). By

Lemma 2.5.19, we can control the difference between 〈ρπref , f〉 and 〈ρπ, f〉 by

∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)

]
− E

S∼ρπ

[
Gπ,M̂(S)

]∣∣∣∣ = |〈ρπref , f〉 − 〈ρπ, f〉|

≤ δ1〈ḠP Ḡµ, f 2〉1/2 + δ1δ
1/2
2 ‖f‖∞

≤ δ1ε2 + δ1δ
1/2
2 εmax

It follows that

∣∣∣V π,M̂ − V π,M
∣∣∣ ≤ γ(1− γ)−1

∣∣∣∣ E
S∼ρπ

[
Gπ,M̂(S)

]∣∣∣∣ (by Lemma 2.5.3)

≤ γ(1− γ)−1

(∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)

]∣∣∣∣+

∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)− E

S∼ρπ

[
Gπ,M̂(S)

]]∣∣∣∣)
≤ γ(1− γ)−1

∣∣∣∣ E
S∼ρπref

[
Gπ,M̂(S)

]∣∣∣∣+ γ(1− γ)−1δ1ε2 + γ(1− γ)−1δ1δ
1/2
2 εmax

≤ (1− γ)−1ε1 + (1− γ)−2δε2 + (1− γ)−5/2δ3/2εmax

43

2.6 Practical Implementation and Experiments

2.6.1 Practical Implementation

We design with simplification of our framework a variant of model-based RL al-

gorithms, Stochastic Lower Bound Optimization (SLBO). First, we removed the

constraints (2.4.4). Second, we stop the gradient w.r.t M (but not π) from the occur-

rence of M in V π,M in Equation (2.4.3) (and thus our practical implementation is not

optimism-driven.)

Extending the discrepancy bound in Section 2.5.1, we use a multi-step prediction

loss for learning the models with `2 norm. For a state st and action sequence at:t+h, we

define the h-step prediction ŝt+h as ŝt = st, and for h ≥ 0, ŝt+h+1 = M̂φ(ŝt+h, at+h),

The H-step loss is then defined as

L(H)
φ ((st:t+h, at:t+h);φ) =

1

H

H∑
i=1

‖(ŝt+i − ŝt+i−1)− (st+i − st+i−1)‖2. (2.6.1)

A similar loss is also used in Nagabandi et al. [2018] for validation. We note that

motivation by the theory in Section 2.5.1, we use `2-norm instead of the square of `2

norm. The loss function we attempt to optimize at iteration k is thus6

max
φ,θ

V πθ,sg(M̂φ) − λ E
(st:t+h,at:t+h)∼πk,M?

[
L(H)
φ ((st:t+h, at:t+h);φ)

]
(2.6.2)

where λ is a tunable parameter and sg denotes the stop gradient operation.

We note that the term V πθ,sg(M̂φ) depends on both the parameter θ and the

parameter φ but there is no gradient passed through φ, whereas L(H)
φ only depends

on the φ. We optimize Equation (2.6.2) by alternatively maximizing V πθ,sg(M̂φ) and

minimizing L(H)
φ : for the former, we use TRPO with samples from the estimated

dynamics model M̂φ (by treating M̂φ as a fixed simulator), and for the latter we
6This is technically not a well-defined mathematical objective. The sg operation means identity

when the function is evaluated, whereas when computing the update, sg(Mφ) is considered fixed.

44

use standard stochastic gradient methods. Algorithm 2 gives a pseudo-code for the

algorithm. The nmodel and npolicy iterations are used to balance the number of steps

of TRPO and Adam updates within the loop indexed by ninner.7

Algorithm 2 Stochastic Lower Bound Optimization (SLBO)
1: Initialize model network parameters φ and policy network parameters θ
2: Initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D∪{ collect ncollect samples from real environment using πθ with noises }
5: for ninner iterations do . optimize (2.6.2) with stochastic alternating updates
6: for nmodel iterations do
7: optimize (2.6.1) over φ with sampled data from D by one step of Adam
8: for npolicy iterations do
9: D′ ← { collect ntrpo samples using M̂φ as dynamics }
10: optimize πθ by running TRPO on D′

Power of stochasticity and connection to standard model-based RL. We

identify the main advantage of our algorithms over standard model-based RL algorithms

is that we alternate the updates of the model and the policy within an outer iteration.

By contrast, most of the existing model-based RL methods only optimize the models

once (for a lot of steps) after collecting a batch of samples (see Algorithm 3 for

an example). The stochasticity introduced from the alternation with stochastic

samples seems to dramatically reduce the overfitting (of the policy to the estimated

dynamics model) in a way similar to that SGD regularizes ordinary supervised

training. 8 Another way to view the algorithm is that the model obtained from line

7 of Algorithm 2 at different inner iteration serves as an ensemble of models. We

do believe that a cleaner and easier instantiation of our framework (with optimism)
7In principle, to balance the number of steps, it suffices to take one of nmodel and npolicy to be

1. However, empirically we found the optimal balance is achieved with larger nmodel and npolicy,
possibly due to complicated interactions between the two optimization problem.

8Similar stochasticity can potentially be obtained by an extreme hyperparameter choice of the
standard MB RL algorithm: in each outer iteration of Algorithm 3, we only sample a very small
number of trajectories and take a few model updates and policy updates. We argue our interpretation
of stochastic optimization of the lower bound (2.6.2) is more natural in that it reveals the regularization
from stochastic optimization.

45

exists, and the current version, though performing very well, is not necessarily the

best implementation.

Entropy regularization. An additional component we apply to SLBO is the

commonly-adopted entropy regularization in policy gradient method [Williams and

Peng, 1991, Mnih et al., 2016], which was found to significantly boost the performance

in our experiments (ablation study in Section 2.6.3). Specifically, an additional entropy

term is added to the objective function in TRPO. We hypothesize that entropy bonus

helps exploration, diversifies the collected data, and thus prevents overfitting.

2.6.2 Experimental Results

We evaluate our algorithm SLBO (Algorithm 2) on five continuous control tasks from

rllab [Duan et al., 2016], including Swimmer, Half Cheetah, Humanoid, Ant, Walker.

All environments that we test have a maximum horizon of 500, which is longer than

most of the existing model-based RL work [Nagabandi et al., 2018, Kurutach et al.,

2018]. (Environments with longer horizons are commonly harder to train.) More

details can be found in Section 2.6.4.

Baselines. We compare our algorithm with 3 other algorithms including: (1) Soft

Actor-Critic (SAC) [Haarnoja et al., 2018], one of the state-of-the-art model-free off-

policy algorithm in sample efficiency; (2) Trust-Region Policy Optimization (TRPO)

[Schulman et al., 2015a], a policy-gradient based algorithm; and (3) Model-Based

TRPO, a standard model-based algorithm described in Algorithm 3. Details of these

algorithms can be found in Section 2.6.4.9

9We did not have the chance to implement the competitive random search algorithms in [Mania
et al., 2018] yet, although our test performance with 500 episode length is higher than theirs with
1000 episode on Half Cheetach (3950 by ours vs 2345 by theirs) and Walker (3650 by ours vs 894 by
theirs).

46

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

(a) Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

(c) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(d) Walker

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

(e) Humanoid

SLBO SLBO-MSE MB-TRPO SAC MF-TRPO

Figure 2.1: Comparison between SLBO (ours), SLBO with squared `2 model loss
(SLBO-MSE), vanilla model-based TRPO (MB-TRPO), model-free TRPO (MF-
TRPO), and Soft Actor-Critic (SAC). We average the results over 10 different random
seeds, where the solid lines indicate the mean and shaded areas indicate one standard
deviation. The dotted reference lines are the total rewards of MF-TRPO after 8
million steps.

The result is shown in Figure 2.1. In Figure 2.1, our algorithm shows superior

convergence rate (in number of samples) than all the baseline algorithms while achieving

better final performance with 1M samples. Specifically, we mark model-free TRPO

performance after 8 million steps by the dotted line in Figure 2.1 and find out that

our algorithm can achieve comparable or better final performance in one million steps.

For ablation study, we also add the performance of SLBO-MSE, which corresponds

to running SLBO with squared `2 model loss instead of `2. SLBO-MSE performs

significantly worse than SLBO on four environments, which is consistent with our

derived model loss in Section 2.5.1. 10

10Videos demonstrations are available at https://sites.google.com/view/algombrl/
homehttps://sites.google.com/view/algombrl/home. A link to the codebase is available at https:
//github.com/roosephu/slbohttps://github.com/roosephu/slbo.

47

https://sites.google.com/view/algombrl/home
https://sites.google.com/view/algombrl/home
https://github.com/roosephu/slbo
https://github.com/roosephu/slbo

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

(a) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Walker

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

(c) Humanoid

H = 1 H = 2 H = 4 H = 8

Figure 2.2: Ablation study on multi-step model training. All the experiments are
average over 10 random seeds. The x-axis shows the total amount of real samples
from the environment. The y-axis shows the averaged return from execution of our
learned policy. The solid line is the mean of the total rewards from each seed. The
shaded area is one-standard deviation.

2.6.3 Ablation Study

In this subsection, we study the performance of SLBO and baselines with 4 million

training samples in Section 2.6.3 and the ablation study of multi-step model training

can be found in Section 2.6.3.

Multi-step model training. We compare multi-step model training with single-

step model training and the results are shown on Figure 2.2. Note that H = 1 means

we use single-step model training. We observe that small H (e.g., 2 or 4) can be

beneficial, but larger H (e.g., 8) can hurt. We hypothesize that smaller H can help

the model learn the uncertainty in the input and address the error-propagation issue

to some extent. Pathak et al. [2018] uses an auto-regressive recurrent model to predict

a multi-step loss on a trajectory, which is closely related to ours. However, theirs

differs from ours in the sense that they do not use the predicted output xt+1 as the

input for the prediction of xt+2, and so on and so forth.

Entropy regularization. Figure 2.3 shows that entropy reguarization can improve

both sample efficiency and final performance. More entropy regularization leads

to better sample efficiency and higher total rewards. We observe that in the late

48

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(a) Ant

0.0 0.2 0.4 0.6 0.8 1.0
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(b) Walker

= 0 = 0.001 = 0.003 = 0.005 = 0.01

Figure 2.3: Ablation study on entropy regularization. λ is the coefficient of entropy
regularization in the TRPO’s objective. All the experiments are averaged over 10
random seeds. The x-axis shows the total amount of real samples from the environment.
The y-axis shows the averaged return from execution of our learned policy. The solid
line is the mean of the total rewards from each seed. The shaded area is one-standard
deviation.

iterations of training, entropy regularization may hurt the performance thus we stop

using entropy regularization in the second half of training.

SLBO with four million training steps. Figure 2.4 shows that SLBO is superior

to SAC and MF-TRPO in Swimmer, Half Cheetah, Walker and Humanoid when 4

million samples or fewer samples are allowed. For Ant environment , although SLBO

with less than one million samples reaches the performance of MF-TRPO with 8

million samples, SAC’s performance surpasses SLBO after 2 million steps of training.

Since model-free TRPO almost stops improving after 8M steps and our algorithms

uses TRPO for optimizing the estimated environment, we don’t expect SLBO can

significantly outperform the reward of TRPO at 8M steps. The result shows that

SLBO is also satisfactory in terms of asymptotic convergence (compared to TRPO.) It

also indicates a better planner or policy optimizer instead of TRPO might be necessary

to further improve the performance.

49

0 1 2 3 4
samples (million)

20

0

20

40

60

80

100

120

Av
er

ag
e

Re
tu

rn

(a) Swimmer

0 1 2 3 4
samples (million)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

(b) Half Cheetah

0 1 2 3 4
samples (million)

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e

Re
tu

rn

(c) Ant

0 1 2 3 4
samples (million)

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

(d) Walker

0 1 2 3 4
samples (million)

0

200

400

600

800

1000

1200

Av
er

ag
e

Re
tu

rn

(e) Humanoid

SLBO SLBO-MSE MB-TRPO SAC MF-TRPO

Figure 2.4: Comparison among SLBO (ours), SLBO with squared `2 model loss (SLBO-
MSE), vanilla model-based TRPO (MB-TRPO), model-free TRPO (MF-TRPO), and
Soft Actor-Critic (SAC) with more samples than in Figure 2.1. SLBO, SAC, MF-
TRPO are trained with 4 million real samples. We average the results over 10 different
random seeds, where the solid lines indicate the mean and shaded areas indicate one
standard deviation. The dotted reference lines are the total rewards of MF-TRPO
after 8 million steps.

2.6.4 Implementation Details

Environment setup. We benchmark our algorithm on six tasks based on physics

simulator Mujoco [Todorov et al., 2012b]. We use rllab’s implementation [Duan et al.,

2016] 11 to interact with Mujoco. All the environments we use have a maximum

horizon of 500 steps. We remove all contact information from observation. To compute

reward from states, we put the velocity of center of mass into the states.

Network architecture and model learning. We use the same reward function

as in rllab, except that all the coefficients Ccontact in front of the contact force s are set

to 0 in our case. We refer the readers to Duan et al. [2016] Supp Material 1.2 for more
11commit b3a2899 in https://github.com/rll/rllab/

50

https://github.com/rll/rllab/

details. All actions are projected to the action space by clipping. We normalize all

observations by s′ = s−µ
σ

where µ, σ ∈ Rdobservation are computed from all observations

we collect from the real environment. Note that µ, σ may change as we collect new

data. Our policy will always produce an action a in [−1, 1]daction and the action a′,

which is fed into the environment, is scaled linearly by a′ = 1−a
2
amin + 1+a

2
amax, where

amin, amax are the min or max values allowed at each entry.

SLBO. The dynamics model is represented by a feed-forward neural network with

two hidden layers, each of which contains 500 hidden units. The activation function

at each layer is ReLU. We use Adam to optimize the loss function with learning

rate 10−3 and L2 regularization 10−5. The network does not predict the next state

directly; instead, it predicts the normalized difference of st+1 − st. The normalization

scheme and statistics are the same as those of observations: We maintain µ, σ from

collected data in the real environment and may change them as we collect more, and

the normalized difference is st+1−st−σ
µ

.

The policy network is a feed-forward network with two hidden layers, each of

which contains 32 hidden units. The policy network uses tanh as activation function

and outputs a Gaussian distribution N (µ(s), diag(σ2)) where σ a state-independent

trainable vector.

During our evaluation, we use H = 2 for multi-step model training and the batch

size is given by 256
H

= 128, i.e., we enforce the model to see 256 transitions at each

batch.

We run our algorithm nouter = 100 iterations. We collect ntrain = 10000 steps

of real samples from the environment at the start of each iteration using current

policy with Ornstein-Uhlunbeck noise (with parameter θ = 0.15, σ = 0.3) for better

exploration. At each iteration, we optimize dynamics model and policy alternatively

51

for ninner = 20 times. At each iteration, we optimize dynamics model for nmodel = 100

times and optimize policy for npolicy = 40 times.

We tune multi-step model training parameter H ∈ {1, 2, 4, 8}, entropy regulariza-

tion coefficient λ ∈ {0, 0.001, 0.003, 0.005} and npolicy ∈ {10, 20, 40} on Ant and find

H = 2, λ = 0.005, npolicy = 40 work best, then we fix them in all environments, though

environment-specific hyperparameters may work better. The other hyperparameters,

including ninner, nmodel and network architecture, are never tuned. We observe that

at the first several iterations, the policy overfits to the learnt model so a reduction

of npolicy at the beginning can further speed up convergence but we omit this for

simplicity.

The most important hyperparameters we found are npolicy and the coefficient in

front of the entropy regularizer λ. It seems that once nmodel is large enough we don’t

see any significant changes. We did have a held-out set for model prediction (with the

same distribution as the training set) and found out the model doesn’t overfit much.

As mentioned in Section 2.6.4, we also found out normalizing the state helped a lot

since the raw entries in the state have different magnitudes; if we don’t normalize

them, the loss will be dominated by the loss of some large entries.

TRPO. TRPO hyperparameters are listed at Table 2.1, which are the same as Ope-

nAI Baselines’ implementation. These hyperparameters are fixed for all experiments

where TRPO is used, including ours, MB-TRPO and MF-TRPO. We do not tune

these hyperparameters. We also normalize observations as our algorithm and OpenAI

Baselines do.

We use a neural network as the value function to reduce variance, which has 2

hidden layers of units 64 and uses tanh as activation functions. We use Generalized

Advantage Estimator (GAE) [Schulman et al., 2015b] to estimate advantages. Both

52

Table 2.1: TRPO Hyperparameters.

Hyperparameters Values

batch size 4000
max KL divergence 0.01
discount γ 0.99
GAE λ 0.95
CG iterations 10
CG damping 0.1

TRPO used in our algorithm and that in model-free algorithm share the same set of

hyperparameters.

SAC. For fair comparison, we do not use a large policy network (2 hidden layers,

one of which has 256 hidden units) as the authors suggest, but use exactly the same

policy network as ours. All other hyperparameters are kept the same as the authors’.

Note that Q network and value network have 256 hidden units at each hidden layers,

which is more than TRPO’s. We refer the readers to Haarnoja et al. [2018] Appendix

D for more details.

MB-TRPO. Model-Based TRPO (MB-TRPO) is similar to our algorithm SLBO

but does not optimize model and policy alternatively during one iteration. We do

not tune the hyperparameter nmodel since any number beyond a certain threshold

would bring similar results. For npolicy we try {100, 200, 400, 800} on Ant and find

npolicy = 200 works best in Ant so we use it for all other environments. Note that when

Algorithm 2 uses 800 Adam updates (per outer iteration), it has the same amount of

updates (per outer iteration) as in Algorithm 3. As suggested by Section 2.6.1, we use

0.005 as the coefficient of entropy bonus for all experiments.

53

Algorithm 3 Model-Based Trust Region Policy Optimization (MB-TRPO)
1: initialize model network parameters φ and policy network parameters θ
2: initialize dataset D ← ∅
3: for nouter iterations do
4: D ← D∪{ collect ncollect samples from real environment using πθ with noises }
5: for nmodel iterations do
6: optimize (2.6.1) over φ with sampled data from D by one step of Adam
7: for npolicy iterations do
8: D′ ← { collect ntrpo samples using M̂φ as dynamics }
9: optimize πθ by running TRPO on D′

2.7 Conclusion

We devise a novel algorithmic framework for designing and analyzing model-based RL

algorithms with the guarantee to convergence monotonically to a local maximum of the

reward. Experimental results show that our proposed algorithm (SLBO) achieves high

performance on several mujoco benchmark tasks when one million or fewer samples

are permitted.

A compelling (but obvious) empirical open question then given rise to is whether

model-based RL can achieve near-optimal reward on other more complicated tasks

or real-world robotic tasks with fewer samples. We believe that understanding the

trade-off between optimism and robustness is essential to design more sample-efficient

algorithms. Currently, we observed empirically that the optimism-driven part of our

proposed meta-algorithm (optimizing V π,M̂ over M̂) may lead to instability in the

optimization, and therefore don’t in general help the performance. It’s left for future

work to find practical implementation of the optimism-driven approach.

54

Chapter 3

Expressivity of Neural Networks in

Deep Reinforcement Learning

We compare the model-free reinforcement learning with the model-based approaches

through the lens of the expressive power of neural networks for policies, Q-functions,

and dynamics. We show, theoretically and empirically, that even for one-dimensional

continuous state space, there are many MDPs whose optimal Q-functions and poli-

cies are much more complex than the dynamics. We hypothesize many real-world

MDPs also have a similar property. For these MDPs, model-based planning is a

favorable algorithm, because the resulting policies can approximate the optimal policy

significantly better than a neural network parameterization can, and model-free or

model-based policy optimization rely on policy parameterization. Motivated by the

theory, we apply a simple multi-step model-based bootstrapping planner (BOOTS)

to bootstrap a weak Q-function into a stronger policy. Empirical results show that

applying BOOTS on top of model-based or model-free policy optimization algorithms

at the test time improves the performance on MuJoCo benchmark tasks.

55

3.1 Background

Model-based deep reinforcement learning (RL) algorithms offer a lot of potentials

in achieving significantly better sample efficiency than the model-free algorithms

for continuous control tasks. We can largely categorize the model-based deep RL

algorithms into two types: 1. model-based policy optimization algorithms which learn

policies or Q-functions, parameterized by neural networks, on the estimated dynamics,

using off-the-shelf model-free algorithms or their variants [Luo et al., 2019a, Janner

et al., 2019, Kaiser et al., 2019, Kurutach et al., 2018, Feinberg et al., 2018a, Buckman

et al., 2018], and 2. model-based planning algorithms, which plan with the estimated

dynamics [Nagabandi et al., 2018, Chua et al., 2018a, Wang and Ba, 2019].

A deeper theoretical understanding of the pros and cons of model-based and the

model-free algorithms in the continuous state space case will provide guiding principles

for designing and applying new sample-efficient methods. The prior work on the

comparisons of model-based and model-free algorithms mostly focuses on their sample

efficiency gap, in the case of tabular MDPs [Zanette and Brunskill, 2019, Jin et al.,

2018], linear quadratic regulator [Tu and Recht, 2018], and contextual decision process

with sparse reward [Sun et al., 2019].

In this chapter, we theoretically compare model-based RL and model-free RL in

the continuous state space through the lens of approximability by neural networks,

and then use the insight to design practical algorithms. What is the representation

power of neural networks for expressing the Q-function, the policy, and the dynamics?

How do the model-based and model-free algorithms utilize the expressivity of neural

networks?

Our main finding is that even for the case of one-dimensional continuous state

space, there can be a massive gap between the approximability of Q-function and the

policy and that of the dynamics:

56

Figure 3.1: Left: The dynamics of two randomly generated MDPs (from the RAND,
and SEMI-RAND methods detailed in Section 3.4.5). Right: The corresponding
Q-functions which are more complex than the dynamics (more details in Section 3.4.5).

The optimal Q-function and policy can be significantly more complex than the

dynamics.

We construct environments where the dynamics are simply piecewise linear functions

with constant pieces, but the optimal Q-functions and the optimal policy require an

exponential (in the horizon) number of linear pieces, or exponentially wide neural

networks, to approximate.1 The approximability gap can also be observed empirically

on (semi-) randomly generated piecewise linear dynamics with a decent chance. (See

Figure 3.1 for two examples.)

When the approximability gap occurs, any deep RL algorithms with policies

parameterized by neural networks will suffer from a sub-optimal performance. These

algorithms include both model-free algorithms such as DQN [Mnih et al., 2015] and
1In turn, the dynamics can also be much more complex than the Q-function. Consider the

following situation: a subset of the coordinates of the state space can be arbitrarily difficult to express
by neural networks, but the reward function can only depend on the rest of the coordinates and
remain simple.

57

SAC [Haarnoja et al., 2018], and model-based policy optimization algorithms such as

SLBO [Luo et al., 2019a] and MBPO [Janner et al., 2019]. To validate the intuition,

we empirically apply these algorithms to the constructed or the randomly generated

MDPs. Indeed, they fail to converge to the optimal rewards even with sufficient

samples, which suggests that they suffer from the lack of expressivity.

However, in such cases, model-based planning algorithms should not suffer from

the lack of expressivity, because they only use the learned, parameterized dynamics,

which are easy to express. The policy obtained from the planning is the maximizer of

the total future reward on the learned dynamics, and can have an exponential (in the

horizon) number of pieces even if the dynamics has only a constant number of pieces.

In fact, even a partial planner can help improve the expressivity of the policy. If we

plan for k steps and then resort to some Q-function for estimating the total reward of

the remaining steps, we can obtain a policy with 2k more pieces than what Q-function

has.

We hypothesize that the real-world continuous control tasks also have a more

complex optimal Q-function and a policy than the dynamics. The theoretical analysis

of the synthetic dynamics suggests that a model-based few-steps planner on top of

a parameterized Q-function will outperform the original Q-function because of the

addtional expressivity introduced by the planning. We empirically verify the intuition

on MuJoCo benchmark tasks. We show that applying a model-based planner on top

of Q-functions learned from model-based or model-free policy optimization algorithms

in the test time leads to significant gains over the original Q-function or policy.

In summary, our contributions are:

1. We construct continuous state space MDPs whose Q-functions and policies are

proved to be more complex than the dynamics (Sections 3.4.1 and 3.4.3.)

2. We empirically show that with a decent chance, (semi-)randomly generated

piecewise linear MDPs also have complex Q-functions (Section 3.4.5.)
58

3. We show theoretically and empirically that the model-free RL or model-based

policy optimization algorithms suffer from the lack of expressivity for the con-

structed MDPs (Section 3.4.5), whereas model-based planning solve the problem

efficiently (Section 3.6.)

4. Inspired by the theory, we propose a simple model-based bootstrapping planner

(BOOTS), which can be applied on top of any model-free or model-based Q-

learning algorithms at the test time. Empirical results show that BOOTS

improves the performance on MuJoCo benchmark tasks.

3.2 Related Work

Comparisons with Prior Theoretical Work. Model-based RL has been exten-

sively studied in the tabular case (see Zanette and Brunskill [2019], Azar et al. [2017]

and the references therein), but much less so in the context of deep neural networks

approximators and continuous state space. Luo et al. [2019a] give sample complexity

and convergence guarantees suing principle of optimism in the face of uncertainty for

non-linear dynamics.

Below we review several prior results regarding model-based versus model-free di-

chotomy in various settings. We note that our work focuses on the angle of expressivity,

whereas the work below focuses on the sample efficiency.

Tabular MDPs. The extensive study in tabular MDP setting leaves little gap

in their sample complexity of model-based and model-free algorithms, whereas the

space complexity seems to be the main difference [Strehl et al., 2006]. The best

sample complexity bounds for model-based tabular RL [Azar et al., 2017, Zanette and

Brunskill, 2019] and model-free tabular RL [Jin et al., 2018] only differ by a poly(H)

multiplicative factor (where H is the horizon.)

59

Linear Quadratic Regulator. Dean et al. [2018] and Dean et al. [2017] provided

sample complexity bound for model-based LQR. Recently, Tu and Recht [2018]

analyzed sample efficiency of the model-based and model-free problem in the setting

of Linear Quadratic Regulator, and proved an O(d) gap in sample complexity, where

d is the dimension of state space. Unlike tabular MDP case, the space complexity of

model-based and model-free algorithms has little difference. The sample-efficiency gap

mostly comes from that dynamics learning has d-dimensional supervisions, whereas

Q-learning has only one-dimensional supervision.

Contextual Decision Process (with function approximator). Sun et al. [2019]

prove an exponential information-theoretical gap between mode-based and model-free

algorithms in the factored MDP setting. Their definition of model-free algorithms

requires an exact parameterization: the value-function hypothesis class should be

exactly the family of optimal value-functions induced by the MDP family. This

limits the application to deep reinforcement learning where over-parameterized neural

networks are frequently used. Moreover, a crucial reason for the failure of the model-

free algorithms is that the reward is designed to be sparse.

Related Empirical Work. A large family of model-based RL algorithms uses

existing model-free algorithms of its variant on the learned dynamics. MBPO [Janner

et al., 2019], STEVE [Buckman et al., 2018], and MVE [Feinberg et al., 2018a] are

model-based Q-learning-based policy optimization algorithms, which can be viewed as

modern extensions and improvements of the early model-based Q-learning framework,

Dyna [Sutton, 1990a]. SLBO [Luo et al., 2019a] is a model-based policy optimization

algorithm using TRPO as the algorithm in the learned environment.

Another way to exploit the dynamics is to use it to perform model-based planning.

Racanière et al. [2017] and Du and Narasimhan [2019] use the model to generated

additional extra data to do planning implicitly. Chua et al. [2018a] study how to

60

combine an ensemble of probabilistic models and planning, which is followed by Wang

and Ba [2019], which introduces a policy network to distill knowledge from a planner

and provides a prior for the planner. Piché et al. [2018] uses methods in Sequential

Monte Carlo in the context of control as inference. Oh et al. [2017] trains a Q-function

and then perform lookahead planning. Nagabandi et al. [2018] uses random shooting

as the planning algorithm.

Heess et al. [2015] backprops through a stochastic computation graph with a

stochastic gradient to optimize the policy under the learned dynamics. Levine and

Koltun [2013] distills a policy from trajectory optimization. Rajeswaran et al. [2016]

trains a policy adversarially robust to the worst dynamics in the ensemble. Clavera

et al. [2018] reformulates the problem as a meta-learning problem and using meta-

learning algorithms. Predictron [Silver et al., 2017b] learns a dynamics and value

function and then use them to predict the future reward sequences.

Another line of work focus on how to improve the learned dynamics model. Many

of them use an ensemble of models [Kurutach et al., 2018, Rajeswaran et al., 2016,

Clavera et al., 2018], which are further extended to an ensemble of probabilistic models

[Chua et al., 2018a, Wang and Ba, 2019]. Luo et al. [2019a] designs a discrepancy

bound for learning the dynamics model. Talvitie [2014] augments the data for model

training in a way that the model can output a real observation from its own prediction.

Malik et al. [2019] calibrates the model’s uncertainty so that the model’s output

distribution should match the frequency of predicted states. Oh et al. [2017] learns a

representation of states by predicting rewards and future returns using representation.

3.3 Preliminaries

Bellman Equation. Recall that π? is the optimal policy, and V ? is the optimal value

function (that is, the value function for policy π?). The value function V π for policy π

61

and optimal value function V ? satisfy the Bellman equation and Bellman optimality

equation, respectively. Let Qπ and Q? defines the state-action value function for policy

π and optimal state-action value function. Then, for a deterministic dynamics f , we

have 
V π(s) = Qπ(s, π(s)),

Qπ(s, a) = r(s, a) + γV π(M(s, a)),

(3.3.1)

and 
V ?(s) = maxa∈AQ

?(s, a),

Q?(s, a) = r(s, a) + γV ?(M(s, a)).

(3.3.2)

Denote the Bellman operator for dynamics M by BM : (BM [Q]) (s, a) = r(s, a) +

maxa′ γQ(M(s, a), a′).

Neural Networks. We focus on fully-connected neural nets with ReLU function as

activations. A one-dimensional input and one-dimensional output ReLU neural net

represents a piecewise linear function. A two-layer ReLU neural net with d hidden

neurons represents a piecewise linear function with at most (d+ 1) pieces. Similarly,

an H-layer neural net with d hidden neurons in each layer represents a piecewise linear

function with at most (d+ 1)H pieces [Pascanu et al., 2013].

Problem Setting and Notations. In this chapter, we focus on continuous state

space, discrete action space MDPs with S ⊂ R. We assume the dynamics is determin-

istic (that is, st+1 = M(st, at)), and the reward is known to the agent.

3.4 Approximability of Q-functions and Dynamics

We show that there exist MDPs in one-dimensional continuous state space that have

simple dynamics but complex Q-functions and policies. Moreover, any polynomial-size

62

neural network function approximator of the Q-function or policy will result in a

sub-optimal expected total reward, and learning Q-functions parameterized by neural

networks requires fundamentally an exponential number of samples (Section 3.4.3).

Section 3.4.5 illustrates the phenomena that Q-function is more complex than the

dynamics occurring frequently and naturally even with random MDP, beyond the

theoretical construction.

3.4.1 A Provable Construction of MDPs with Complex Q

Recall that we consider the infinite horizon case and 0 < γ < 1 is the discount factor.

Let H = (1− γ)−1 be the “effective horizon” — the rewards after � H steps become

negligible due to the discount factor. For simplicity, we assume that H > 3 and it is

an integer. (Otherwise we take just take H = b(1− γ)−1c.) Throughout this section,

we assume that the state space S = [0, 1) and the action space A = {0, 1}.

Definition 3.4.1. Given the effective horizon H = (1− γ)−1, we define an MDP MH

as follows. Let κ = 2−H . The dynamics M by the following piecewise linear functions

with at most three pieces.

M(s, 0) ,

 2s if s < 1/2

2s− 1 if s ≥ 1/2
M(s, 1) ,


2s+ κ if s < (1− κ)/2

2s+ κ− 1 if (1− κ)/2 ≤ s ≤ (2− κ)/2

2s+ κ− 2 otherwise.

The reward function is defined as

r(s, 0) , I[1/2 ≤ s < 1]

r(s, 1) , I[1/2 ≤ s < 1]− 2(γH−1 − γH)

The initial state distribution µ is uniform distribution over the state space [0, 1).

63

(a) Visualization of dynam-
ics for action a = 0, 1.

(b) The reward function
r(s, 0) and r(s, 1).

(c) Approximation of opti-
mal Q-function Q?(s, a)

Figure 3.2: A visualization of the dynamics, the reward function in the MDP defined
in Definition 3.4.1, and the approximation of its optimal Q-function for the effective
horizon H = 4. We can also construct slightly more involved construction with
Lipschitz dynamics and very similar properties. Please see Section 3.4.2.

The dynamics and the reward function for H = 4 are visualized in Figures 3.2a

and 3.2b. Note that by the definition, the transition function for a fixed action a is a

piecewise linear function with at most 3 pieces. Our construction can be modified so

that the dynamics is Lipschitz and the same conclusion holds, which we will show in

Section 3.4.2.

Attentive readers may also realize that the dynamics can be also be written

succinctly as M(s, 0) = 2s mod 1 and M(s, 1) = 2s + κ mod 12, which are key

properties that we use in the proof of Theorem 3.4.2 below.

Optimal Q-function Q? and the optimal policy π?. Even though the dynamics

of the MDP constructed in Definition 3.4.1 has only a constant number of pieces, the

Q-function and policy are very complex: (1) the policy is a piecewise linear function

with exponentially number of pieces, (2) the optimal Q-function Q? and the optimal

value function V ? are actually fractals that are not continuous anywhere. These are

formalized in the theorem below.

2The mod function is defined as: x mod 1 , x − bxc. More generally, for positive real k, we
define x mod k , x− kbx/kc.

64

Theorem 3.4.2. For s ∈ [0, 1), let s(k) denotes the k-th bit of s in the binary

representation.3 The optimal policy π? for the MDP defined in Definition 3.4.1 has

2H+1 number of pieces. In particular,

π?(s) = I[s(H+1) = 0]. (3.4.1)

And the optimal value function is a fractal with the expression:

V ?(s) =
H∑
h=1

γh−1s(h)+
∞∑

h=H+1

γh−1
(
1 + 2(s(h+1) − s(h))

)
+γH−1

(
2s(H+1) − 2

)
. (3.4.2)

The close-form expression of Q? can be computed by Q?(s, a) = r(s, a) + V ?(M(s, a)),

which is also a fractal.

We approximate the optimal Q-function by truncating the infinite sum to 2H

terms, and visualize it in Figure 3.2c. We discuss the main intuitions behind the

construction in the following proof sketch of the Theorem.

Proof Sketch. The key observation is that the dynamics M essentially shift the binary

representation of the states with some addition. We can verify that the dynamics

satisfies M(s, 0) = 2s mod 1 and M(s, 1) = 2s + κ mod 1 where κ = 2−H . In

other words, suppose s = 0.s(1)s(2) · · · is the binary representation of s, and let

left-shift(s) = 0.s(2)s(3) · · · .

M(s, 0) = left-shift(s) (3.4.3)

M(s, 1) = (left-shift(s) + 2−H) mod 1 (3.4.4)

3Or more precisely, we define s(h) , b2hsc mod 2.

65

Moreover, the reward function is approximately equal to the first bit of the binary

representation

r(s, 0) = s(1), r(s, a) ≈ s(1) (3.4.5)

(Here the small negative drift of reward for action a = 1, −2(γH−1 − γH), is only

mostly designed for the convenience of the proof, and casual readers can ignore it for

simplicity.) Ignoring carries, the policy pretty much can only affect the H-th bit of

the next state s′ = M(s, a): the H-th bit of s′ is either equal to (H + 1)-th bit of s

when action is 0, or equal its flip when action is 1. Because the bits will eventually

be shifted left and the reward is higher if the first bit of a future state is 1, towards

getting higher future reward, the policy should aim to create more 1’s. Therefore,

the optimal policy should choose action 0 if the (H + 1)-th bit of s is already 1, and

otherwise choose to flip the (H + 1)-th bit by taking action 1.

A more delicate calculation that addresses the carries properly would lead us to

the form of the optimal policy (Equation (3.4.1).) Computing the total reward by

executing the optimal policy will lead us to the form of the optimal value function

(Equation (3.4.2).) (This step does require some elementary but sophisticated algebraic

manipulation.)

With the form of the V ?, a shortcut to a formal, rigorous proof would be to verify

that it satisfies the Bellman equation, and verify π? is consistent with it.

Proof of Theorem 3.4.2. Since the solution to Bellman optimal equations is unique,

we only need to verify that V ? and π? defined in Equation (3.3.2) satisfy the following,

V ?(s) = r(s, π?(s)) + γV ?(M(s, π?(s))), (3.4.6)

V ?(s) ≥ r(s, a) + γV ?(M(s, a)), ∀a 6= π?(s). (3.4.7)

66

Recall that s(i) is the i-th bit in the binary representation of s, that is, s(i) = b2isc

mod 2. Let ŝ = M(s, π?(s)). Since π?(s) = I[s(H+1) = 0], which ensures the H-bit of

the next state is 1, we have

ŝ(i) =


s(i+1), i 6= H,

1, i = H.

(3.4.8)

For simplicity, define ε = 2(γH−1 − γH). The definition of r(s, a) implies that

r(s, π?(s)) = I[1/2 ≤ s < 1]− I[π?(s) = 1]ε = s(1) −
(
1− s(H+1)

)
ε.

By elementary manipulation, Equation (3.4.2) is equivalent to

V ?(s) =
H∑
i=1

γi−1s(i) +
∞∑

i=H+1

(
γi−1 − 2(γi−2 − γi−1)

(
1− s(i)

))
, (3.4.9)

Now, we verify Equation (3.4.6) by plugging in the proposed solution (namely, Equa-

tion (3.4.9)). As a result,

r(s, π?(s)) + γV ?(ŝ) = s(1) −
(
1− s(H+1)

)
ε+ γ

H∑
i=1

γi−1I[ŝ(i) = 1]

+ γ

∞∑
i=H+1

(
γi−1 −

(
1− ŝ(i)

)
2(γi−2 − γi−1)

)
= s(1) −

(
1− s(H+1)

)
ε+

H∑
i=2

γi−1s(i) + γH

+
∞∑

i=H+2

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)
=

H∑
i=1

γi−1s(i) +
∞∑

i=H+1

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)
= V ?(s),

67

which verifies Equation (3.4.6).

In the following we verify Equation (3.4.7). Consider any a 6= π?(s). Let s̄ = f(s, a)

for shorthand. Note that s̄(i) = s(i+1) for i > H. As a result,

V ?(s)− γV ?(s̄)

=
H∑
i=1

γi−1s(i) +
∞∑

i=H+1

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)
−

H∑
i=1

γi−1s̄(i) −
∞∑

i=H+1

(
γi−1 −

(
1− s̄(i)

)
2(γi−2 − γi−1)

)
= s(1) +

H−1∑
i=1

γi
(
s(i+1) − s̄(i)

)
− γH s̄(H) + γH − 2

(
1− s(H+1)

) (
γH−1 − γH

)

For the case where s(H+1) = 0, we have π?(s) = 1. For a = 0, s̄(i) = s(i+1) for all

i ≥ 1. Consequently,

V ?(s)− γV ?(s̄) = s(1) + γH − ε > s(1) = r(s, 0),

where the last inequality holds when γH − ε > 0, or equivalently, γ > 2/3.

For the case where s(H+1) = 1, we have π?(s) = 0. For a = 1, we have s(H+1) = 1

and s̄(H) = 0. Let p = max{i ≤ H : s(i) = 0}, where we define the max of an empty

set is 0. The dynamics M(s, 1) implies that

s̄(i) =


s(i+1), i+ 1 < p or i > H,

1, i+ 1 = p,

0, p < i+ 1 ≤ H + 1.

68

Therefore,

V ?(s)− γV ?(s̄) = s(1) + γH +
H−1∑
i=1

γi
(
s(i+1) − s̄(i)

)
> s(1) − ε = r(s, 1).

In both cases, we have V ? − γV ?(s̄) > r(s, a) for a 6= π?(s), which proves Equa-

tion (3.4.7).

3.4.2 Extension of the Constructed Family

In this subsection, we present an extension to our construction in Section 3.4.1 such

that the dynamics is Lipschitz. The action space is A = {0, 1, 2, 3, 4}. We define

clip(x) = max{min{x, 1}, 0}.

Definition 3.4.3. Given effective horizon H = (1− γ)−1, we define an MDP M ′
H as

follows. Let κ = 2−H . The dynamics is defined as

M(s, 0) , clip(2s),

M(s, 1) , clip(2s− 1),

M(s, 2) , clip(2s+ κ),

M(s, 3) , clip(2s+ κ− 1),

M(s, 4) , clip(2s+ κ− 2).

Reward function is given by

r(s, 0) , r(s, 1) , I[1/2 ≤ s < 1]

r(s, 2) , r(s, 3) , r(s, 4) , I[1/2 ≤ s < 1]− 2(γH−1 − γH)

The intuition behind the extension is that, we perform the mod operation manually.

The following theorem is an analog to Theorem 3.4.2.

69

Theorem 3.4.4. The optimal policy π? for M ′
H is defined by,

π?(s) ,



0, I[s(H+1) = 0] and 2s < 1,

1, I[s(H+1) = 0] and 1 ≤ 2s < 2,

2, I[s(H+1) = 1] and 2s+ θ < 1,

3, I[s(H+1) = 1] and 1 ≤ 2s+ θ < 2,

4, I[s(H+1) = 1] and 2 < 2s+ θ.

(3.4.10)

And the corresponding optimal value function is,

V ?(s) =
H∑
h=1

γh−1s(h) +
∞∑

h=H+1

γh−1
(
1 + 2(s(h+1) − s(h))

)
+ γH−1

(
2s(H+1) − 2

)
.

(3.4.11)

We can obtain a similar upper bound on the performance of policies with polynomial

pieces.

Theorem 3.4.5. Let MH be the MDP constructed in Definition 3.4.3. Suppose a

piecewise linear policy π has a near optimal reward in the sense that η(π) ≥ 0.99 ·η(π?),

then it has to have at least Ω (exp(cH)/H) pieces for some universal constant c > 0.

The proof is very similar to that for Theorem 3.4.8. One of the difference here is

to consider the case where M(s, a) = 0 or M(s, a) = 1 separately. Attentive readers

may notice that the dynamics where M(s, a) = 0 or M(s, a) = 1 may destroy the

“near uniform” behavior of state distribution µπh (see Lemma 3.4.13). Here we show

that such destroy comes with high cost. Formally speaking, if the clip is triggered in

an interval, then the averaged single-step suboptimality gap is 0.1/(1− γ).

Lemma 3.4.6. Let `k , [k/2H/2, (k + 1)/2H/2). For k ∈ [2H/2], if policy π does

not change its action at interval `k (that is, |{π(s) : s ∈ `k}| = 1) and M(s, π(s)) =

70

0, ∀s ∈ `k or M(s, π(s)) = 1, ∀s ∈ `k. We have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.1

1− γ
(3.4.12)

for large enough H.

Proof of Lemma 3.4.6. Without loss of generality, we consider the case where

M(s, π(s)) = 0. The proof for M(s, π(s)) = 1 is essentially the same.

By elementary manipulation, we have

V ?(s)− V ?(0) ≥
H∑
i=1

γi−1s(i).

Let ŝ = M(s, π?(s)). It follows from Bellman Equation (3.3.2) that

V ?(s) = r(s, π?(s)) + γV ?(ŝ),

Q?(s, π(s)) = r(s, π(s)) + γV ?(0).

Recall that we define ε , 2
(
γH−1 − γH

)
. As a consequence,

(V ?(s)−Q?(s, π(s))) > r(s, π?(s))− r(s, π(s)) + γ(V ?(ŝ)− V ?(0))

≥ −ε+ γ
H∑
i=1

γi−1ŝ(i).

Plugging into Equation (3.4.12), we have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ −ε+
1

|`k|

∫
s∈`k

(
H∑
i=1

γi

)
ŝ(i) ds

≥ − ε+
H∑
i=1

γi
(

1

|`k|

∫
s∈`k

ŝ(i) ds

)
≥ −ε+

γH/2 − γH

1− γ
.

71

Equation (3.4.12) is proved by noticing for large enough H,

−ε+
γH/2 − γH

1− γ
>

0.1

1− γ
.

Let D = {0, 1} for simplicity. For any policy π, we define a transition operator

T̂ π, such that

(
T̂ πµ

)
(Z) , µ ({s : p(s, a) ∈ Z,M(s, π(s)) 6∈ D) ,

and the state distribution induced by it, defined recursively by

µ̂π1 (s) , 1,

µ̂πh , T̂ πµπh−1.

We also define the density function for states that are truncated as follows,

ρ̂πh(s) , I[M(s, π(s)) ∈ D]µ̂πh (s) .

Following advantage decomposition lemma (Corollary 3.4.11), the key step for

proving Theorem 3.4.5 is

η(π?)− η(π) ≥
∞∑
h=1

γh−1Es∼µ̂πh [V ?(s)−Q?(s, π(s))]

+
∞∑
h=1

γhEs∼ρπh [V ?(s)−Q?(s, π(s))] .

(3.4.13)

Similar to Lemma 3.4.13, the following lemma shows that the density for most of

the small intervals is either uniformly clipped, or uniformly spread over this interval.

72

Lemma 3.4.7. Let z(π) be the number of pieces of policy π. For k ∈ [2H/2], define

interval `k , [k/2H/2, (k+1)/2H/2). Let νh(k) , infs∈`k µ̂
π
h(s) and ωh(k) , infs∈`k ρ̂

π
h(s).

If the initial state distribution µ is uniform distribution, then for any h ≥ 1,

2H/2∑
k=0

2−H/2 · νh(k) +
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k) ≥ 1− 2h
z(π) + 10

2H/2
. (3.4.14)

Proof of Lemma 3.4.7. Omitted. The proof is similar to Lemma 3.4.13.

Now we present the proof for Theorem 3.4.5.

Proof of Theorem 3.4.5. For any k ∈ [2H/2], consider the interval `k = [k/2H/2, (k +

1)/2H/2).. If π does not change at interval `k (that is, |{π(s) : s ∈ `k}| = 1), by

Lemma 3.4.12 we have

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.075 · 2−H/2. (3.4.15)

By Equations (3.4.12), (3.4.13) and (3.4.15), we have

η(π?)− η(π)

≥
H∑
h=1

γh−1

2H/2∑
k=0

0.075 · 2−H/2 · νh(k)

+
H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ
. (3.4.16)

By Lemma 3.4.7, we get

2H/2∑
k=0

2−H/2 · νh(k) +
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k) ≥ 1− 2h
z(π) + 10

2H/2
. (3.4.17)

For the sake of contradiction, we assume z(π) = o (exp(cH)/H), then for large enough

H we have,

1− 2
Hz(π) + 10

2H/2
> 0.8.

73

Consequently,

2H/2∑
k=0

2−H/2 · νh(k) > 0.8−
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k). (3.4.18)

Plugging in Equation (3.4.16), we get

η(π?)− η(π)

≥
H∑
h=1

0.075γh−1

2H/2∑
k=0

2−H/2νh(k)

+
H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ
.

≥
H∑
h=1

0.075γh−1

0.8−
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k)

+
H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ

≥ 0.06
1− γH

1− γ
+

H∑
h=1

2H/2∑
k=0

·2−H/2 · ωh(k)

(
0.1γh

1− γ
− 0.075

H∑
h′=h

γh
′−1

)

≥ 0.06
1− γH

1− γ
+

H∑
h=1

2H/2∑
k=0

·2−H/2 · ωh(k)
γh−1

1− γ
(
0.1γ − 0.075

(
1− γH−h

))
When γ > 1/4, we have 0.1γ − 0.075(1− γH−h) > 0. As a consequence,

η(π?)− η(π) > 0.06
1− γH

1− γ
≥ 0.01

1− γ
.

Now, since η(π?) ≤ 1/(1−γ), we have η(π) < 0.99η(π?). Therefore for near-optimal

policy π, z(π) = Ω (exp(cH)/H) .

3.4.3 Approximability of Q-function

A priori, the complexity of Q? or π? does not rule out the possibility that there exists

an approximation of them that do an equally good job in terms of maximizing the

rewards. However, we show that in this section, indeed, there is no neural network

approximation of Q? or π? with a polynomial width. We prove this by showing any

74

piecewise linear function with a sub-exponential number of pieces cannot approximate

either Q? or π? with a near-optimal total reward.

Theorem 3.4.8. Let MH be the MDP constructed in Definition 3.4.1. Suppose a

piecewise linear policy π has a near optimal reward in the sense that η(π) ≥ 0.99 ·η(π?),

then it has to have at least Ω (exp(cH)/H) pieces for some universal constant c > 0.

As a corollary, no constant depth neural networks with polynomial width (in H) can

approximate the optimal policy with near optimal rewards.

Consider a policy π induced by a value functionQ, that is, π(s) = arg maxa∈AQ(s, a).

Then,when there are two actions, the number of pieces of the policy is bounded by

twice the number of pieces of Q. This observation and the theorem above implies the

following inapproximability result of Q?.

Corollary 3.4.9. In the setting of Theorem 3.4.8, let π be the policy induced by

some Q. If π is near-optimal in a sense that η(π) ≥ 0.99 · η(π?), then Q has at least

Ω (exp(cH)/H) pieces for some universal constant c > 0.

The intuition behind the proof of Theorem 3.4.8 is as follows. Recall that the

optimal policy has the form π?(s) = I[s(H+1) = 0]. One can expect that any polynomial-

pieces policy π behaves suboptimally in most of the states, which leads to the subop-

timality of π.

Proof of Theorem 3.4.8

For a fixed parameter H, let z(π) be the number of pieces in π. For a policy π, define

the state distribution when acting policy π at step h as µπh.

In order to prove Theorem 3.4.8, we show that if 1/2 − 2Hz(π)/2H < 0.3, then

η(π) < 0.99η(π?). The proof is based on the advantage decomposition lemma.

Lemma 3.4.10 (Advantage Decomposition Lemma [Schulman et al., 2015a, Kakade

and Langford, 2002]). Define Aπ(s, a) , r(s, a) + γV π(M(s, a))− V π(s) = Qπ(s, a)−
75

V π(s). Given policies π and π̃, we have

η(π) = η(π̃) +
∞∑
h=1

γh−1Es∼µπh
[
Aπ̃(s, π(s))

]
. (3.4.19)

Corollary 3.4.11. For any policy π, we have

η(π?)− η(π) =
∞∑
h=1

γh−1Es∼µπh [V ?(s)−Q?(s, π(s))] . (3.4.20)

Intuitively speaking, since π? = I[s(H+1) = 0], the a policy π with polynomial

pieces behaves suboptimally in most of the states. Lemma 3.4.12 shows that the

single-step suboptimality gap V ?(s) − Q?(s, π(s)) is large for a constant portion of

the states. On the other hand, Lemma 3.4.13 proves that the state distribution µπh is

near uniform, which means that suboptimal states can not be avoided. Combining

with Corollary 3.4.11, the suboptimal gap of policy π is large.

The next lemma shows that, if π does not change its action for states from a

certain interval, the average advantage term V ?(s) − Q?(s, π(s)) in this interval is

large.

Lemma 3.4.12. Let `k , [k/2H , (k + 1)/2H), and K , {0 ≤ k < 2H : k mod 2 =

1}. Then for k ∈ K, if policy π does not change its action at interval `k (that is,

|{π(s) : s ∈ `k}| = 1), we have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.15. (3.4.21)

Proof of Lemma 3.4.12. Note that for any k ∈ K, s(H) = 1,∀s ∈ `k. Now fix a

parameter k ∈ K. Suppose π(s) = ai for s ∈ `k. Then for any s such that s(H+1)+i 6= 1,

we have

V ?(s)−Q?(s, π(s)) ≥ γH − ε.

76

For H > 15, we have γH − ε > 0.3. Therefore,

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥
∫
s∈`k

0.3·I[s(H+1) 6= 1− i] ds ≥ 0.3·2−H−1 = 0.15·2−H .

Next lemma shows that when the number of pieces in π is not too large, the

distribution µπh is close to uniform distribution for step 1 ≤ h ≤ H.

Lemma 3.4.13. Let z(π) be the number of pieces of policy π. For k ∈ [2H], de-

fine interval `k , [k/2H , (k + 1)/2H). Let νh(k) , infs∈`k µ
π
h(s), If the initial state

distribution µ is uniform distribution, then for any h ≥ 1,

∑
0≤k<2H

2−H · νh(k) ≥ 1− 2h
z(π)

2H
. (3.4.22)

Proof of Lemma 3.4.13. Now let us fix a parameter H and policy π. For every h, we

prove by induction that there exists a function ξh(s), such that

(a) 0 ≤ ξh(s) ≤ min{µπh(s), 1},

(b) infs∈`k ξh(s) = sups∈`k ξh(s), ∀k ∈ [AH],

(c)
∫
s∈[0,1)

dξh(s) ≥ 1− h · z(π)/2H−1.

For the base case h = 1, we define ξh(s) = µπh(s) = 1 for all s ∈ [0, 1). Now we

construct ξh+1 from ξh.

For a fixed k ∈ [2H], define lk , k · 2−H , rk , (k + 1) · 2−H as the left and right

endpoints of interval `k. Let {x(i)
k }2

i=1 be the set of 2 solutions of equation

2x+ 2−H ≡ lk mod 1

where 0 ≤ x < 1, and we define y(i)
k , x

(i)
k +2−H mod 1. By definition, only states from

the set ∪2
i=1[x

(i)
k , y

(i)
k) can reach states in interval `k by a single transition. We define a

77

set Ik , {i : 1 ≤ i ≤ 2, |{π(s) : s ∈ [x
(i)
k , y

(i)
k)}| = 1}. That is, the intervals where policy

π acts unanimously. Consequently, for i ∈ Ik, the set {s : s ∈ [x
(i)
k , y

(i)
k),M(s, π(s)) ∈

`k} is an interval of length 2−H−1, and has the form

u
(i)
k , [x

(i)
k + w

(i)
k · 2

−H−1, x
(i)
k + (w

(i)
k + 1) · 2−H−1)

for some integer w(i)
k ∈ {0, 1}. By statement (b) of induction hypothesis,

inf
s∈u(i)

k

ξh(s) = sup
s∈u(i)

k

ξh(s). (3.4.23)

Now, the density ξh+1(s) for s ∈ `k is defined as,

ξh+1(s) ,
∑
i∈Ik

1

2
· ξh(x(i)

k + w
(i)
k · 2

−H−1).

The intuition of the construction is that, we discard those density that cause

non-uniform behavior (that is, the density in intervals [x
(i)
k , y

(i)
k) where i 6∈ Ik). When

the number of pieces of π is small, we can keep most of the density. Now, statement

(b) is naturally satisfied by definition of ξh+1. We verify statement (a) and (c) below.

For any set B ⊆ `k, let (T π)−1 (B) , {s ∈ S : M(s, π(s)) ∈ B} be the inverse of

Markov transition T π. Then we have,

(T πξh)(B) , ξh
(
(T π)−1 (B)

)
=
∑
i∈{1,2}

ξh

(
(T π)−1 (B) ∩ [x

(i)
k , y

(i)
k)
)

≥
∑
i∈Ik

ξh

(
(T π)−1 (B) ∩ [x

(i)
k , y

(i)
k)
)

=
∑
i∈Ik

∣∣∣(T π)−1 (B) ∩ [x
(i)
k , y

(i)
k)
∣∣∣ ξh (x(i)

k + w
(i)
k · 2

−H−1
)

(By Equation (3.4.23))

=
∑
i∈Ik

|B|
2
ξh

(
x

(i)
k + w

(i)
k · 2

−H−1
)
,

78

where | · | is the shorthand for standard Lebesgue measure.

By definition, we have

ξh+1(B) =
∑
i∈Ik

|B|
2
ξh

(
x

(i)
k + w

(i)
k · 2

−H−1
)
≤ (T πξh)(B) ≤ (T πµπh)(B) = µπh+1(B),

which verifies statement (a).

For statement (c), recall that S = [0, 1) is the state space. Note that T π preserve

the overall density. That is (T πξh) (S) = ξh(S). We only need to prove that

(T πξh) (S)− ξh+1(S) ≤ h · z(π)/2H−1 (3.4.24)

and statement (c) follows by induction.

By definition of ξh+1(s) and the induction hypothesis that ξh(s) ≤ 1, we have

(T πξh) (`k)− ξh+1(`k) ≤ (2− |Ik|)2−H .

On the other hand, for any s ∈ S, the set {k ∈ [2H] : s ∈ ∪2
i=1[x

(i)
k , y

(i)
k)} has cardinality

2, which means that one intermittent point of π can correspond to at most 2 intervals

that are not in Ik for some k. Thus, we have

∑
0≤k<2H

|Ik| ≥ 2H+1 −
∑

s:π−(s)6=π+(s)

∣∣∣{k ∈ [2H] : s ∈ ∪2
i=1[x

(i)
k , y

(i)
k)}

∣∣∣ ≥ 2H+1 − 2 · z(π).

Consequently

(T πξh) (S)− ξh+1(S) =
∑

0≤k<2H

((T πξh) (`k)− ξh+1(`k)) ≤ z(π)2−H+1,

which proves statement (c).

Now we present the proof for Theorem 3.4.8.

79

Proof of Theorem 3.4.8. For any k ∈ [2H], consider the interval `k = [k/2H , (k +

1)/2H). Let K , {k ∈ [AH] : k mod 2 = 1}. If π does not change at interval `k (that

is, |{π(s) : s ∈ `k}| = 1), by Lemma 3.4.12 we have

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.15 · 2−H . (3.4.25)

Let νh(k) , infs∈`k µ
π
h(s), then by advantage decomposition lemma (namely, Corol-

lary 3.4.11), we have

η(π?)− η(π) =
∞∑
h=1

γh−1

(∫
s∈[0,1)

(V ∗(s)−Q?(s, π(s))) dµπh(s)

)

≥
H∑
h=1

γh−1

(∑
k∈K

∫
s∈`k

(V ∗(s)−Q?(s, π(s))) dµπh(s)

)

≥
H∑
h=1

γh−1

(∑
k∈K

∫
s∈`k

νh(k)(V ∗(s)−Q?(s, π(s))) ds

)

≥
H∑
h=1

γh−1

(∑
k∈K

0.15 · 2−H · νh(k)

)
.

By Lemma 3.4.13 and union bound, we get

∑
k∈K

2−H · νh(k) ≥ 1

2
− 2h

z(π)

2H
. (3.4.26)

For the sake of contradiction, we assume z(π) = o (exp(cH)/H), then for large enough

H we have,

1/2− 2Hz(π)

2H
≥ 0.3.

Consequently,

η(π?)− η(π) ≥
H∑
h=1

0.045γh−1 = 0.045 · 1− γH

1− γ
≥ 0.01

1− γ
.

80

Now, since η(π?) ≤ 1/(1− γ), we have η(π) < 0.99η(π?). Therefore for near-optimal

policy π, z(π) = Ω (exp(cH)/H) .

3.4.4 Sample Complexity Lower Bound of Q-learning

Beyond the expressivity lower bound, we also provide an exponential sample complexity

lower bound for Q-learning algorithms parameterized with neural networks.

Recall that Corollary 3.4.9 says that in order to find a near-optimal policy by a

Q-learning algorithm, an exponentially large Q-network is required. In this subsection,

we show that even if an exponentially large Q-network is applied for Q learning, still

we need to collect an exponentially large number of samples, ruling out the possibility

of efficiently solving the constructed MDPs with Q-learning algorithms.

Towards proving the sample complexity lower bound, we consider a stronger family

of Q-learning algorithm, Q-learning with Oracle (Algorithm 4). We assume that

the algorithm has access to a Q-Oracle, which returns the optimal Q-function

upon querying any pair (s, a) during the training process. Q-learning with Oracle is

conceptually a stronger computation model than the vanilla Q-learning algorithm,

because it can directly fit the Q functions with supervised learning, without relying on

the rollouts or the previous Q function to estimate the target Q value. Theorem 3.4.14

proves a sample complexity lower bound for Q-learning algorithm on the constructed

example.

Theorem 3.4.14 (Informal Version of Theorem 3.4.16). Suppose Q is an infinitely-

wide two-layer neural networks, and R(Q) is `1 norm of the parameters and serves as

a tiebreaker. Then, any instantiation of the Q-learning with oracle algorithm

requires exponentially many samples to find a policy π such that η(π) > 0.99η(π?).

The proof of Theorem 3.4.14 is to exploit the sparsity of the solution found by

minimal-norm tie-breaker. It can be proven that there are at most O(n) non-zero

81

Algorithm 4 Q-learning with oracle
Require: A hypothesis space Q of Q-function parameterization.
1: Sample s0 ∼ µ from the initial state distribution µ
2: for i = 1, 2, · · · , n do
3: Decide whether to restart the trajectory by setting si ∼ µ based on historical

information
4: Query Q-Oracle to get the function Q?(si, ·).
5: Apply any action ai (according to any rule) and sample si+1 ∼M(si, ai).
6: Learn the Q-function that fit all the data the best:

Q← arg min
Q∈Q

1

n

n∑
i=1

(Q(si, ai)−Q?(si, ai))
2 + λR(Q)

7: Return the greedy policy according to Q.

neurons in the minimal-norm solution, where n is the number of data points. The

proof is completed by combining with Theorem 3.4.8.

Proof of Theorem 3.4.14

A two-layer ReLU neural net Q(s, ·) with input s is of the following form,

Q(s, a) =
d∑
i=1

wi,a [kis+ bi]+ + ca, (3.4.27)

where d is the number of hidden neurons. wi,a, ca, ki, bi are parameters of this neural

net, where ci,a, bi are bias terms. [x]+ is a shorthand for ReLU activation I[x > 0]x.

Now we define the norm of a neural net.

Definition 3.4.15 (Norm of a Neural Net). The norm of a two-layer ReLU neural

net is defined as,
d∑
i=1

|wi,a|+ |ki|. (3.4.28)

82

Recall that the Q-learning with oracle algorithm finds the solution by the following

supervised learning problem,

min
Q∈Q

1

n

n∑
t=1

(Q(st, at)−Q?(st, at))
2 . (3.4.29)

Then, we present the formal version of Theorem 3.4.14.

Theorem 3.4.16. Let Q be the minimal `1 norm solution to Equation (3.4.29), and π

the greedy policy according to Q. When n = o(exp(cH)/H), we have η(π) < 0.99η(π?).

The proof of Theorem 3.4.14 is by characterizing the minimal-norm solution,

namely the sparsity of the minimal-norm solution as stated in the next lemma.

Lemma 3.4.17. The minimal-norm solution to Equation (3.4.29) has at most 32n+ 1

non-zero neurons. That is, |{i : ki 6= 0}| ≤ 32n+ 1.

We first present the proof of Theorem 3.4.16, followed by the proof of Lemma 3.4.17.

Proof of Theorem 3.4.16. Recall that the policy is given by π(s) = arg maxa∈AQ(s, a).

For a Q-function with 32n+ 2 pieces, the greedy policy according to Q(s, a) has at

most 64n+ 4 pieces. Combining with Theorem 3.4.8, in order to find a policy π such

that η(π) > 0.99η(π?), n needs to be exponentially large (in effective horizon H).

Proof of Lemma 3.4.17 is based on merging neurons. Let xi = −bi/ki,wi =

(wi,1, wi,2), and c = (c1, c2). In vector form, neural net defined in Equation (3.4.27)

can be written as,

Q(s, ·) =
d∑
i=1

wi [ki(s− xi)]+ + c.

First we show that neurons with the same xi can be merged together.

Lemma 3.4.18. Consider the following two neurons,

k1 [s− x1]+ w1, k2 [s− x2]+ w2.

83

with k1 > 0, k2 > 0. If x1 = x2, then we can replace them with one single neuron of

the form k′ [x− x1]+ w′ without changing the output of the network. Furthermore, if

w1 6= 0,w2 6= 0, the norm strictly decreases after replacement.

Proof of Lemma 3.4.18. We set k′ =
√
|k1w1 + k2w2|1, and w′ = (k1w1 + k2w2)/k

′,

where |w|1 represents the 1-norm of vector w. Then, for all s ∈ R,

k′ [x− x1]+ w′ = (k1w1 + k2w2) [s− x1]+ = k1 [s− x1]+ w1 + k2 [s− x1]+ w2.

The norm of the new neuron is |k′|+ |w′|1. By calculation we have,

|k′|+ |w′|1 = 2
√
|k1w1 + k2w2|1 ≤ 2

√
|k1w1|1 + |k2w2|1

(a)

≤ 2
(√
|k1w1|1 +

√
|k2w2|1

)
≤ |k1|+ |w1|1 + |k2|+ |w2|1.

Note that the inequality (a) is strictly less when |k1w1|1 6= 0 and |k2w2|1 6= 0.

Next we consider merging two neurons with different intercepts between two data

points. Without loss of generality, assume the data points are listed in ascending

order. That is, si ≤ si+1.

Lemma 3.4.19. Consider two neurons

k1 [s− x0]+ w1, k2 [s− x0 − δ]+ w2.

with k1 > 0, k2 > 0. If si ≤ x0 < x0 + δ ≤ si+1 for some 1 ≤ i ≤ n, then the two

neurons can replaced by a set of three neurons,

k′ [s− x0]+ w′, k̃ [s− si]+ w̃, k̃ [s− si+1]+ (−w̃)

such that for s ≤ si or s ≥ si+1, the output of the network is unchanged. Furthermore,

if δ ≤ (si+1 − si)/16 and |w1|1 6= 0, |w2|1 6= 0, the norm decreases strictly.
84

Before proving Lemma 3.4.19, we present a technical lemma.

Lemma 3.4.20. For A,B,C,D ≥ 0 and AC ≥ BD, we have

A+ C +
1

2
(B +D) ≥ 2

√
AC +BD.

Furthermore, when BD > 0, the inequality is strict.

Proof of Lemma 3.4.20. Note that A+B+ 1
2
(C+D) ≥ 2

√
AC+

√
BD. And we have,

(
2
√
AC +

√
BD

)2

−
(

2
√
AC +BD

)2

= 4
√
AC ·BD − 3BD ≥ BD ≥ 0.

And when BD > 0, the inequality is strict.

Now we are going to prove Lemma 3.4.19.

Proof of Lemma 3.4.19. For simplicity, define ∆ = si+1 − si. We set

k′ =
√
|k1w1 + k2w2|1,

w′ = (k1w1 + k2w2)/k′,

k̃ =
√
|k2w2|1δ/∆,

w̃ = −k2w2δ/(∆k̃).

Note that for s ≤ si, all of the neurons are inactive. For s ≥ si+1, all of the neurons

are active, and

k′w′(s− x0) + k̃w̃(s− si)− k̃w̃(s− si+1)

= (k1w1 + k2w2)(s− x0)− k2w2δ

= k1(s− x0)w1 + k2(s− x0 − δ)w2,

85

which means that the output of the network is unchanged. Now consider the norm of

the two networks. Without loss of generality, assume |k1w1|1 > |k2w2|1. The original

network has norm |k1|+ |w1|1 + |k2|+ |w2|1. And the new network has norm

|k′|+ |w′|1 + 2|k̃|+ 2|w̃|1 = 2
√
|k1w1 + k2w2|1 + 4

√
|k2w2|1δ/∆

(a)

≤ |k1|+ |w1|1 + |k2|+ |w2|1 +

(
4
√
|k2w2|1δ/∆−

1

2
(|k2|+ |w2|1)

)
,

where the inequality (a) is a result of Lemma 3.4.20, and is strictly less when |w1|1 6=

0, |w2|1 6= 0.

When δ/∆ < 1/16, we have
(

4
√
|k2w2|1δ/∆− 1

2
(|k2|+ |w2|1)

)
< 0, which implies

that

|k′|+ |w′|1 + 2|k̃|+ 2|w̃|1 < |k1|+ |w1|1 + |k2|+ |w2|1.

Similarly, two neurons with k1 < 0 and k2 < 0 can be merged together.

Now we are ready to prove Lemma 3.4.17. As hinted by previous lemmas, we show

that between two data points, there are at most 34 non-zero neurons in the minimal

norm solution.

Proof of Lemma 3.4.17. Consider the solution to Equation (3.4.29). Without loss of

generality, assume that si ≤ si+1. In the minimal norm solution, it is obvious that

|wi|1 = 0 if and only if ki = 0. Therefore we only consider those neurons with ki 6= 0,

denoted by index 1 ≤ i ≤ d′.

Let Bt , {−bi/ki : 1 ≤ i ≤ d′, st < −bi/ki < st+1, ki > 0}. Next we prove

that in the minimal norm solution, |Bt| ≤ 15. For the sake of contradiction, suppse

|Bt| > 15. Then there exists i, j such that, st < −bi/ki < st+1, st < −bj/kj <

st+1, |bi/ki − bj/kj| < (st+1 − si)/16, and ki > 0, kj > 0. By Lemma 3.4.19, we can

obtain a neural net with smaller norm by merging neurons i, j together without

violating Equation (3.4.29), which leads to contradiction.

86

By Lemma 3.4.18, |Bt| ≤ 15 implies that there are at most 15 non-zero neurons

with st < −bi/ki < st+1 and ki > 0. For the same reason, there are at most 15

non-zero neurons with st < −bi/ki < st+1 and ki < 0.

On the other hand, there are at most 2 non-zero neurons with st = −bi/ki for all

t ≤ n, and there are at most 1 non-zero neurons with −bi/ki < s1. Therefore, we have

d′ ≤ 32n+ 1.

3.4.5 Approximability of Q-functions of Randomly Generated

MDPs

In this subsection, we show the phenomena that the Q-function is more complex

does not only occurs in the crafted cases as in the previous subsection, but also

occurs more robustly with a decent chance for (semi-) randomly generated MDPs.

(Mathematically, this says that the family of MDPs with such a property is not a

degenerate measure-zero set.)

It is challenging and perhaps requires deep math to characterize the fractal structure

of Q-functions for random dynamics, which is beyond the scope of this chapter. Instead,

we take an empirical approach here. We generate random piecewise linear and Lipschitz

dynamics, and compute their Q-functions for the finite horizon, and then visualize

the Q-functions or count the number of pieces in the Q-functions. We also use DQN

algorithm [Mnih et al., 2015] with a finite-size neural network to learn the Q-function.

We set horizon H = 10 for simplicity and computational feasibility. The state and

action space are [0, 1) and {0, 1} respectively. We design two methods to generate

random or semi-random piecewise dynamics with at most four pieces.

First, we have a uniformly random method, called RAND, where we independently

generate two piecewise linear functions for f(s, 0) and f(s, 1), by generating random

positions for the kinks, generating random outputs for the kinks, and connecting the

87

kinks by linear lines. In this method, the generated MDPs are with less structure.

The details are shown as follows.

• State space S = [0, 1).

• Action space A = {0, 1}.

• Number of pieces is fixed to 3. The positions of the kinks are generated by,

xi ∼ U(0, 1) for i = 1, 2 and x0 = 0, x1 = 1. The values are generated by

x′i ∼ U(0, 1).

• The reward function is given by r(s, a) = s, ∀s ∈ S, a ∈ A.

• The horizon is fixed as H = 10.

• Initial state distribution is U(0, 1).

Figure 3.1 visualizes one of the RAND-generated MDPs with complex Q-functions.

In the second method, called SEMI-RAND, we introduce a bit more structure

in the generation process, towards increasing the chance to see the phenomenon.

The functions f(s, 0) and f(s, 1) have 3 pieces with shared kinks. We also design

the generating process of the outputs at the kinks so that the functions have more

fluctuations. In this method, we add some structures to the dynamics, resulting in a

more significant probability that the optimal policy is complex. We generate dynamics

with fix and shared kinks, generate the output at the kinks to make the functions

fluctuating. The details are shown as follows.

• State space S = [0, 1).

• Action space A = {0, 1}.

• Number of pieces is fixed to 3. The positions of the kinks are generated

by, xi = i/3, ∀0 ≤ i ≤ 3. And the values are generated by x′i ∼ 0.65 ×

I[i mod 2 = 0] + 0.35× U(0, 1).

88

• The reward function is r(s, a) = s for all a ∈ A.

• The horizon is fixed as H = 10.

• Initial state distribution is U(0, 1).

Figure 3.1 visualizes one of the MDPs generated by SEMI-RAND method.

The optimal policy and Q can have a large number of pieces. Because

the state space has one dimension, and the horizon is 10, we can compute the exact

Q-functions by recursively applying Bellman operators, and count the number of

pieces. We found that, 8.6% fraction of the 1000 MDPs independently generated

from the RAND method has policies with more than 100 pieces, much larger than

the number of pieces in the dynamics (which is 4). Using the SEMI-RAND method,

a 68.7% fraction of the MDPs has polices with more than 103 pieces. We also plot

the histogram of the number of pieces of the Q-functions. Figure 3.1 visualize the

Q-functions and dynamics of two MDPs generated from RAND and SEMI-RAND

method. These results suggest that the phenomenon that Q-function is more complex

than dynamics is not a degenerate phenomenon and can occur with non-zero measure.

As shown in Figure 3.3, even for horizon H = 10, the optimal policy tends to have

much more pieces than the dynamics.

Figure 3.3: The histogram of number of pieces in optimal policy π? in random method
(left) and semi-random method(right).

89

Figure 3.4: (Left): The performance of DQN, SLBO, and MBPO on the bottom
dynamics in Figure 3.1. The number after the acronym is the width of the neural
network used in the parameterization of Q. We see that even with sufficiently large
neural networks and sufficiently many steps, these algorithms still suffers from bad
approximability and cannot achieve optimal reward. (Right): Performance of BOOTS
+ DQN with various planning steps. A near-optimal reward is achieved with even
k = 3, indicating that the bootstrapping with the learned dynamics improves the
expressivity of the policy significantly.

Model-based policy optimization methods also suffer from a lack of expres-

sivity. As an implication of our theory in the previous section, when the Q-function

or the policy are too complex to be approximated by a reasonable size neural network,

both model-free algorithms or model-based policy optimization algorithms will suffer

from the lack of expressivity, and as a consequence, the sub-optimal rewards. We

verify this claim on the randomly generated MDPs discussed in Section 3.4.5, by

running DQN [Mnih et al., 2015], SLBO [Luo et al., 2019a], and MBPO [Janner et al.,

2019] with various architecture size.

For the ease of exposition, we use the MDP visualized in the bottom half of

Figure 3.1. The optimal policy for this specific MDP has 765 pieces, and the optimal

Q-function has about 4× 104 number of pieces, and we can compute the optimal total

rewards.

First, we apply DQN to this environment by using a two-layer neural network

with various widths to parameterize the Q-function. The training curve is shown in

Figure 3.4 (Left). Model-free algorithms can not find near-optimal policy even with

214 hidden neurons and 1M trajectories, which suggests that there is a fundamental

90

Algorithm 5 Model-based Bootstrapping Planner (BOOTS) + RL Algorithm X
1: training: run Algorithm X, store the all samples in the set R, store the learned
Q-function Q, and the learned dynamics M̂ if it is available in Algorithm X.

2: testing:
3: if M̂ is not available, learn M̂ from the data in R
4: execute the policy BOOTS(s) at every state s

1: function BOOTS(s)
2: Given: query oracle for function Q and M̂
3: Compute

πboots
k,Q,M̂

(s) = argmax
a

max
a1,...,ak

r(s, a) + · · ·+ γk−1r(sk−1, ak−1) + γkQ(sk, ak)

using a zero-th order optimization algorithm (which only requires oracle query
of the function value) such as cross-entropy method or random shooting.

approximation issue. This result is consistent with Fu et al. [2019], in a sense that

enlarging Q-network improves the performance of DQN algorithm at convergence.

Second, we apply SLBO and MBPO in the same environment. Because the policy

network and Q-function in SLOBO and MBPO cannot approximate the optimal policy

and value function, we see that they fail to achieve near-optimal rewards, as shown in

Figure 3.4 (Left).

3.5 Model-based Bootstrapping Planner

Our theory and experiments in Sections 3.4.3 and 3.4.5 demonstrate that when the

Q-function or the policy is complex, model-free or model-based policy optimization

algorithms will suffer from the lack of expressivity. The intuition suggests that model-

based planning algorithms will not suffer from the lack of expressivity because the final

policy is not represented by a neural network. For the construction in Section 3.4.1,

we can actually prove that even a few-steps planner can bootstrap the expressivity of

the Q-function (formalized in Theorem 3.5.1 below).

91

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Ant-v2
BOOTS-MBSAC
MBSAC
BOOTS-SAC
SAC

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Humanoid-v2

Figure 3.5: Comparison of BOOTS-MBSAC vs MBSAC and BOOTS-SAC vs SAC on
Ant and Humanoid. Particularly on the Humanoid environment, BOOTS improves
the performance significantly. The test policies for MBSAC and SAC are the deter-
ministic policy that takes the mean of the output of the policy network, because the
deterministic policy performs better than the stochastic policy in the test time.

Inspired the theoretical result, we apply a simple k-step model-based bootstrapping

planner on top of existing Q-functions (trained from either model-based or model-

free approach) in the test time, on either the one-dimensional MDPs considered in

Section 3.4 or the continuous control benchmark tasks in MuJoCo. The bootstrapping

planner is reminiscent of MCTS using in AlphaGo [Silver et al., 2016, 2018]. However,

here, we use the learned dynamics and deal with the continuous state space.

Given a function Q that is potentially not expressive enough to approximate the

optimal Q-function, we can apply the Bellman operator with a learned dynamics M̂

for k times to get a bootstrapped version of Q:

Bk
M̂

[Q] , BM̂ [· · · · [BM̂ [Q]]]︸ ︷︷ ︸
k times

(3.5.1)

or Bk
M̂

[Q](s, a) , max
a1,··· ,ak

r(s0, a0) + · · ·+ γk−1r(sk−1, ak−1) + γkQ(sk, ak)

(3.5.2)

where s0 = s, a0 = a and sh+1 ∼ M̂(sh, ah).

Given the bootstrapped version, we can derive a greedy policy w.r.t it:

92

πboots
k,Q,M̂

(s) , max
a
Bk
M̂

[Q](s, a). (3.5.3)

Algorithm 5, called BOOTS summarizes how to apply the planner on top of any

RL algorithm with a Q-function (straightforwardly).

For the MDPs constructed in Section 3.4.1, we can prove that representing the

optimal Q-function by Bk
M̂

[Q] requires fewer pieces in Q than representing the optimal

Q-function by Q directly.

Theorem 3.5.1. Consider the MDP MH defined in Definition 3.4.1. There exists

a constant-piece piecewise linear dynamics M̂ and a 2H−k+1-piece piecewise linear

function Q, such that the bootstrapped policy πboots
k,Q,M̂

(s) achieves the optimal total

rewards.

By contrast, recall that in Theorem 3.4.8, we show that approximating the optimal

Q-function directly with a piecewise linear function requires ≈ 2H piecewise. Thus we

have a multiplicative factor of 2k gain in the expressivity by using the bootstrapped

policy. Here the exponential gain is only magnificent enough when k is close to H

because the gap of approximability is huge. However, in more realistic settings —

the randomly-generated MDPs and the MuJoCo environment — the bootstrapping

planner improves the performance significantly as shown in the next subsection.

Proof of Theorem 3.5.1. First we define the true trajectory estimator

η(s0, a0, a1, · · · , ak) ,
k−1∑
j=0

γjr(sj, aj) + γkQ?(sk, ak),

the true optimal action sequence

a?0, a
?
1, · · · , a?k , arg max

a0,a1,··· ,ak
η(s0, a0, a1, · · · , ak),

93

and the true optimal trajectory

s?0 = s0, s
?
j = M(s?j−1, a

?
j−1),∀j > 1.

It follows from the definition of optimal policy that, a?j = π?(sj). Consequently we

have

sk
(H−k+1) = sk

(H−k+2) = · · · = sk
(H) = 1.

Define the set G , {s : s(H−k+1) = s(H−k+2) = · · · = s(H) = 1}. We claim that the

following function satisfies the statement of Theorem 3.5.1

Q(s, a) = I[s ∈ G] · 2

1− γ
.

Since s?k ∈ G, and sk 6∈ G for sk generated by non-optimal action sequence, we have

Q(s?k, a) > Q?(s?k, a) ≥ Q?(sk, a) > Q(sk, a),

where the second inequality comes from the optimality of action sequence a?h. As a

consequence, for any (a0, a1, · · · , ak) 6= (a?0, a
?
1, · · · , a?k)

η̂(s0, a
?
0, a

?
1, · · · , a?k) > η(s0, a

?
0, a

?
1, · · · , a?k)

≥ η(s0, a0, a1, · · · , ak)

> η̂(s0, a0, a1, · · · , ak).

Therefore, (â?0, â
?
1, · · · , â?k) = (a?0, a

?
1, · · · , a?k).

94

0 50K 100K 150K 200K 250K 300K 350K 400K
steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

Humanoid-v2

BOOTS-MBSAC
STEVE
SAC
MBPO
BOOTS-MBPO

Figure 3.6: BOOTS-MBSAC or BOOTS-MBPO outperforms previous high-
performance algorithms on Humanoid. The results are averaged over 5 random
seeds and shadow area indicates a single standard deviation from the mean.

3.6 Experiments

BOOTS on random piecewise linear MDPs. We implement BOOTS (Algo-

rithm 5) with various steps of planning and with the learned dynamics. The planner

is an exponential-time planner which enumerates all the possible future sequence of

actions. We also implement bootstrapping with partial planner with varying planning

horizon. As shown in Figure 3.4, BOOTS + DQN not only has the best sample-

efficiency, but also achieves the optimal reward. In the meantime, even a partial

planner helps to improve both the sample-efficiency and performance. More details of

this experiment are deferred to Section 3.6.2.

BOOTS on MuJoCo environments. We work with the OpenAI Gym environ-

ments [Brockman et al., 2016] based on the Mujoco simulator [Todorov et al., 2012b]

with maximum horizon 1000 and discount factor 1. We apply BOOTS on top of

three algorithms: (a) SAC [Haarnoja et al., 2018], a model-free RL algorithm; (b)

MBPO [Janner et al., 2019], a model-based Q-learning algorithm, and an extension

of Dyna [Sutton, 1990a]; (c) a computationally efficient variant of MBPO that we

develop using ideas from SLBO [Luo et al., 2019a], which is called MBSAC. The main

95

difference here from MBPO and other works such as [Wang and Ba, 2019, Kurutach

et al., 2018] is that we don’t use model ensemble. Instead, we occasionally optimize the

dynamics by one step of Adam to introduce stochasticity in the dynamics, following

the technique in SLBO [Luo et al., 2019a]. Our algorithm is a few times faster than

MBPO in wall-clock time. It performs similarly to MBPO on Humanoid, but generally

worse than MBPO on other environments. See Section 3.6.2 for details.

We use k = 4 steps of planning unless explicitly mentioned otherwise in the

ablation study (Section 3.6.1). In Figure 3.5, we compare BOOTS+SAC with SAC,

and BOOTS + MBSAC with MBSAC on Gym Ant and Humanoid environments, and

demonstrate that BOOTS can be used on top of existing strong baselines. We found

that BOOTS has little help for other simpler environments, and we suspect that those

environments have much less complex Q-functions so that our theory and intuitions

do not necessarily apply.

In Figure 3.6, we compare BOOTS+MBSAC and BOOTS+MBPO with other

MBPO, SAC, and STEVE [Buckman et al., 2018]4 on the Humanoid environment.

3.6.1 Ablation Study

Planning with oracle dynamics and more environments. We found that

BOOTS has smaller improvements on top of MBSAC and SAC for the environment

Cheetah and Walker. To diagnose the issue, we also plan with an oracle dynamics (the

true dynamics). This tells us whether the lack of improvement comes from inaccurate

learned dynamics. The results are presented in two ways in Figure 3.7 and Figure 3.8.

In Figure 3.7, we plot the mean rewards and the standard deviation of various methods

across the randomness of multiple seeds. However, the randomness from the seeds

somewhat obscures the gains of BOOTS on each individual run. Therefore, for
4For STEVE, we use the official code at https://github.com/tensorflow/models/tree/

master/research/steve

96

https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve

0 100K 200K 300K 400K
steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

Re
tu

rn

1e4 HalfCheetah

BOOTS + SAC with oracle dynamics
det-policy
BOOTS + SAC with learned dynamics

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Walker

0 100K 200K 300K 400K
steps

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

Ant

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Humanoid

0 100K 200K 300K 400K
steps

0.0

0.5

1.0

1.5

Av
er

ag
e

Re
tu

rn

1e4 HalfCheetah

BOOTS + MBSAC with oracle dynamics
det-policy
BOOTS + MBSAC with learned dynamics

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Walker

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Ant

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Humanoid

Figure 3.7: BOOTS with oracle dynamics on top of SAC (top) and MBSAC (bottom)
on HalfCheetah, Walker, Ant and Humanoid. The solid lines are average over 5 runs,
and the shadow areas indicate the standard deviation.

0 100K 200K 300K 400K
steps

1000

0

1000

2000

Av
er

ag
e

Ga
in

HalfCheetah

BOOTS + SAC with oracle dynamics
det-policy
BOOTS + SAC with learned dynamics

0 100K 200K 300K 400K
steps

250

0

250

500

750

1000

1250

Av
er

ag
e

Ga
in

Walker

0 100K 200K 300K 400K
steps

500

0

500

1000

1500

2000

Av
er

ag
e

Ga
in

Ant

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

Av
er

ag
e

Ga
in

Humanoid

0 100K 200K 300K 400K
steps

2000

0

2000

4000

6000

Av
er

ag
e

Ga
in

HalfCheetah
BOOTS + MBSAC with oracle dynamics
det-policy
BOOTS + MBSAC with learned dynamics

0 100K 200K 300K 400K
steps

2000

1000

0

1000

Av
er

ag
e

Ga
in

Walker

0 100K 200K 300K 400K
steps

0

500

1000

1500

2000

Av
er

ag
e

Ga
in

Ant

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

Av
er

ag
e

Ga
in

Humanoid

Figure 3.8: The relative gains of BOOTS over SAC (top) and MBSAC (bottom) on
HalfCheetah, Walker, Ant and Humanoid. The solid lines are average over 5 runs,
and the shadow areas indicate the standard deviation.

completeness, we also plot the relative gain of BOOTS on top of MBSAC and SAC,

and the standard deviation of the gains in Figure 3.8.

From Figure 3.8 we can see planning with the oracle dynamics improves the

performance in most of the cases (but with various amount of improvements). However,

the learned dynamics sometimes not always can give an improvement similar to the

oracle dynamics. This suggests the learned dynamics is not perfect, but oftentimes

can lead to good planning. This suggests the expressivity of the Q-functions varies

depending on the particular environment. How and when to learn and use a learned

dynamics for planning is a very interesting future open question.

97

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Horizon
k = 2
k = 3
k = 4
k = 8
k = 16
policy
det-policy

0 100K 200K 300K 400K
steps

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

Horizon

k = 2
k = 3
k = 4
k = 8
k = 16
policy
det-policy

Figure 3.9: Different BOOTS planning horizon k on top of SAC (left) and MBSAC
(right) on Humanoid. The solid lines are average over 5 runs, and the shadow areas
indicate the standard deviation.

The effect of planning horizon. We experimented with different planning

horizons in Figure 3.9. By planning with a longer horizon, we can earn slightly higher

total rewards for both MBSAC and SAC. Planning horizon k = 16, however, does not

work well. We suspect that it’s caused by the compounding effect of the errors in the

dynamics.

3.6.2 Implementation Details

SEMI-RAND MDP. The MDP where we run the experiment is given by the

SEMI-RAND method, described in Section 3.4.5. We list the dynamics of this MDP

in the following.

r(s, a) = s, ∀s ∈ S, a ∈ A,

M(s, 0) =


(0.131− 0.690) · x/0.333 + 0.690, 0 ≤ x < 0.333,

(0.907− 0.131) · (x− 0.333)/0.334 + 0.131, 0.333 ≤ x < 0.667,

(0.079− 0.907) · (x− 0.667)/0.333 + 0.907, 0.667 ≤ x,

98

M(s, 1) =


(0.134− 0.865) · x/0.333 + 0.865, 0 ≤ x < 0.333,

(0.750− 0.134) · (x− 0.333)/0.334 + 0.134, 0.333 ≤ x < 0.667,

(0.053− 0.750) · (x− 0.667)/0.333 + 0.750, 0.667 ≤ x,

Implementation details of DQN algorithm. We present the hyper-parameters

of DQN algorithm. Our implementation is based on PyTorch tutorials5.

• The Q-network is a fully connected neural net with one hidden-layer. The width

of the hidden-layer is varying.

• The optimizer is SGD with learning rate 0.001 and momentum 0.9.

• The size of replay buffer is 104.

• Target-net update frequency is 50.

• Batch size in policy optimization is 128.

• The behavior policy is greedy policy according to the current Q-network with

ε-greedy. ε exponentially decays from 0.9 to 0.01. Specifically, ε = 0.01 +

0.89 exp(−t/200) at the t-th episode.

Implementation details of MBPO algorithm. For the model-learning step, we

use `2 loss to train our model, and we use Soft Actor-Critic (SAC) [Haarnoja et al.,

2018] in the policy optimization step. The parameters are set as,

• number of hidden neurons in model-net: 32,

• number of hidden neurons in value-net: 512,

• optimizer for model-learning: Adam with learning rate 0.001.

5https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

99

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html

• temperature: τ = 0.01,

• the model rollout steps: M = 5,

• the length of the rollout: k = 5,

• number of policy optimization step: G = 5.

Other hyper-parameters are kept the same as DQN algorithm.

Implementation details of TRPO algorithm. For the model-learning step, we

use `2 loss to train our model. Instead of TRPO [Schulman et al., 2015a], we use PPO

[Schulman et al., 2017] as policy optimizer. The parameters are set as,

• number of hidden neurons in model-net: 32,

• number of hidden neurons in policy-net: 512,

• number of hidden neurons in value-net: 512,

• optimizer: Adam with learning rate 0.001,

• number of policy optimization step: 5.

• The behavior policy is ε-greedy policy according to the current policy network. ε

exponential decays from 0.9 to 0.01. Specifically, ε = 0.01 + 0.89 exp(−t/20000)

at the t-th episode.

Implementation details of Model-based Planning algorithm. The perfect

model-based planning algorithm iterates between learning the dynamics from sampled

trajectories, and planning with the learned dynamics (with an exponential time algo-

rithm which enumerates all the possible future sequence of actions). The parameters

are set as,

• number of hidden neurons in model-net: 32,
100

• optimizer for model-learning: Adam with learning rate 0.001.

Implementation details of bootstrapping. The training time behavior of the

algorithm is exactly like DQN algorithm, except that the number of hidden neurons

in the Q-net is set to 64. Other parameters are set as,

• number of hidden neurons in model-net: 32,

• optimizer for model-learning: Adam with learning rate 0.001.

• planning horizon varies.

Model-based SAC (MBSAC). Here we describe our MBSAC algorithm in Algo-

rithm 6, which is a model-based policy optimization and is used in BOOTS-MBSAC.

As mentioned in Section 3.6, the main difference from MBPO and other works such

as Wang and Ba [2019], Kurutach et al. [2018] is that we don’t use model ensemble.

Instead, we occasionally optimize the dynamics by one step of Adam to introduce

stochasticity in the dynamics, following the technique in SLBO [Luo et al., 2019a]. As

argued in [Luo et al., 2019a], the stochasticity in the dynamics can play a similar role

as the model ensemble. Our algorithm is a few times faster than MBPO in wall-clock

time. It performs similarlty to MBPO on Humanoid, but a bit worse than MBPO

in other environments. In MBSAC, we use SAC to optimize the policy πβ and the

Q-function Qϕ. We choose SAC due to its sample-efficiency, simplicity and off-policy

nature. We mix the real data from the environment and the virtual data which are

always fresh and are generated by our learned dynamics model M̂θ.6

For Ant, we modify the environment by adding the x and y axis to the observation

space to make it possible to compute the reward from observations and actions.

For Humanoid, we add the position of center of mass. We don’t have any other

modifications. All environments have maximum horizon 1000.
6In the chapter of MBPO [Janner et al., 2019], the authors don’t explicitly state their usage of

real data in SAC; the released code seems to make such use of real data, though.

101

Algorithm 6 MBSAC

1: Parameterize the policy πβ, dynamics M̂θ, and the Q-function Qϕ by neural
networks. Initialize replay buffer B with ninit steps of interactions with the
environments by a random policy, and pretrain the dynamics on the data in the
replay buffer.

2: t← 0, and sample s0 from the initial state distribution.
3: for niter iterations do
4: Perform action at ∼ πβ(·|st) in the environment, obtain s′ as the next state

from the environment.
5: st+1 ← s′, and add the transition (st, at, st+1, rt) to B.
6: t← t+ 1. If t = T or the trajectory is done, reset to t = 0 and sample s0 from

the initial state distribution.
7: for npolicy iterations do
8: for nmodel iterations do
9: Optimize M̂θ with a mini-batch of data from B by one step of Adam.
10: Sample nreal data Breal and nstart data Bstart from B.
11: Perform q steps of virtual rollouts using M̂θ and policy πβ starting from

states in Bstart; obtain Bvirtual.
12: Update πβ and Qϕ using the mini-batch of data in Breal ∪ Bvirtual by SAC.

For the policy network, we use an MLP with ReLU activation function and two

hidden layers, each of which contains 256 hidden units. For the dynamics model, we

use a network with 2 Fixup blocks [Zhang et al., 2019], with convolution layers replaced

by a fully connected layer. We found out that with similar number of parameters,

fixup blocks leads to a more accurate model in terms of validation loss. Each fixup

block has 500 hidden units. We follow the model training algorithm in Luo et al.

[2019a] in which non-squared `2 loss is used instead of the standard MSE loss.

3.7 Conclusion

Our study suggests that there exists a significant representation power gap of neural

networks between for expressing Q-function, the policy, and the dynamics in both

constructed examples and empirical benchmarking environments. We show that our

model-based bootstrapping planner BOOTS helps to overcome the approximation

102

issue and improves the performance in synthetic settings and in the difficult MuJoCo

environments. We raise some interesting open questions.

• Can we theoretically generalize our results to high-dimensional state space, or

continuous actions space? Can we theoretically analyze the number of pieces of

the optimal Q-function of a stochastic dynamics?

• In this chapter, we measure the complexity by the size of the neural networks.

It’s conceivable that for real-life problems, the complexity of a neural network

can be better measured by its weights norm. Could we build a more realistic

theory with another measure of complexity?

• The BOOTS planner comes with a cost of longer test time. How do we efficiently

plan in high-dimensional dynamics with a long planning horizon?

• The dynamics can also be more complex (perhaps in another sense) than the

Q-function in certain cases. How do we efficiently identify the complexity of the

optimal Q-function, policy, and the dynamics, and how do we deploy the best

algorithms for problems with different characteristics?

103

Chapter 4

Imitation Learning via Negative

Sampling

Imitation learning, followed by reinforcement learning algorithms, is a promising

paradigm to solve complex control tasks sample-efficiently. However, learning from

demonstrations often suffers from the covariate shift problem, which results in cascading

errors of the learned policy. We introduce a notion of conservatively-extrapolated value

functions, which provably lead to policies with self-correction. We design an algorithm

Value Iteration with Negative Sampling (VINS) that practically learns such value

functions with conservative extrapolation. We show that VINS can correct mistakes of

the behavioral cloning policy on simulated robotics benchmark tasks. We also propose

the algorithm of using VINS to initialize a reinforcement learning algorithm, which is

shown to outperform prior works in sample efficiency.

4.1 Background

Reinforcement learning (RL) algorithms, especially with sparse rewards, often require

a large amount of trial-and-errors. Imitation learning from a small number of demon-

strations followed by RL fine-tuning is a promising paradigm to improve the sample

104

(a) The value function learned from the
standard Bellman equation (or supervised
learning) on the demonstration states.
The value function falsely extrapolates
to the unseen states. For example, the
top left corner has erroneously the largest
value. As a result, once the policy induced
by the value function makes a mistake, the
error will compound.

(b) The conservatively-extrapolated value
function (defined in Equation (4.4.2))
learned with negative sampling (VINS, Al-
gorithm 8 in Section 4.5). The values at
unseen states tend to be lower than their
nearby states in the demonstrations, and
therefore the corresponding policy tend to
correct itself towards the demonstration
trajectories.

Figure 4.1: A toy environment where the agent aims to walk from a starting state (the
yellow entry) to a goal state (the green entry). The reward is sparse: R(s, a) = −1
unless s is at the goal (which is also the terminal state.) The colors of the entries
show the learned value functions. Entries in black edges are states in demonstrations.
The cyan arrows show the best actions according to the value functions.

efficiency [Rajeswaran et al., 2017, Večerík et al., 2017, Hester et al., 2018, Nair et al.,

2018, Gao et al., 2018].

The key technical challenge of learning from demonstrations is the covariate shift:

the distribution of the states visited by the demonstrations often has a low-dimensional

support; however, knowledge learned from this distribution may not necessarily transfer

to other distributions of interests. This phenomenon applies to both learning the policy

and the value function. The policy learned from behavioral cloning has compounding

errors after we execute the policy for multiple steps and reach unseen states [Bagnell,

2015, Ross and Bagnell, 2010]. The value function learned from the demonstrations

can also extrapolate falsely to unseen states. See Figure 4.1a for an illustration of the

false extrapolation in a toy environment.

105

We develop an algorithm that learns a value function that extrapolates to unseen

states more conservatively, as an approach to attack the optimistic extrapolation

problem [Fujimoto et al., 2018a]. Consider a state s in the demonstration and its

nearby state s̃ that is not in the demonstration. The key intuition is that s̃ should

have a lower value than s, because otherwise s̃ likely should have been visited by the

demonstrations in the first place. If a value function has this property for most of

the pair (s, s̃) of this type, the corresponding policy will tend to correct its errors

by driving back to the demonstration states because the demonstration states have

locally higher values. We formalize the intuition in Section 4.4 by defining the so-called

conservatively-extrapolated value function, which is guaranteed to induce a policy

that stays close to the demonstrations states (Theorem 4.4.4).

In Section 4.5, we design a practical algorithm for learning the conservatively-

extrapolated value function by a negative sampling technique inspired by work on

learning embeddings [Mikolov et al., 2013, Gutmann and Hyvärinen, 2012]. We also

learn a dynamics model by standard supervised learning so that we compute actions

by maximizing the values of the predicted next states. This algorithm does not use

any additional environment interactions, and we show that it empirically helps correct

errors of the behavioral cloning policy.

When additional environment interactions are available, we use the learned value

function and the dynamics model to initialize an RL algorithm. This approach relieves

the inefficiency in the prior work [Hester et al., 2018, Nair et al., 2018, Rajeswaran

et al., 2017] that the randomly-initialized Q functions require a significant amount

of time and samples to be warmed up, even though the initial policy already has a

non-trivial success rate. Empirically, the proposed algorithm outperforms the prior

work in the number of environment interactions needed to achieve near-optimal success

rate.

In summary, our main contributions are:

106

1. We formalize the notion of values functions with conservative extrapolation

which are proved to induce policies that stay close to demonstration states and

achieve near-optimal performances.

2. We propose the algorithm Value Iteration with Negative Sampling (VINS) that

outperforms behavioral cloning on three simulated robotics benchmark tasks

with sparse rewards.

3. We show that initializing an RL algorithm from VINS outperforms prior work

in sample efficiency on the same set of benchmark tasks.

4.2 Related Work

Imitation learning. Imitation learning is commonly adopted as a standard

approach in robotics [Pomerleau, 1989, Schaal, 1997, Argall et al., 2009, Osa et al.,

2017, Ye and Alterovitz, 2017, Aleotti and Caselli, 2006, Lawitzky et al., 2012, Torabi

et al., 2018, Le et al., 2017, 2018] and many other areas such as playing games [Mnih

et al., 2013]. Behavioral cloning [Bain and Sommut, 1999] is one of the underlying

central approaches. See Osa et al. [2018] for a thorough survey and more references

therein. If we are allowed to access an expert policy (instead of trajectories) or

an approximate value function, in the training time or in the phase of collecting

demonstrations, then, stronger algorithms can be designed, such as DAgger [Ross

et al., 2011], AggreVaTe [Ross and Bagnell, 2014], AggreVaTeD [Sun et al., 2017],

DART [Laskey et al., 2017], THOR [Sun et al., 2018a]. Our setting is that we have

only clean demonstrations trajectories and a sparse reward (but we still hope to learn

the self-correctable policy.)

Ho and Ermon [2016], Wang et al. [2017], Schroecker et al. [2018] successfully

combine generative models in the setting where a large amount of environment

interaction without rewards are allowed. The sample efficiency of Ho and Ermon
107

[2016] has been improved in various ways, including maximum mean discrepancy

minimization [Kim and Park, 2018], a Bayesian formulation of GAIL [Jeon et al.,

2018], using an off-policy RL algorithm and solving reward bias problem [Kostrikov

et al., 2018], and bypassing the learning of reward function [Sasaki et al., 2018]. By

contrast, we would like to minimize the amount of environment interactions needed,

but are allowed to access a sparse reward. The work of Schroecker and Isbell [2017]

also aims to learn policies that can stay close to the demonstration sets, but through

a uite different approach of estimating the true MAP estimate of the policy. The

algorithm also requires environment interactions, whereas one of our main goals is to

improve upon behavioral cloning without any environment interactions.

Inverse reinforcement learning (e.g., see [Abbeel and Ng, 2004, Ng et al., 2000,

Ziebart et al., 2008, Finn et al., 2016a,b, Fu et al., 2017]) is another important

and successful line of ideas for imitation learning. It relates to our approach in

the sense that it aims to learn a reward function that the expert is optimizing. In

contrast, we construct a model to learn the value function (of the trivial sparse reward

R(s, a) = −1), rather than the reward function. Some of these works (e.g., Finn et al.

[2016a,b], Fu et al. [2017]) use techniques that are reminiscent of negative sampling or

contrastive learning, although unlike our methods, they use “negative samples” that

are sampled from the environments.

Leveraging demonstrations for sample-efficient reinforcement learning.

Demonstrations have been widely used to improve the efficiency of RL [Kim et al.,

2013, Chemali and Lazaric, 2015, Piot et al., 2014, Sasaki et al., 2018], and a common

paradigm for continuous state and action space is to initialize with RL algorithms

with a good policy or Q function [Rajeswaran et al., 2017, Nair et al., 2018, Večerík

et al., 2017, Hester et al., 2018, Gao et al., 2018]. We experimentally compare with

the algorithm in Nair et al. [2018] on the same type of tasks. Gao et al. [2018]

108

has introduced soft version of actor-critic to tackle the false extrapolation of Q in

the argument of a when the action space is discrete. In contrast, we deal with the

extrapolation of the states in a continuous state and action space.

Model-based reinforcement learning. Even though we will learn a dynamics

model in our algorithms, we do not use it to generate fictitious samples for planning.

Instead, the learned dynamics are only used in combination with the value function

to get a Q function. Therefore, we do not consider our algorithm as model-based

techniques. We refer to Kurutach et al. [2018], Clavera et al. [2018], Sun et al. [2018b],

Chua et al. [2018b], Sanchez-Gonzalez et al. [2018], Pascanu et al. [2017], Khansari-

Zadeh and Billard [2011], Luo et al. [2019a] and the reference therein for recent work

on model-based RL.

Off-policy reinforcement learning There is a large body of prior works in the

domain of off-policy RL, including extensions of policy gradient [Gu et al., 2016a,

Degris et al., 2012, Wang et al., 2016] or Q-learning [Watkins and Dayan, 1992,

Haarnoja et al., 2018, Munos et al., 2016]. Fujimoto et al. [2018a] propose to solve

off-policy reinforcement learning by constraining the action space, and Fujimoto et al.

[2018b] use double Q-learning [Van Hasselt et al., 2016] to alleviate the optimistic

extrapolation issue. In contrast, our method adjusts the erroneously extrapolated

value function by explicitly penalizing the unseen states (which is customized to the

particular demonstration off-policy data). For most of the off-policy methods, their

convergence are based on the assumption of visiting each state-action pair sufficiently

many times. In the learning from demonstration setting, the demonstrations states

are highly biased or structured; thus off-policy method may not be able to learn much

from the demonstrations.

109

4.3 Problem Setup and Challenges

We consider the setting in Section 1.3. At test time, a random initial state s0 is

generated from some distribution µ0. We assume µ0 has a low-dimensional bounded

support because typically initial states have special structures. We aim to find a policy

π such that executing π from state s0 will lead to a set of goal states G. All the goal

states are terminal states, and we run the policy for at most T steps if none of the

goal states is reached.

Let τ , (s0, a1, s1, . . . ,) be the trajectory obtained by executing a deterministic

policy π from s0, where at = π(st), and st+1 = M?(st, at). The success rate of the

policy π is defined as

succ(π) , E [I[∃t ≤ T, st ∈ G]] (4.3.1)

where the expectation is taken over the randomness of s0. Note that the problem comes

with a natural sparse reward: R(s, a) = −1 for every s and a. This will encourage

reaching the goal with as small number of steps as possible: the total payoff of a

trajectory is equal to negative the number of steps if the trajectory succeeds, or −T

otherwise.

Let πe be an expert policy 1 from which a set of n demonstrations are sampled.

Concretely, n independent initial states {s(i)
0 }ni=1 from Ds0 are generated, and the

expert executes πe to collect a set of n trajectories {τ (i)}ni=1. We only have the access

to the trajectories but not the expert policy itself.

We will design algorithms for two different settings:
1In this work, we only consider deterministic expert policies.

110

Imitation learning without environment interactions. The goal is to learn a

policy π from the demonstration trajectories {τ (i)}ni=1 without having any additional

interactions with the environment.

Leveraging demonstrations in reinforcement learning. Here, in addition to

the demonstrations, we can also interact with the environment (by sampling s0 ∼ Ds0

and executing a policy) and observe if the trajectory reaches the goal. We aim is

to minimize the amount of environment interactions by efficiently leveraging the

demonstrations.

Let U be the set of states that can be visited by the demonstration policy from

a random state s0 with positive probability. Throughout this chapter, we consider

the situation where the set U is only a small subset or a low-dimensional manifold of

the entire state space. This is typical for continuous state space control problems in

robotics, because the expert policy may only visit a very special kind of states that are

the most efficient for reaching the goal. For example, in the toy example in Figure 4.1,

the set U only contains those entries with black edges.2

To put our theoretical motivation in Section 4.4 into context, next we summarize

a few challenges of imitation learning that are particularly caused by that U is only a

small subset of the state space.

Cascading errors for behavioral cloning. As pointed out by Bagnell [2015],

Ross and Bagnell [2010], the errors of the policy can compound into a long sequence

of mistakes and in the worst case cascade quadratically in the number of time steps T .

From a statistical point of view, the fundamental issue is that the distribution of the

states that a learned policy may encounter is different from the demonstration state
2One may imagine that U can be a more diverse set if the demonstrations are more diverse, but

an expert will not visit entries on the top or bottom few rows, because they are not on any optimal
routes to the goal state.

111

distribution. Concretely, the behavioral cloning πBC performs well on the states in U

but not on those states far away from U . However, small errors of the learned policy

can drive the state to leave U , and then the errors compound as we move further and

further away from U . As shown in Section 4.4, our key idea is to design policies that

correct themselves to stay close to the set U .

Degeneracy in learning value or Q functions from only demonstrations.

When U is a small subset or a low-dimensional manifold of the state space, off-policy

evaluation of V πe and Qπe is fundamentally problematic in the following sense. The

expert policy πe is not uniquely defined outside U because any arbitrary extension

of πe outside U would not affect the performance of the expert policy (because those

states outside U will never be visited by πe from s0 ∼ Ds0). As a result, the value

function V πe and Qπe is not uniquely defined outside U . In Section 4.4, we will propose

a conservative extrapolation of the value function that encourages the policy to stay

close to U . Fitting Qπe is in fact even more problematic: there exists a function

Q(s, a) that does not depend on a at all, which can still match Qπe on all possible

demonstration data. Consider Q(s, a) , Qπe(s, πe(s)). We can verify that for any

(s, a) pair in the demonstrations satisfying a = πe(s), it holds that Q(s, a) = Qπe(s, a).

However, Q(s, a) cannot be accurate for other choices of a’s because by its definition,

it does not use any information from the action a.

Success and challenges of initializing RL with imitation learning. A suc-

cessful paradigm for sample-efficient RL is to initialize the RL policy by some coarse

imitation learning algorithm such as BC [Rajeswaran et al., 2017, Večerík et al., 2017,

Hester et al., 2018, Nair et al., 2018, Gao et al., 2018]. However, the authors suspect

that the method can still be improved, because the value function or the Q function

are only randomly initialized so that many samples are burned to warm them up.

As alluded before and shown in Section 4.4, we will propose a way to learn a value

112

Goal

Figure 4.2: Illustration of the correction effect. A conservatively-extrapolated value
function V , as shown in the figure, has lower values further away from U , and therefore
the gradients of V point towards U . With such a value function, suppose we are at
state s which is ε-close to U . The locally-correctable assumption of the dynamics
assumes the existence of acx that will drive us to state scx that is closer to U than s.
Since scx has a relatively higher value compared to other possible future states that
are further away from U (e.g., s′ shown in the figure), scx will be preferred by the
optimization (4.4.3). In other words, if an action a leads to state s with large distance
to U , the action won’t be picked by Equation (4.4.3) because it cannot beat acx.

function from the demonstrations so that the following RL algorithm can be initialized

by a policy, value function, and Q function (which is a composition of value and

dynamics model) and thus converge faster.

4.4 Theoretical Motivations

In this section, we formalize our key intuition that the ideal extrapolation of the value

function V πe should be that the values should decrease as we get further and further

from the demonstrations. Recall that we use U to denote the set of states reachable by

the expert policy from any initial state s0 drawn with positive probability from Ds0 . 3

Let ΠU(s) be the projection of s ∈ Rd to a set U ⊂ Rd (according to the norm ‖ · ‖) 4.

We introduce the notion of value functions with conservative extrapolation which

matches V πe on the demonstration states U and has smaller values outside U . As
3Recall that we assume that Ds0 has a low-dimensional support and thus typically U will also be

a low-dimensional subset of the ambient space.
4Any tiebreaker can be used if there are multiple closest points.

113

formally defined in Equations (4.4.1) and (4.4.2) in Algorithm 7, we extrapolate V πe

in a way that the value at s 6∈ U is decided by the value of its nearest neighbor in U

(that is V πe(ΠU(s)), and its distance to the nearest neighbor (that is, ‖s− ΠU(s)‖).

We allow a δV > 0 error because exact fitting inside or outside U would be impossible.

Algorithm 7 Self-correctable policy induced from a value function with conservative
extrapolation
Require: conservatively-extrapolated values V satisfying

V (s) = V πe(s)± δV , if s ∈ U (4.4.1)
V (s) = V πe(ΠU(s))− λ‖s− ΠU(s)‖ ± δV if s 6∈ U (4.4.2)

and a locally approximately correct dynamics M and BC policy πBC satisfying As-
sumption 4.4.1.

Self-correctable policy π:

π(s) , argmax
a:‖a−πBC(s)‖≤ζ

V (M(s, a)) (4.4.3)

Besides a conservatively-extrapolated value function V , our Algorithm 7 relies

on a learned dynamics model M and a behavioral cloning policy πBC. With these,

the policy returns the action with the maximum value of the predicted next state in

around the action of the BC policy. In other words, the policy π attempts to re-adjust

the BC policy locally by maximizing the value of the next state.

Towards analyzing Algorithm 7, we will make a few assumptions. We first assume

that the BC policy is correct in the set U , and the dynamics modelM is locally correct

around the set U and the BC actions. Note that these are significantly weaker than

assuming that the BC policy is globally correct (which is impossible to ensure) and

that the model M is globally correct.

Assumption 4.4.1 (Local errors in learned dynamics and BC policy). We assume the

BC policy πBC makes at most δπ error in U : for all s ∈ U , we have ‖πBC(s)−πe(s)‖ ≤ δπ.

We also assume that the learned dynamics M has δM error locally around U and the

114

BC actions in the sense that for all s that is ε-close to U , and any action that is ζ-close

to πBC(s), we have ‖M(s, a)−M?(s, a)‖ ≤ δM .

We make another crucial assumption on the stability/correctability of the true

dynamics. The following assumption essentially says that if we are at a state that

is near the demonstration set, then there exists an action that can drive us closer

to the demonstration set. This assumption rules out certain dynamics that does

not allow corrections even after the policy making a small error. For example, if a

robot, unfortunately, falls off a cliff, then fundamentally it cannot recover itself — our

algorithm cannot deal with such pathological situations.

Assumption 4.4.2 (Locally-correctable dynamics). For some γ ∈ (0, 1) and ε >

0, Lc > 0, we assume that the dynamics M? is (γ, Lc, ε)-locally-correctable w.r.t to

the set U in the sense that for all ε0 ∈ (0, ε] and any tuple (s̄, ā, s̄′) satisfying s̄, s̄′ ∈ U

and s̄′ = M?(s̄, ā), and any ε0-perturbation s of s̄ (that is, s ∈ Nε0(s̄)), there exists

an action acx that is Lcε0 close to ā, such that it makes a correction in the sense that

the resulting state s′ is γε0-close to the set U : s′ = M?(s, acx) ∈ Nγε0(U). Here Nδ(K)

denotes the set of points that are δ-close to K.

Finally, we will assume the BC policy, the value function, and the dynamics are all

Lipschitz in their arguments.5 We also assume the projection operator to the set U is

locally Lipschitz. These are regularity conditions that provide loose local extrapolation

of these functions, and they are satisfied by parameterized neural networks that are

used to model these functions.

Assumption 4.4.3 (Lipschitz-ness of policy, value function, and dynamics). We

assume that the policy πBC is Lπ-Lipschitz. That is, ‖πBC(s)− πBC(s̃)‖ ≤ Lπ‖s− s̃‖

for all s, s̃. We assume the value function V πe and the learned value function V are
5We note that technically when the reward function is R(s, a) = −1, the value function is not

Lipschitz. This can be alleviated by considering a similar reward R(s, a) = −α− β‖a‖2 which does
not require additional information.

115

LV -Lipschitz, the model M? is LM,a-Lipschitz w.r.t to the action and LM,s-Lipschitz

w.r.t to the state s. We also assume that the set U has LΠ-Lipschitz projection locally:

for all s, ŝ that is ε-close to U , ‖ΠU(s)− ΠU(ŝ)‖ ≤ LΠ‖s− ŝ‖.

Under these assumptions, now we are ready to state our main theorem. It claims

that 1) the induced policy π in Algorithm 7 stays close to the demonstration set and

performs similarly to the expert policy πe, and 2) following the induced policy π, we

will arrive at a state with a near-optimal value.

Theorem 4.4.4. Suppose Assumptions 4.4.1 to 4.4.3 hold with sufficiently small ε > 0

and errors δM , δπ,δπ > 0 so that they satisfy ζ ≥ Lcε+ δπ + Lπ. Let λ be sufficiently

large so that λ ≥ 2LV LΠLM ζ+2δV +2LV δM
(1−γ)ε

. Then, the policy π from Equation (4.4.3)

satisfies the following:

1. Starting from s0 ∈ U and executing policy π for T0 ≤ T steps, the resulting

states s1, . . . , sT0 are all ε-close to the demonstrate states set U .

2. In addition, suppose the expert policy makes at least ρ improvement every step

in the sense that for every s ∈ U , either V πe(M?(s, πe(s))) ≥ V πe(s) + ρ or

M?(s, πe(s)) reaches the goal.6 Assume ε and δM , δV , δπ are small enough so

that they satisfy ρ & ε+ δπ.

Then, the policy π will achieve a state sT with T ≤ 2|V πe(s0)|/ρ steps which is

ε-close to a state s̄T with value at least V πe(sT) & −(ε+ δπ).7

We defer the proof to the end of the subsection. The first bullet follows inductively

invoking the following lemma which states that if the current state is ε-close to U ,

then so is the next state. The proof of the Lemma is the most mathematically involved

part of the chapter and is deferred to the end of the section. We demonstrate the key

idea of the proof in Figure 4.2 and its caption.
6ρ is 1 when the reward is always −1 before achieving the goal.
7Here & hides multiplicative constant factors depending on the Lipschitz parameters

LM,a, LM,s, Lπ, LV .

116

Lemma 4.4.5. In the setting of Theorem 4.4.4, suppose s is ε-close to the demon-

stration states set U . Suppose U , and let a = π(s) and s′ = M?(s, a). Then, s′ is also

ε-close to the set U .

We effectively represent the Q function by V (M(s, a)) in Algorithm 7. And we

argue below that this helps address the degeneracy issue when there are random goal

states (which is the case in our experiments.)

Coping with the degeneracy with learned dynamics model. Cautious reader

may realize that the degeneracy problem discussed in Section 4.3 about learning Q

function from demonstrations with deterministic policies may also occur with learning

the model M . However, we will show that when the problem has the particular

structure of reaching a random but given goal state g, learning Q still suffers the

degeneracy but learning the dynamics does not.

The typical way to deal with a random goal state g is to consider goal-conditioned

value function V (s, g), policy π(s, g), and Q function Q(s, a, g).8 However, the dy-

namics model does not have to condition on the goal. Learning Q function still

suffers from the degeneracy problem because Q(s, a, g) , Qπe(s, πe(s, g), g) matches

Qπe on the demonstrations but does not use the information from a at all. However,

learning M does not suffer from such degeneracy because given a single state s in

the demonstration, there is still a variety of action a that can be applied to state s

because there are multiple possible goals g. (In other words, we cannot construct a

pathological M(s, a) = M?(s, πe(s)) because the policy also takes in g as an input).

As a result, parameterizing Q by Q(s, a, g) = V (M(s, a), g) do not suffer from the

degeneracy either.
8This is equivalent to viewing the random goal g as part of an extended state s̆ = (s, g). Here

the second part of the extended state is randomly chosen during sampling the initial state, but
never changed by the dynamics. Thus all of our previous work does apply to this situation via this
reduction.

117

Discussion: can we learn conservatively-extrapolated Q-function? We

remark that we do not expect a conservative-extrapolated Q-functions would be

helpful. The fundamental idea here is to penalize the value of unseen states so that the

policy can self-correct. However, to learn a Q function that induces self-correctable

policies, we should encourage unseen actions that can correct the trajectory, instead of

penalize them just because they are not seen before. Therefore, it is crucial that the

penalization is done on the unseen states (or V) but not the unseen actions (or Q).

Proofs of Lemma 4.4.5 and theorem 4.4.4

Proof of Lemma 4.4.5. Let s̄ , ΠUs and ā , πe(s̄). Because s is ε-close to the set

U , we have ‖s − s̄‖ ≤ ε. By the (γ, Lc, ε)-locally-correctable assumption of the

dynamics, we have that there exists an action acx such that a) ‖acx − ā‖ ≤ Lcε and

b) s′cx , M?(s, acx) is γε-close to the set U . Next we show that acx belongs to the

constraint set {a : ‖a− πBC(s)‖ ≤ ζ} in Equation (4.4.3). Note that ‖acx− πBC(s)‖ ≤

‖acx − ā‖+ ‖ā− πBC(s̄)‖+ ‖πBC(s̄)− πBC(s)‖ ≤ Lcε+ δπ + Lπε because of triangle

inequality, the closeness of acx and ā, the assumption that πBC has δ error in the

demonstration state set U , and the Lipschitzness of πBC. Since ζ is chosen to be

bigger than Lcε+ δπ + Lπε, we conclude that acx belongs to the constraint set of the

optimization in Equation (4.4.3).

This suggests that the maximum value of the optimization (4.4.3) is bigger than

the corresponding value of acx:

V (M(s, a)) ≥ V (M(s, acx)) (4.4.4)

Note that a belongs to the constraint set by definition and therefore ‖a− acx‖ ≤ 2ζ.

By Lipschitzness of the dynamics model, and the value function V πe , we have that

‖M?(s, a) − M?(s, acx)‖ ≤ LM‖a − acx‖ ≤ 2LMζ. Let s′ = M?(s, a) and s′cx =

118

M?(s, acx). We have ‖s′ − s′cx‖ ≤ 2LMζ. By the Lipschitz projection assumption, we

have that ‖ΠUs′ − ΠUs
′
cx‖ ≤ LΠ‖s′ − s′cx‖ ≤ 2LΠLMζ, which in turns implies that

|V πe(ΠUs
′)− V πe(ΠUs

′
cx)| ≤ 2LVLΠLMζ by Lipschitzness of V πe . It follows that

V (s′) ≤ V πe(ΠUs
′)− λ‖s′ − ΠUs

′‖+ δV (by assumption (4.4.1))

≤ V πe(ΠUs
′
cx) + |V πe(ΠUs

′
cx)− V πe(ΠUs

′)| − λ‖s′ − ΠUs
′‖+ δV

(by triangle inequality)

≤ V πe(ΠUs
′
cx) + 2LVLΠLMζ − λ‖s′ − ΠUs

′‖+ δV

(by equations in paragraph above)

≤ V (s′cx) + λ‖s′cx − Πs′cx‖+ 2LVLΠLMζ − λ‖s′ − ΠUs
′‖+ 2δV

(by assumption (4.4.2))

Note that by the Lipschitzness of the value function and the assumption on the error

of the dynamics model,

|V (s′)− V (M(s, a))| = |V (M?(s, a))− V (M(s, a))|

≤ Lv‖M?(s, a)−M(s, a)‖ ≤ LV δM (4.4.5)

Simlarly

|V (s′cx)− V (M(s, acx))| = |V (M?(s, acx))− V (M(s, acx))|

≤ Lv‖MT ?(s, acx)−M(s, acx)‖ ≤ LV δM (4.4.6)

Combining the three equations above, we obtain that

λ‖s′cx − Πs′cx‖+ 2LVLΠLMζ − λ‖s′ − ΠUs
′‖+ 2δV

≥ V (s′)− V (s′cx)

≥ V (M(s, a))− V (M(s, acx))− 2LV δM (by Equations (4.4.5) and (4.4.6))

119

≥ −2LV δM (by Equation (4.4.4))

Let κ = 2LVLΠLMζ + 2δV + 2LV δM and use the assumption that s′cx is γε-close to

the set U (which implies that ‖s′cx − Πs′cx‖ ≤ γε), we obtain that

λ‖s′ − ΠUs
′‖ ≤ λ‖s′cx − Πs′cx‖+ κ ≤ λγε+ κ (4.4.7)

Note that λ ≥ κ
(1−γ)ε

, we have that ‖s′ − ΠUs
′‖ ≤ ε.

Proof of Theorem 4.4.4. To prove bullet 1, we apply Lemma 4.4.5 inductively for T

steps. To prove bullet 2, we will prove that as long as si is ε-close to U , then we

can improve the value function by at least ρ in one step. Consider s̄i = ΠU(si). We

triangle inequality, we have that ‖π(si) − πe(s̄i)‖ ≤ ‖π(si) − πBC(si)‖ + ‖πBC(si) −

πBC(s̄i)‖ + ‖πBC(s̄i) − πe(s̄i)‖. These three terms can be bounded respectively by

ζ, Lπ‖si − s̄i‖ ≤ Lπε, and δπ, using the definition of π, the Lipschitzness of πBC,

and the error assumption of πBC on the demonstration state set U , respectively. It

follows that ‖M?(si, π(si))−M?(s̄i, πe(s̄i))‖ ≤ LM,s‖si− s̄i‖+LM,a‖π(si)−πe(s̄i)‖ ≤

LM,sε+ LM,a(ζ + Lπε+ δπ). It follows by the Lipschitzness of the projection that

‖s̄i+1 − ΠUM
?(s̄i, πe(s̄i))‖ = ‖ΠUM?(si, π(si))− ΠUM

?(s̄i, πe(s̄i))‖ (4.4.8)

= |ΠUM?(si, π(si))−M?(s̄i, πe(s̄i)) (4.4.9)

≤ LΠ(LM,sε+ LM,a(ζ + Lπε+ δπ)) (4.4.10)

This implies that

|V πe(s̄i+1)− V πe(ΠUM
?(s̄i, πe(s̄i))| ≤ LVLΠ(LM,sε+ LM,a(ζ + Lπε+ δπ)) (4.4.11)

120

Note that we assumed that V (M?(s̄i, πe(s̄i)) ≥ V (s̄i) + ρ or M?(s̄i, πe(s̄i)) reaches

the goal. If the former, it follows that V πe(s̄i+1) ≥ V πe(s̄i)+ρ−LVLΠ(LM,sε+LM,a(ζ+

Lπε + δπ)) ≥ V πe(s̄i) + ρ/2. Otherwise, or si+1 is ε-close to s̄i+1 whose value is at

most −LVLΠ(LM,sε+ LM,a(ζ + Lπε+ δπ)) = −O(ε+ δπ)

4.5 Main Approach

Learning value functions with negative sampling from demonstration tra-

jectories. As motivated in Section 4.4 by Algorithm 7 and Theorem 4.4.4, we first

develop a practical method that can learn a value function with conservative extrapo-

lation, without environment interaction. Let Vφ be a value function parameterized

by φ. Using the standard TD learning loss, we can ensure the value function to be

accurate on the demonstration states U (i.e., to satisfy Equation (4.4.1)). Let φ̄ be

the target value function,9 the TD learning loss is defined as

Ltd(φ) = E(s,a,s′)∼ρπe

[(
r(s, a) + Vφ̄(s′)− Vφ(s)

)2
]

where r(s, a) is the (sparse) reward, φ̄ is the parameter of the target network, ρπe is

the distribution of the states-action-states tuples of the demonstrations. The crux

of the ideas in this chapter is to use a negative sampling technique to enforce the

value function to satisfy conservative extrapolation requirement (4.4.2). It would

be infeasible to enforce condition (4.4.2) for every s 6∈ U . Instead, we draw random

“negative samples” s̃ from the neighborhood of U , and enforce the condition (4.4.2).

This is inspired by the negative sampling approach widely used in NLP for training

word embeddings [Mikolov et al., 2013, Gutmann and Hyvärinen, 2012]. Concretely,
9A target value function is widely used in RL to improve the stability of the training [Lillicrap

et al., 2016, Mnih et al., 2015].

121

we draw a sample s ∼ ρπe , create a random perturbation of s to get a point s̃ 6∈ U .

and construct the following loss function:10

Lns(φ) = Es∼ρπe ,s̃∼perturb(s)

(
Vφ̄(s)− λ‖s− s̃‖ − Vφ(s̃)

)2
.

The rationale of the loss function can be best seen in the situation when U is assumed

to be a low-dimensional manifold in a high-dimensional state space. In this case, s̃

will be outside the manifold U with probability 1. Moreover, the random direction

s̃− s is likely to be almost orthogonal to the tangent space of the manifold U , and

thus s is a reasonable approximation of the projection of s̃ back to the U , and ‖s− s̃‖

is an approximation of ‖ΠU s̃− s̃‖. If U is not a manifold but a small subset of the

state space, these properties may still likely to hold for a good fraction of s.

We only attempt to enforce condition (4.4.2) for states near U . This likely suffices

because the induced policy is shown to always stay close to U . Empirically, we

perturb s by adding a Gaussian noise. The loss function to learn Vφ is defined as

L(φ) = Ltd(φ) + µLns(φ) for some constant µ > 0. For a mini-batch B of data,

we define the corresponding empirical loss by L(φ;B) (similarly we define Ltd(φ;B)

and Lns(φ;B)). The concrete iterative learning algorithm is described in line 1-7 of

Algorithm 8 (except line 6 is for learning the dynamics model, described below.)

Learning the dynamics model. We use standard supervised learning to train

the model. We use `2 norm as the loss for model parameters θ instead of the more

commonly used MSE loss, following the success of Luo et al. [2019a]: Lmodel(θ) =

E(s,a,s′)∼ρπe [‖Mθ(s, a)− s′‖2] .

Optimization for policy. We don’t maintain an explicit policy but use an induced

policy from Vφ and Mθ by optimizing Equation (4.4.3). A natural choice would be
10With slight abuse of notation, we use ρπe to denote both the distribution of (s, a, s′) tuple and

the distribution of s of the expert trajectories.

122

Algorithm 8 Value Iteration on Demonstrations with Negative Sampling (VINS)
1:
R ← demonstration trajectories . No environment interaction will be used

2: Initialize value parameters φ̄ = φ and model parameters θ randomly
3: for i = 1, . . . , T do
4: sample mini-batch B of N transitions (s, a, r, s′) from R
5: update φ to minimize Ltd(φ;B) + Lns(φ;B)
6:

update θ to minimize loss Lmodel(θ;B)
7:

update target network: φ̄← φ̄+ τ(φ− φ̄)
8:
9: function Policy(s)
10:

Option 1: a = πBC(s); Option 2: a = 0
11: sample k noises ξ1, . . . , ξk from Uniform[−1, 1]m . m is the dimension of ac-

tion space
12:

i∗ = argmaxi Vφ(Mθ(s, a+ αξi)) . α > 0 is a hyper-parameter
13:

return a+ αξi∗

using projected gradient ascent to optimize Equation (4.4.3). It’s also possible to use

cross-entropy methods in Kalashnikov et al. [2018] to optimize it. However, we found

the random shooting suffices because the action space is relatively low-dimensional

in our experiments. Moreover, the randomness introduced appears to reduce the

overfitting of the model and value function slightly. As shown in line 10-13 of

Algorithm 8, we sample k actions in the feasible set and choose the one with maximum

Vφ(Mθ(s, a)).

Value iteration with environment interaction. As alluded before, when more

environment interactions are allowed, we initialize an RL algorithm by the value

function, dynamics learned from VINS. Given that we have V and M in hand, we

alternate between fitted value iterations for updating the value function and supervised

learning for updating the models. A pseudocode our algorithm VINS+RL can be

found in Algorithm 9. We do not use negative sampling here since the RL algorithms

123

already collect bad trajectories automatically. We also do not hallucinate any goals as

in HER [Andrychowicz et al., 2017].

Algorithm 9 Value Iteration with Environment Interactions Initialized by VINS
(VINS+RL)
Require: Initialize parameters φ, θ from the result of VINS (Algorithm 8)
1: R ← demonstration trajectories;
2: for stage t = 1, . . . do
3: collect n1 samples using the induced policy π in Algorithm 8 (with Option 2

in Line 10) and add them to R
4: for i = 1, . . . , ninner do
5: sample mini-batch B of N transitions (s, a, r, s′) from R
6: update φ to minimize Ltd(φ;B)
7: update target value network: φ̄← φ̄+ τ(φ− φ̄)
8: update θ to minimize loss Lmodel(θ;B)

4.6 Experiments

4.6.1 Experimental Setup

Environments. We evaluate our algorithms in three simulated robotics environ-

ments11 designed by Plappert et al. [2018] based on OpenAI Gym [Brockman et al.,

2016] and MuJoCo [Todorov et al., 2012a]: Reach, Pick-And-Place, and Push. In the

three environments, a 7-DoF robotics arm is manipulated for different goals. In Reach,

the task is to reach a randomly sampled target location; In Pick-And-Place, the goal

is to grasp a box in a table and reach a target location, and in Push, the goal is to

push a box to a target location.

The reward function is 0 if the goal is reached; otherwise -1. Intuitively, an optimal

agent should complete the task in a shortest possible path. The environment will stop

once the agent achieves the goal or max step number have been reached. Reaching

max step will be regarded as failure.

For more details, we refer the readers to Plappert et al. [2018].
11Available at https://github.com/openai/gym/tree/master/gym/envs/robotics.

124

https://github.com/openai/gym/tree/master/gym/envs/robotics

Demonstrations. For each task, we use Hindsight Experience Replay (HER)

[Andrychowicz et al., 2017] to train a policy until convergence. The policy rolls

out to collect 100/200 successful trajectories as demonstrations except for Reach envi-

ronment where 100 successful trajectories are sufficient for most of the algorithms to

achieve optimal policy. We filtered out unsuccessful trajectories during data collection.

We consider two settings: imitation learning from only demonstrations data, and

leveraging demonstration in RL with a limited amount of interactions. We compare

our algorithm with Behavioral Cloning and multiple variants of our algorithms in the

first setting. We compare with Nair et al. [2018], and GAIL [Ho and Ermon, 2016]

in the second setting. We do not compare with Gao et al. [2018] because it cannot

be applied to the case with continuous actions and we do not compare with many

new algorithms [Wu et al., 2019, Kumar et al., 2020, Yu et al., 2020] as they were not

available when this work was done.

Behavioral Cloning [Bain and Sommut, 1999]. Behavioral Cloning (BC) learns

a mapping from a state to an action on demonstration data using supervised learning.

We use MSE loss for predicting the actions.

Nair et al.’18 [Nair et al., 2018]. A previous algorithm from Nair et al. [2018]

combines HER [Andrychowicz et al., 2017] with BC and a few techniques: 1) an

additional replay buffer filled with demonstrations, 2) an additional behavioral cloning

loss for the policy, 3) a Q-filter for non-optimal demonstrations, 4) resets to states

in the demonstrations to deal with long horizon tasks. We note that reseting to an

arbitrary state may not be realistic for real-world applications in robotics. In contrast,

our algorithm does not require resetting to a demonstration state.

125

GAIL [Ho and Ermon, 2016]. Generative Adversarial Imitation Learning (GAIL)

imitates the expert by matching the state-action distribution with a GAN-like frame-

work.

HER [Andrychowicz et al., 2017]. Hindsight Experience Replay (HER) is the

one of the best techniques that deal with sparse-reward environments with multiple

goals and can be combined with any off-policy RL algorithm. The key idea is that

HER extends the replay buffer by changing the goals. With reasonable chosen goals,

the underlying off-policy RL algorihtm can receive more signals from the generated

experience, making policy optimization more complete.

DAC [Kostrikov et al., 2018]. Discriminator-Actor-Critic (DAC) is a sample-

efficient imitation learning algorihtm built on the top of GAIL. It addresses the reward

bias problem by adapting AIRL reward function and introducing an absorbing state.

Furthermore, it replaces the underlying RL algorithm in GAIL by TD3 [Fujimoto

et al., 2018b] to make it more sample efficient.

VINS. As described in Section 4.5, in the setting without environment interaction,

we use Algorithm 8; otherwise we use it to initialize an RL algorithm (see Algorithm 9).

We use neural networks to parameterize the value function and the dynamics model.

The granularity of the HER demonstration policy is very coarse, and we argument the

data with additional linear interpolation between consecutive states. We also use only

a subset of the states as inputs to the value function and the dynamics model, which

apparently helps improve the training and generalization of them. Implementation

details can be found in Section 4.6.4.

126

VINS (ours) BC
Reach 10 99.3± 0.1% 98.6± 0.1%
Pick 100 75.7± 1.0% 66.8± 1.1%
Pick 200 84.0± 0.5% 82.0± 0.8%
Push 100 44.0± 1.5% 37.3± 1.1%
Push 200 55.2± 0.7% 51.3± 0.6%

Table 4.1: The success rates of achieving the goals for VINS and BC in the setting
without any environment interactions. A random policy has about 5% success rate at
Pick and Push.

Figure 4.3: The learning curves of VINS+RL (Algorithm 9) vs Nair et al.’18 on
Pick-And-Place and Push. Shaded areas indicates one standard error estimated from
10 random seeds.13

4.6.2 Experiment Results

Our main results are reported in Table 4.1 12 for the setting with no environment

interaction and Figure 4.3 for the setting with environment interactions. Table 4.1

shows that the Reach environment is too simple so that we do not need to run the

RL algorithm. On the harder environments Pick-And-Place and Push, our algorithm

VINS outperforms BC. We believe this is because our conservatively-extrapolated

value function helps correct the mistakes in the policy. Here we use 2k trials to

estimate the success rate (so that the errors in the estimation is negligible), and we

run the algorithms with 10 different seeds. The error bars are for 1 standard error.

Figure 4.3 shows that VINS initialized RL algorithm outperforms the baselines

in sample efficiency. We believe the main reason is that due to the initialization of
12The standard error in the chapter means the standard error of average success rate over 10 (100

for Reach 10) different random seeds by the same algorithm, that is, the standard deviation of 10
numbers over

√
10 (or 10, respectively).

127

value and model, we pay less samples for warming up the value function. We note

that our initial success rate in RL is slightly lower than the final result of VINS in

Table 4.1. This is because in RL we implemented a slightly worse variant of the policy

induced by VINS: in the policy of Algorithm 8, we use option 2 to search the action

uniformly. This suffices because the additional interactions quickly allows us to learn

a good model and the BC constraint is no longer needed.

4.6.3 Ablation Study

Towards understanding the effect of each component of VINS, we perform three

ablative experiments to show the importance of negative sampling, searching in the

neighborhood of Behavioral Cloned actions (option 1 in line 10 or Algorithm 8), and

a good dynamics model. The results are shown in Table 4.2. We study three settings:

(1) VINS without negative sampling (VINS w/o NS), where the loss Lns is removed;

(2) VINS without BC (VINS w/o BC), where option 2 in line 10 or Algorithm 8 is

used; (3) VINS with oracle model without BC (VINS w/ oracle w/o BC), where we use

the true dynamics model to replace line 12 of Algorithm 8. Note that the last setting

is only synthetic for ablation study because in the real-world we don’t have access to

the true dynamics model. Please see the caption of Table 4.2 for more interpretations.

We use the same set of hyperparameters for the same environment, which may not be

optimal: for example, with more expert trajectories, the negative sampling loss Lns,

which can be seen as a regularziation, should be assigned a smaller coefficient µ.

4.6.4 Implementation Details

Behavioral Cloning. We use a feed-forward neural network with 3 hidden layers,

each containinig 256 hidden units, and ReLU activation functions. We train the

network until the test success rate plateaus.

128

Pick 100 Pick 200 Push 100 Push 200
BC 66.8± 1.1% 82.0± 0.8% 37.3± 1.1% 51.3± 0.6%
VINS 75.7± 1.0% 84.0± 0.5% 44.0± 0.8% 55.2± 0.7%

VINS w/o BC 28.5± 1.1% 43.6± 1.2% 14.3± 0.5% 24.9± 1.3%
VINS w/ oracle

w/o BC 51.4± 1.4% 62.3± 1.1% 40.7± 1.4% 42.9± 1.3%

VINS w/ oracle 76.3± 1.4% 87.0± 0.7% 48.7± 1.2% 63.8± 1.3%
VINS w/o NS 48.5± 2.1% 71.6± 0.9% 29.3± 1.2% 38.7± 1.5%

Table 4.2: Ablation study of components of VINS in the setting without environment
interactions. We reported the average performance of 10 runs (with different random
seeds) and the empirical standard error of the estimator of the average performance.
The success rate of VINS w/o NS is consistently worse than VINS, which suggests that
NS is crucial for tackling the false extrapolation. From comparisons between VINS w/o
BC and VINS w/ oracle w/o BC, and between VINS and VINS w/ oracle, we observe
that if the learning of the dynamics can be improved (potentially by e.g., by collecting
data with random actions), then VINS or VINS w/o BC can be improved significantly.
We also suspect that the reason why we need to search over the neighborhood of BC
actions is that the dynamics is not accurate at state-action pairs far away from the
demonstration set (because the dynamics is only learned on the demonstration set.)

Nair et al.’18 [Nair et al., 2018]. We use the implementation from https:

//github.com/jangirrishabh/Overcoming-exploration-from-demos. We don’t

change the default hyperparameters, except that we’re using 17 CPUs.

GAIL [Ho and Ermon, 2016]. We use the implementation from OpenAI Baselines

[Dhariwal et al., 2017]. We don’t change the default hyperparameters.

HER [Andrychowicz et al., 2017]. We also use the code from OpenAI Baselines

and keep the default hyperparameters.

Discriminator-Actor-Critic [Kostrikov et al., 2018]. We use the implemen-

tation from the official implementation https://github.com/google-research/

google-research/tree/master/dac.

VINS.

129

https://github.com/jangirrishabh/Overcoming-exploration-from-demos
https://github.com/jangirrishabh/Overcoming-exploration-from-demos
https://github.com/google-research/google-research/tree/master/dac
https://github.com/google-research/google-research/tree/master/dac

• Architecture: We use feed-forward neural networks as function approximators

for values and dynamics models. For the Vφ, the network has one hidden layer

which has 256 hidden units and a layer normalization layer [Lei Ba et al., 2016].

The dynamics model is a feed-forward neural network with two hidden layers

and ReLU activation function. Each hidden layer has 500 units. The model uses

the reduced states and actions to predict the next reduced states.

• Value augmentation: We augment the dataset by a linear interpolation between

two consecutive states, i.e., for a transition (s, a, r, s′) in the demonstration, it’s

augmented to (s + λ(s′ − s), a, λr, s′) for a random real λ ∼ Uniform[0, 1]. To

minimize the losses, we use the Adam optimizer [Kingma and Ba, 2014] with

learning rate 3× 10−4. We remove some less relevant coordinates from the state

space to make the dimension smaller. (But we maintain the full state space for

BC. BC will perform worse with reduce state space.) Specifically, the states of

our algorithm for different environment are a) Reach: the position of the arm,

b) Pick: the position of the block, the gripper, and the arm, and c) Push: the

position of the block and the arm.

• States representation and perturbation: Both our modelM and value function V

are trained on the space of reduced states. The perturb function is also designed

separately for each task. For Reach and Push, we perturb the arm only; For

Pick-And-Place, we perturb the arm or the gripper. In the implementation, we

perturb the state s by adding Gaussian noise from a distribution N (0, ρ2Σ),

where Σ is a diagonal matrix that contains the variances of each coordinate of

the states from the demonstration trajectories. Here ρ > 0 is a hyper-parameter

to tune.

130

4.7 Conclusion

We devise a new algorithm, VINS, that can learn self-correctable by learning value

function and dynamics model from demonstrations. The key idea is a theoretical

formulation of conservatively-extrapolated value functions that provably leads to

self-correction. The empirical results show a promising performance of VINS and

an algorithm that initializes RL with VINS. It’s a fascinating direction to study

other algorithms that may learn conservatively-extrapolated value functions in other

real-world applications beyond the proof-of-concepts experiments in this chapter. For

example, the negative sampling by Gaussian perturbation technique in this chapter

may not make sense for high-dimensional pixel observation. The negative sampling can

perhaps be done in the representation space (which might be learned by unsupervised

learning algorithms) so that we can capture the geometry of the state space better.

131

Chapter 5

Safe Reinforcement Learning with

Zero Training-time Violations

Training-time safety violations have been a major concern when we deploy reinforce-

ment learning algorithms in the real world. This chapter explores the possibility

of safe RL algorithms with zero training-time safety violations in the challenging

setting where we are only given a safe but trivial-reward initial policy without any

prior knowledge of the dynamics model and additional offline data. We propose an

algorithm, Co-trained Barrier Certificate for Safe RL (CRABS),which iteratively

learns barrier certificates, dynamics models, and policies. The barrier certificates,

learned via adversarial training, ensure the policy’s safety assuming calibrated learned

dynamics model. We also add a regularization term to encourage larger certified

regions to enable better exploration. Empirical simulations show that zero safety

violations are already challenging for a suite of simple environments with only 2-4

dimensional state space, especially if high-reward policies have to visit regions near

the safety boundary. Prior methods require hundreds of violations to achieve decent

rewards on these tasks, whereas our proposed algorithms incur zero violations.

132

5.1 Background

Researchers have demonstrated that reinforcement learning (RL) can solve complex

tasks such as Atari games [Mnih et al., 2015], Go [Silver et al., 2017a], dexterous

manipulation tasks [Akkaya et al., 2019], and many more robotics tasks in simulated

environments [Haarnoja et al., 2018]. However, deploying RL algorithms to real-world

problems still faces the hurdle that they require many unsafe environment interactions.

For example, a robot’s unsafe environment interactions include falling and hitting

other objects, which incur physical damage costly to repair. Many recent deep RL

works reduce the number of environment interactions significantly (e.g., see Haarnoja

et al. [2018], Fujimoto et al. [2018b], Janner et al. [2019], Dong et al. [2020], Luo

et al. [2019a], Chua et al. [2018b] and reference therein), but the number of unsafe

interactions is still prohibitive for safety-critical applications such as robotics, medicine,

or autonomous vehicles [Berkenkamp et al., 2017].

Reducing the number of safety violations may not be sufficient for these safety-

critical applications—we may have to eliminate them. This chapter explores the

possibility of safe RL algorithms with zero safety violations in both training time and

test time. We also consider the challenging setting where we are only given a safe but

trivial-reward initial policy.

A recent line of works on safe RL design novel actor-critic based algorithms under

the constrained policy optimization formulation [Thananjeyan et al., 2021, Srinivasan

et al., 2020, Bharadhwaj et al., 2020, Yang et al., 2020, Stooke et al., 2020]. They

significantly reduce the number of training-time safety violations. However, these

algorithms fundamentally learn the safety constraints by contrasting the safe and

unsafe trajectories. In other words, because the safety set is only specified through the

safety costs that are observed postmortem, the algorithms only learn the concept of

safety through seeing unsafe trajectories. Therefore, these algorithms cannot achieve

zero training-time violations. For example, even for the simple 2D inverted pendulum

133

environment, these methods still require at least 80 unsafe trajectories (see Figure 5.2

in Section 5.7).

Another line of work utilizes ideas from control theory and model-based ap-

proach [Cheng et al., 2019, Berkenkamp et al., 2017, Taylor et al., 2019, Zeng et al.,

2020]. These works propose sufficient conditions involving certain Lyapunov func-

tions or control barrier functions that can certify the safety of a subset of states or

policies [Cheng et al., 2019]. These conditions assume access to calibrated dynam-

ics models. They can, in principle, permit safety guarantees without visiting any

unsafe states because, with the calibrated dynamics model, we can foresee future

danger. However, control barrier functions are often non-trivially handcrafted with

prior knowledge of the environments [Ames et al., 2019, Nguyen and Sreenath, 2016].

This work aims to design model-based safe RL algorithms that empirically achieve

zero training-time safety violations by learning the barrier certificates iteratively. We

present the algorithm Co-trained Barrier Certificate for Safe RL (CRABS), which

alternates between learning barrier certificates that certify the safety of larger regions

of states, optimizing the policy, collecting more data within the certified states, and

refining the learned dynamics model with data.1

The work of Richards et al. [2018] is a closely related prior result, which learns a

Lyapunov function given a fixed dynamics model via discretization of the state space.

Our work significantly extends it with three algorithmic innovations. First, we use

adversarial training to learn the certificates, which avoids discretizing state space and

can potentially work with higher dimensional state space than the two-dimensional

problems in Richards et al. [2018]. Second, we do not assume a given, globally accurate

dynamics model; instead, we learn the dynamics model from safe explorations. We

achieve this by co-learning the certificates, dynamics model, and policy to iteratively
1We note that our goal is not to provide end-to-end formal guarantees of safety, which might be

extremely challenging—nonconvex minimax optimizations and uncertainty quantification for neural
networks are used as sub-procedures, and it’s challenging to have worst-case guarantees for them.

134

grow the certified region and improve the dynamics model and still maintain zero

violations. Thirdly, the work Richards et al. [2018] only certifies the safety of some

states and does not involve learning a policy. In contrast, our work learns a policy

and tailors the certificates to the learned policies. In particular, our certificates aim

to certify only states near the trajectories of the current and past policies—this allows

us to not waste the expressive power of the certificate parameterization on irrelevant

low-reward states.

We evaluate our algorithms on a suite of tasks, including a few where achieving

high rewards requires careful exploration near the safety boundary. For example, in

the Swing environment, the goal is to swing a rod with the largest possible angle

under the safety constraints that the angle is less than 90◦. We show that our method

reduces the number of safety violations from several hundred to zero on these tasks.

5.2 Related Work

Prior works about Safe RL take very different approaches. Dalal et al. [2018] adds an

additional layer, which corrects the output of the policy locally. Some of them use

Lagrangian methods to solve CMDP, while the Lagrangian multiplier is controlled

adaptively [Tessler et al., 2018] or by a PID [Stooke et al., 2020]. Achiam et al.

[2017], Yang et al. [2020] build a trust-region around the current policy, and Zanger

et al. [2021] further improved Achiam et al. [2017] by learning the dynamics model.

Eysenbach et al. [2017] learns a reset policy so that the policy only explores the states

that can go back to the initial state. Turchetta et al. [2020] introduces a learnable

teacher, which keeps the student safe and helps the student learn faster in a curriculum

manner. Srinivasan et al. [2020] pre-trains a policy in a simpler environment and fine-

tunes it in a more difficult environment. Bharadhwaj et al. [2020] learns conservative

safety critics which underestimate how safe the policy is, and uses the conservative

135

safety critics for safe exploration and policy optimization. Thananjeyan et al. [2021]

makes use of existing offline data and co-trains a recovery policy. Hazan et al. [2020]

considers the nonstochastic control problem, and proposes an efficient algorithm to

identify the linear dynamic system even with adversarial perturbations.

Another line of work involves Lyapunov functions and barrier functions. Chow et al.

[2018] studies the properties of Lyapunov functions and learns them via bootstrapping

with a discrete action space. Built upon Chow et al. [2018], Sikchi et al. [2021]

learns the policy with Deterministic Policy Gradient theorem in environments with

a continuous action space. Like TRPO [Schulman et al., 2015a], Sikchi et al. [2021]

also builds a trust region of policies for optimization. Donti et al. [2020] constructs

sets of stabilizing actions using a Lyapunov function, and project the action to the

set, while Chow et al. [2019] projects action or parameters to ensure the decrease of

Lyapunov function after a step. Ohnishi et al. [2019] is similar to ours but it constructs

a barrier function manually instead of learning such one. Ames et al. [2019] gives an

excellent overview of control barrier functions and how to design them. Perhaps the

most related work to ours is Cheng et al. [2019], which also uses a barrier function to

safeguard exploration and uses a reinforcement learning algorithm to learn a policy.

However, the key difference is that we learn a barrier function, while Cheng et al.

[2019] handcrafts one. The works on Lyapunov functions [Berkenkamp et al., 2017,

Richards et al., 2018] require the discretizating the state space and thus only work for

low-dimensional space.

Anderson et al. [2020] iteratively learns a neural policy which possily has higher

total rewards but is more unasfe, distills the learned neural policy into a symbolic

policy which is simpler and safer, and use automatic verification to certify the symbolic

policy. The certification process is similar to construct a barrier function. As the

certification is done on a learned policy, the region of certified states also grows.

Howver, it assumes a known calibrated dynamcis model, while we also learns it. Also,

136

tt can only certifie states where a piecewise-linear policy is safe, while potentially we

can certify more states.

5.3 Problem Setup and Preliminaries

We consider the general setup in Section 1.3, but emphasize on the safety of the policy

π. Let Sunsafe ⊂ S be the set of unsafe states specified by the user. The user-specified

safe set Ssafe is defined as S\Sunsafe. A state s is (user-specified) safe if s ∈ Ssafe. A

trajectory is safe if and only if all the states in the trajectory are safe. An initial state

drawn from µ0 is assumed to safe with probability 1. We say a deterministic policy π

is safe starting from state s, if the infinite-horizon trajectory obtained by executing

π starting from s is safe. We also say a policy π is safe if it is safe starting from an

initial state drawn from µ with probability 1. A major challenge toward safe RL is

the existence of irrecoverable states which are currently safe but will eventually lead

to unsafe states regardless of future actions. We define the notion formally as follows.

Definition 5.3.1. A state s is viable iff there exists a policy π such that π is safe

starting from s, that is, executing π starting from s for infinite steps never leads to an

unsafe state. A user-specified safe state that is not viable is called an irrecoverable

state.

We remark that unlike Srinivasan et al. [2020], Roderick et al. [2020], we do not

assume all safe states are viable. We rely on the extrapolation and calibration of

the dynamics model to foresee risks. A calibrated dynamics model M predicts a

confidence region of states M(s, a) ⊆ S, such that for any state s and action a, we

have M∗(s, a) ∈M(s, a).

137

5.3.1 Barrier Certificate

Barrier certificates are powerful tools to certify the stability of a dynamical system.

Barrier certificates are often applied to a continuous-time dynamical system, but

here we describe its discrete-time version where our work is based upon. We refer

the readers to Prajna and Jadbabaie [2004], Prajna and Rantzer [2005] for more

information about continuous-time barrier certificates.

Given a discrete-time dynamical system st+1 = f(st) without control starting from

s0, a function h : S → R is a barrier certifcate if for any s ∈ S such that h(s) ≥ 0,

h(f(s)) ≥ 0. Zeng et al. [2020] considers a more restrictive requirement: For any state

s ∈ S, h(f(s)) ≥ αh(s) for a constant 0 ≤ α < 1.

it is easy to use a barrier certificate h to show the stability of the dynamical

system. Let Ch = {s : h(s) ≥ 0} be the superlevel set of h. The requirement of barrier

certificates directly translates to the requirement that if s ∈ Ch, then f(s) ∈ Ch. This

property of Ch, which is known as the forward-invariant property, is especially useful

in safety-critical settings: suppose a barrier certificate h such that Ch does not contain

unsafe states and contains the initial state s0, then it is guaranteed that Ch contains

the entire trajectory of states {st}t≥0 which are safe.

Finding barrier certificates requires a known dynamics model f , which often

can only be approximated in practice. This issue can be resolved by using a well-

calibrated dynamics model f̂ , which predicts a confidence interval containing the true

output. When a calibrated dynamics model f̂ is used, we require that for any s ∈ S,

mins′∈f̂(s) h(s′) ≥ 0.

Control barrier functions [Ames et al., 2019] are extensions to barrier certificates in

the control setting. That is, control barrier functions are often used to find an action

to meet the safety requirement instead of certifying the stability of a closed dynamical

system. In this work, we simply use barrier certificates because in Section 5.4, we view

138

the policy and the calibrated dynamics model as a whole closed dynamical system

whose stability we are going to certify.

5.3.2 Metropolis-Adjusted Langevin Algorithm (MALA)

Given a probability density function p on Rd, Metropolis-Adjusted Langevin Algorithm

(MALA) obtains random samples x ∼ p when direct sampling is difficult. it is

based on Metropolis-Hastings algorithm which generates a sequence of samples {xt}t.

Metropolis-Hastings algorithm requires a proposal distribution q(x′|x). At step t ≥ 0,

Metropolis-Hastings algorithm generates a new sample x̂t+1 ∼ q(·|xt) and accept it

with probability

α(x→ x′) , min

(
1,
p(x′)q(x|x′)
p(x)q(x′|x)

)
.

If the sample x̂t+1 is accepted, we set xt+1 = x̂t+1; Otherwise the old sample xt is used:

xt+1 = xt. MALA considers a special proposal function qτ (x′|x) = N (x+τ∇p(x), 2τId).

See Algorithm 10 for the pseudocode.

Algorithm 10 Metropolis-Adjusted Langevin Algorithm (MALA)
Require: A probability density function p and a step size τ .
1: Initialize x0 arbitrarily.
2: for t from 0 to ∞ do
3: Draw ζt ∼ N (0, Id).
4: Set x̂t+1 = xt + τ∇ log p(Xt) +

√
2τζt.

5: Draw ut ∼ Uniform[0, 1].
6: if ut ≥ α(xt → x̂t+1) then
7: Set xt+1 = x̂t+1.
8: else
9: Set xt+1 = xt.

139

5.4 Learning Barrier Certificates via Adversarial

Training

This section describes an algorithm that learns a barrier certificate for a fixed policy

π under a calibrated dynamics model M . Concretely, to certify a policy π is safe, we

aim to learn a (discrete-time) barrier certificate h that satisfies the following three

requirements.

R.1. For s0 ∼ µ0, h(s0) ≥ 0 with probability 1.

R.2. For every s ∈ Sunsafe, h(s) < 0.

R.3. For any s such that h(s) ≥ 0, mins′∈M(s,π(s)) h(s) ≥ 0.

Requirement R.1 and R.3 guarantee that the policy π will never leave the set

Ch = {s ∈ S : h(s) ≥ 0} by simple induction. Moreover, R.2 guarantees that Ch only

contains safe states and therefore the policy never visits unsafe states.

In the rest of the section, we aim to design and train such a barrier certificate

h = hφ parametrized by neural network φ.

hφ parametrization. The three requirements for a barrier certificate are challenging

to simultaneously enforce with constrained optimization involving neural network

parameterization. Instead, we will parametrize hφ with R.1 and R.2 built-in such

that for any φ, hφ always satisfies R.1 and R.2.

We assume the initial state s0 is deterministic. To capture the known user-specified

safety set, we first handcraft a continuous function Bunsafe : S → R≥0 satisfying

Bunsafe(s) ≈ 0 for typical s ∈ Ssafe and Bunsafe(s) > 1 for any s ∈ Sunsafe and can be

seen as a smoothed indicator of Sunsafe.2 The construction of Bunsafe does not need

prior knowledge of irrecoverable states, but only the user-specified safety set Ssafe.
2The function Bunsafe(s) is called a barrier function for the user-specified safe set in the optimization

literature. Here we do not use this term to avoid confusion with the barrier certificate.

140

To further encode the user-specified safety set into hφ, we choose hφ to be of form

hφ(s) = 1− Softplus(fφ(s)− fφ(s0))− Bunsafe(s), where fφ is a neural network, and

Softplus(x) = log(1 + ex).

Because s0 is safe and Bunsafe(s0) ≈ 0, hφ(s0) ≈ 1− Softplus(0) > 0. Therefore hh

satisfies R.1. Moreover, for any s ∈ Sunsafe, we have hφ(s) < 1− Bunsafe(s) < 0, so hφ

in our parametrization satisfies R.2 by design.

The parameterization can also be extended to multiple initial states. For example,

if the initial s0 is sampled from a distribution µ that is supported on a bounded set,

and suppose that we are given the indicator function Binit : S → R for the support of

µ (that is, Binit(s) = 1 for any s ∈ supp(µ), and Binit(s) = 0 otherwise). Then, the

parametrization of hφ can be hφ(s) = 1−Softplus(fφ(s))(1−Binit(s))−Bunsafe(s). For

simplicity, we focus on the case where there is a single initial state.

Training barrier certificates. We now move on to training φ to satisfy R.3. Let

U(s, a, h) , max
s′∈M(s,a)

−h(s′). (5.4.1)

Then, R.3 requires U(s, π(s), hφ) ≤ 0 for any s ∈ Chφ , The constraint in R.3 naturally

leads up to formulate the problem as a min-max problem. Define our objective function

to be

C∗(hφ, U, π) , max
s∈Chφ

U(s, π(s), hφ) = max
s∈Chφ ,s

′∈M(s,π(s))
−h(s′) , (5.4.2)

and we want to minimize C∗ w.r.t. φ:

min
φ
C∗(hφ, U, π) = min

φ
max

s∈Chφ ,s
′∈M(s,π(s))

−h(s′), (5.4.3)

141

Our goal is to ensure the minimum value is less than 0. We use gradient descent to

solve the optimization problem, hence we need an explicit form of ∇φC
∗. Let L(s, ν;φ)

be the Lagrangian for the constrained optimization problem in C∗ where ν ≥ 0 is the

Lagrangian multiplier of the constraint s ∈ Chφ :

L(s, ν;φ) , U(s, π(s), hφ) + νhφ(s), C∗ = max
s∈S

min
ν≥0

L(s, ν;φ).

By the Envelope Theorem (see Carter [2001, Section 6.1]), we have

∇φC
∗ = ∇φU(s∗, π(s∗), hφ) + ν∗∇φhφ(s∗),

where s∗ and ν∗ are the optimal solution for φ. Once s∗ is known, the optimal

Lagrangian multiplier ν∗ can be given by KKT conditions:


ν∗hφ(s∗) = 0,

∇sL(s∗, ν∗;φ) = 0,
=⇒ ν∗ =


0 hφ(s∗) > 0,

‖∇sU(s∗,π(s∗),hφ)‖2
‖∇shφ(s∗)‖2 hφ(s∗) = 0.

Now we move on to the efficient calculation of s∗.

Computing the adversarial s∗. Because the maximization problem with respect

to s is nonconcave, there could be multiple local maxima. In practice, we find that it

is more efficient and reliable to use multiple local maxima to compute ∇φC
∗ and then

average the gradient.

Solving s∗ is highly non-trivial, as it is a non-concave optimization problem with a

constraint s ∈ Chφ . To deal with the constraint, we introduce a Lagrangian multiplier

λ and optimize U(s, π(s), hφ)− λIs∈Chφ w.r.t. s without any constraints. However, it

is still very time-consuming to solve an optimization problem independently at each

time. Based on the observation that the parameters of h do not change too much by

one step of gradient step, we can use the optimal solution from the last optimization
142

problem as the initial solution for the next one, which naturally leads to the idea of

maintaining a set of candidates of s∗’s during the computation of ∇φC
∗.

We use Metropolis-adjusted Langevin algorithm (MALA) [Besag, 1994] to

maintain a set of candidates {s1, . . . , sm} which are supposed to sample from

exp(τ(U(s, π(s), hφ) − λIs∈Chφ)). Here τ is the temperature indicating we want to

focus on the samples with large U(s, π(s), hφ). Although the indicator function always

have zero gradient, it is still useful in the sense that MALA will reject si 6∈ Chφ . A

detailed description of MALA is given in Section 5.3.2.

For our purpose, as we seek to compute C∗(hφ, U, πθ), we maintain m = 104

sequences of samples {{s(i)
t }t}i∈[m]. Recall that C∗ involves a constrained optimization

problem:

C∗(hφ, U, πθ) = max
s:hφ(s)≤1

U(s, πθ(s), hφ),

so for each i ∈ [m], the sequence
{
s

(i)
t

}
t
follows the Algorithm 10 to sample s ∼

exp(λ1U(s, πθ(s), hφ) − λ2Is∈Ch) with λ1 = 30, λ2 = 1000. The step size τ is chosen

such that the acceptance rate is approximately 0.6. In practice, when s(i)
t 6∈ Ch, we do

not use MALA, but use gradient descent to project it back to the set Ch.

We choose MALA over gradient descent because the maintained candidates are

more diverse, approximate local maxima. If we use gradient descent to find s∗, then

multiple runs of GD likely arrive at the same s∗, so that we lost the parallelism from

simultaneously working with multiple local maxima. MALA avoids this issue by its

intrinsic stochasticity, which can also be controlled by adjusting the hyperparameter

τ .

We summarize our algorithm of training barrier certificates in Algorithm 11 (which

contains optional regularization that will be discussed in Section 5.5.2). At Line 2,

the initialization of si’s is arbitrary, as long as they have a sort of stochasticity.

143

Algorithm 11 Learning barrier certificate hφ for a policy π w.r.t. a calibrated
dynamics model M .
Require: Temperature τ , Lagrangian multiplier λ, and optionally a regularization

function Reg.
1: Let U be defined as in Equation (5.4.1).
2: Initialize m candidates of s1, . . . , sm ∈ S randomly.
3: for n iterations do
4: for every candidate si do
5: sample si ∼ exp(τ(U(s, π(s), hφ)− λIs∈Ch)) by MALA (Algorithm 10).
6: W ← {si : hφ(si) ≥ 0, i ∈ [m]}.
7: Train φ to minimize C∗(hφ, U, π) + Reg(φ) using all candidates in W .

5.5 Main Approach

In this section, we present our main algorithm, Co-trained Barrier Certificate for Safe

RL (CRABS), shown in Algorithm 12, to iteratively co-train barrier certificates, policy

and dynamics model, using the algorithm in Section 5.4. In addition to parametrizing

h by φ, we further parametrize the policy π by θ, and parametrize calibrated dynamics

model M by ω. CRABS alternates between training a barrier certificate that certifies

the policy πθ w.r.t. a calibrated dynamics model Mω (Line 5), collecting data safely

using the certified policy (Line 3, details in Section 5.5.1), learning a calibrated

dynamics model (Line 4, details in Section 5.5.3), and training a policy with the

constraint of staying in the superlevel set of the barrier function (Line 6, details in

Section 5.5.4).In the following subsections, we discuss how we implement each line in

detail.

5.5.1 Safe Exploration with Certified Safeguard Policy

Safe exploration is challenging because it is difficult to detect irrecoverable states.

The barrier certificate is designed to address this—a policy π certified by some h

guarantees to stay within Ch and therefore can be used for collecting data. However,

we may need more diversity in the collected data beyond what can be offered by the

deterministic certified policy πsafeguard. Thanks to the contraction property R.3, we in

144

Algorithm 12 CRABS: Co-trained Barrier Certificate for Safe RL (Details in
Section 5.5)
Require: An initial safe policy πinit.
1: Collected trajectories buffer D̂ ← ∅; π ← πinit.
2: for T epochs do
3:

Invoke Algorithm 13 to safely collect trajectories (using π as the safeguard
policy and a noisy version of π as the πexpl). Add the trajectories to D̂.

4:
Learn a calibrated dynamics model M with D̂.

5:
Learn a barrier certificate h that certifies π w.r.t. M using Algorithm 11 with
regularization.

6:
Optimize policy π (according to the reward), using data in D̂, with the
constraint that π is certified by h.

Algorithm 13 Safe exploration with safeguard policy πsafeguard

Require: (1) A policy πsafeguard certified by barrier certificate h,
(2) Any proposal exploration policy πexpl.

Require: A state s ∈ Chφ .
1: Sample n actions a1, . . . an from πexpl(s).
2: if there exists an ai such that U(s, ai, h) ≤ 1 then
3: return: ai
4: else
5: return: πsafeguard(s).

fact know that any exploration policy πexpl within the superlevel set Ch can be made

safe with πsafeguard being a safeguard policy—we can first try actions from πexpl and

see if they stay within the viable subset Ch, and if none does, invoke the safeguard

policy πsafeguard. Algorithm 13 describes formally this simple procedure that makes

any exploration policy πexpl safe. By a simple induction, one can see that the policy

defined in Algorithm 13 maintains that all the visited states lie in Ch. The main idea

of Algorithm 13 is also widely used in policy shielding [Alshiekh et al., 2018, Jansen

et al., 2018, Anderson et al., 2020], as the policy πsafeguard sheilds the policy π in Chφ .

The safeguard policy πsafeguard is supposed to safeguard the exploration. However,

activating the safeguard too often is undesirable, as it only collects data from πsafeguard

145

so there will be little exploration. To mitigate this issue, we often choose πexpl to

be a noisy version of πsafeguard so that πexpl will be roughly safe by itself. Moreover,

the safeguard policy πsafeguard will be trained via optimizing the reward function as

shown in the next subsections. Therefore, a noisy version of πsafeguard will explore the

high-reward region and avoid unnecessary exploration.

Following Haarnoja et al. [2018], the policy πθ is parametrized as tanh(µθ(s)),

and the proposal exploration policy πexpl
θ is parametrized as tanh(µθ(s) + σθ(s)ζ) for

ζ ∼ N (0, I), where µθ and σθ are two neural networks. Here the tanh is applied to

squash the outputs to the action set [−1, 1].

5.5.2 Regularizing Barrrier Certificates

The quality of exploration is directly related to the quality of policy optimization.

In our case, the exploration is only within the learned viable set Chφ and it will be

hindered if Chφ is too small or does not grow during training. To ensure a large and

growing viable subset Chφ , we encourage the volume of Chφ to be large by adding a

regularization term

Reg(φ; ĥ) = Es∈S [relu(ĥ(s)− hφ(s))],

Here ĥ is the barrier certificate obtained in the previous epoch. In the ideal case when

Reg(φ; ĥ) = 0, we have Chφ ⊃ Cĥ, that is, the new viable subset Chφ is at least bigger

than the reference set (which is the viable subset in the previous epoch.) We compute

the expectation over S approximately by using the set of candidate s’s maintained by

MALA.

In summary, to learn hφ in CRABS, we minimize the following objective (for a

small positive constant λ) over φ as shown in Algorithm 11:

L(φ;U, πθ, ĥ) = C∗(Lφ, U, πθ) + λReg(φ; ĥ). (5.5.1)

146

We remark that the regularization is not the only reason why the viable set Chφ can

grow. When the dynamics model becomes more accurate as we collect more data, the

Chφ will also grow. This is because an inaccurate dynamics model will typically make

the Chφ smaller—it is harder to satisfy R.3 when the confidence region M(s, π(s))

in the constraint contains many possible states. Vice versa, shrinking the size of the

confidence region will make it easier to certify more states.

5.5.3 Learning a Calibrated Dynamics Model

It is a challenging open question to obtain a dynamics model M (or any supervised

learning model) that is theoretically well-calibrated especially with domain shift [Zhao

et al., 2020]. In practice, we heuristically approximate a calibrated dynamics model by

learning an ensemble of probabilistic dynamics models, following common practice in

RL [Yu et al., 2020, Janner et al., 2019, Chua et al., 2018b]. We learn K probabilistic

dynamics models fω1 , . . . , fωK using the data in the replay buffer D̂. (Interestingly,

prior work shows that an ensemble of probabilistic models can still capture the

error of estimating a deterministic ground-truth dynamics model [Janner et al., 2019,

Chua et al., 2018b].) Each probabilistic dynamics model fωi outputs a Gaussian

distribution N (µωi(s, a), diag(σ2
ωi

(s, a))) with diagonal covariances, where µωi and σωi

are parameterized by neural networks. Given a replay buffer D̂, the objective for a

probabilistic dynamics model fωi is to minimize the negative log-likelihood:

LM(ωi) = −E(s,a,s′)∼D̂ [− log fωi(s
′|s, a)] . (5.5.2)

The only difference in the training procedure of these probabilistic models is the

randomness in the initialization and mini-batches. We simply aggregate the means

of all learn dynamics models as a coarse approximation of the confidence region, i.e.,

Mω(s, a) = {µωi(s, a)}i∈[K].

147

We note that we implicitly rely on the neural networks for the dynamics model

to extrapolate to unseen states. However, local extrapolation suffices. The dynamics

models’ accuracy affects the size of the viable set—the more accurate the model is,

the more likely the viable set is bigger. In each epoch, we rely on the additional data

collected and the model’s extrapolation to reduce the errors of the learned dynamics

model on unseen states that are near the seen states, so that the learned viable set

can grow in the next epoch. Indeed, in Section 5.7 (Figure 5.3) we show that the

viable set grows gradually as the error and uncertainty of the models improves over

epoch.

5.5.4 Policy Optimization

We describe our policy optimization algorithm in Algorithm 14. The desiderata here

are (1) the policy needs certified by the current barrier certificate h and (2) the policy

has as high reward as possible. We break down our policy optimization algorithm into

two components: First, we optimize the total rewards R(πθ) of the policy πθ; Second,

we use adversarial training to guarantee the optimized policy can be certified by hφ.

The modification of SAC is to some extent non-essential and mostly for technical

convenience of making SAC somewhat compatible with the constraint set. Instead, it

is the adversarial step that fundamentally guarantees that the policy is certified by

the current hφ.

As in original SAC, we maintain two Q functions Qψi and their target networks

Qψ̄i for i ∈ {1, 2}, together with a learnable temperature α. The objective for the

policy is to minimize

Lπ(θ) = Es∼D̂,a∼πθ
[
α log πexpl

θ (a|s)− Q̂ψ1(s, a)
]
, (5.5.3)

148

where Q̂ψ1(s, a) = Qψ1(s, a) if U(s, a, h) ≤ 0, otherwise Q̂ψ1(s, a) = −C − U(s, a, h)

for a large enough constant C. The heuristics behind the design of Q̂ψ1 is that we

should lower the probability of πexpl
θ proposing an action which will possibly leave

the superlevel set Chφ to reduce the frequency of invoking the safeguard policy during

exploration.

Adversarial training We use adversarial training to guarantee πθ can be certified by

hφ. Similar to what we’ve done in training hφ adversarially, the objective for training

πθ is to minimize C∗(hφ, U, πθ). Unlike the case of φ, the gradient of C∗(hφ, U, πθ)

w.r.t. θ is simply ∇θU(s∗, πθ(s
∗), hφ), as the constraint hφ(s) is unrelated to πθ. We

also use MALA to solve s∗ and plug it into the gradient term ∇θU(s∗, πθ(s
∗), hφ).

Optimizing R(πθ) We use a modified SAC [Haarnoja et al., 2018] to optimize R(πθ)

for safety concerns.

The temporal difference objective for the Q function is

LQ(ψi) = E(s,a,r,s′)∼D̂Ea′∼πexpl
θ (s′)

[
(Qψi(s, a)− (r + γ min

i∈{1,2}
Qψ̄i(s, a)))2IU(s′,a′,hφ)≤0

]
,

(5.5.4)

We remark that we reject all a′ ∼ πexpl
θ (s′) such that U(s′, a′, hφ) > 0, as our safe ex-

ploration algorithm (Algorithm 13) will reject all of them eventually. The temperature

α is learned the same as in Haarnoja et al. [2018]:

Lα(α) = Es∼D̂[−α log πexpl
θ (a|s)− αH̄], (5.5.5)

where H̄ is hyperparameter, indicating the target entropy of the policy πexpl
θ .

As a side note, although we only optimize πexpl
θ here, πθ is also optimized implicitly

because πexpl
θ simply outputs the mean of πθ deterministically.

149

Algorithm 14 Modified SAC to train a policy while constraining it to stay within
Chφ
Require: A policy π, the replay buffer D̂
1: Sample a batch B from buffer D̂.
2: Train θ to minimize Lπ(θ) using B.
3: Train Q to minimize LQ(ψi) for i ∈ {1, 2} using B.
4: Train α to minimize Lα(α) using B.
5: Invoke MALA to training s∗ adversarially (as in L4-5 in Algorithm 11).
6: Train θ minimize C∗(hφ, U, πθ).
7: Update target network ψ̄i for i ∈ {1, 2}.

(a) Pendulum (b) CartPole

Figure 5.1: Illustration of environments. The left figure illustrates the Pendulum
environment, which is used by Upright and Tilt tasks. The right figer illustrates the
CartPole environment, which is used by Move and Swing tasks.

5.6 High-risk, High-reward Environments

We design four tasks, three of which are high-risk, high-reward tasks, to check the

efficacy of our algorithm. Even though they are all based on inverted pendulum or

cart pole, we choose the reward function to be somewhat conflicted with the safety

constraints. That is, the optimal policy needs to take a trajectory that is near the

safety boundary. This makes the tasks particularly challenging and suitable for stress

testing our algorithm’s capability of avoiding irrecoverable states.

These tasks have state dimension dimensions between 2 to 4. We focus on

the relatively low dimensional environments to avoid conflating the failure to learn

accurate dynamics models from data and the failure to provide safety given a learned

approximate dynamics model. Indeed, we identify that the major difficulty to scale up

to high-dimensional environments is that it requires significantly more data to learn a

150

decent high-dimensional dynamics model that can predict long-horizon trajectories.

We remark that we aim to have zero violations. This is very difficult to achieve,

even if the environment is low dimensional. As shown by Section 5.7, many existing

algorithms fail to do so.

(a) Upright . The task is based on Pendulum-v0 in Open AI Gym [Brockman

et al., 2016], as shown in Figure 5.1a. The agent can apply torque to control a pole.

The environment involves the crucial quantity: the tilt angle θ which is defined to be

the angle between the pole and a vertical line. The safety requirement is that the

pole does not fall below the horizontal line. Technically, the user-specified safety set is

{θ : |θ| ≤ θmax = 1.5} (note that the threshold is very close to π
2
which corresponds

to 90◦.) The reward function r is r(s, a) = −θ2, so the optimal policy minimizes the

angle and angular speed by keeping the pole upright. The horizon is 200 and the

initial state s0 = (0.3,−0.9).

(b) Tilt . This action set, dynamics model, and horizon, and safety set are the same

as in Upright. The reward function is different: r(s, a) = −(θlimit − θ)2. The optimal

policy is supposed to stay tilting near the angle θ = θlimit where θlimit = −0.41151684 is

the largest angle the pendulum can stay balanced. The challenge is during exploration,

it is easy for the pole to overshoot and violate the safety constraints.

(c) Move . The task is based on a cart pole and the goal is to move a cart (the

yellow block) to control the pole (with color teal), as shown in Figure 5.1b. The

cart has an x position between −1 and 1, and the pole also has an angle θ ∈ [−π
2
, π

2
]

with the same meaning as Upright and Tilt . The starting position is x = θ = 0.

We design the reward function to be r(s, a) = x2. The user-specified safety set is

{(x, θ) : |θ| ≤ θmax = 0.2, |x| ≤ 0.9} where 0.2 corresponds to roughly 11◦. Therefore,

the optimal policy needs to move the cart and the pole slowly in one direction,

preventing the pole from falling down and the cart from going too far. The horizon is

set to 1000.

151

500 1000

Upright

500 1000

Tilt

500 1000

Move

0 500 1000

25

0

25

50

75

Swing

500 1000
episodes in total

500 1000
episodes in total

500 1000
episodes in total

0 500 1000
episodes in total

0

200

400

600

0 100
4

3

2

1

0

to
ta

l r
ew

ar
ds

0 100

150

100

50

0

0 100

0

250

500

750

1000

0 100
0

50

100

150

200

un

sa
fe

 e
pi

so
de

s

0 100
0

100

200

300

0 100
0

200

400

CRABS SAC RecoveryRL CPO SQRL

Figure 5.2: Comparision between CRABS and baselines. CRABS can learn a policy
without any safety violations, while other baselines have a lot of safety violations.
We run each algorithm four times with independent randomness. The solid curves
indicate the mean of four runs and the shaded areas indicate one standard deviation
around the mean.

(d) Swing . This task is similar to Move , except for a few differences: The reward

function is r(s, a) = θ2; The user-specified safety set is {(x, θ) : |θ| ≤ θmax = 1.5, |x| ≤

0.9}. So the optimal policy will swing back and forth to some degree and needs to

control the angles well so that it does not violate the safety requirement.

For all the tasks, once the safety constraint is violated, the episode will terminate

immediately and the agent will receive a reward of -30 as a penalty. The number -30

is tuned by running SAC and choosing the one that SAC performs best with.

5.7 Experiments

In this section, we conduct experiments to answer the following question: Can CRABS

learn a reasonable policy without safety violations in the designed tasks?

Baselines. We compare our algorithm CRABS against four baselines: (a) Soft

Actor-Critic (SAC) [Haarnoja et al., 2018], one of the state-of-the-art RL algorithms,

152

1.0 0.5 0.0 0.5 1.0
0.2

0.1

0.0

0.1

0.2

an
gl

e

epoch 0

0.000

trajectory

1.0 0.5 0.0 0.5 1.0
0.2

0.1

0.0

0.1

0.2 epoch 10

0.000

trajectory

1.0 0.5 0.0 0.5 1.0
0.2

0.1

0.0

0.1

0.2 epoch 20

0.000

trajectory

1 0 1
0.2

0.1

0.0

0.1

0.2 epoch 30

0.000

trajectory

1.0 0.5 0.0 0.5 1.0
pos

0.2

0.1

0.0

0.1

0.2

an
gl

e

1.0 0.5 0.0 0.5 1.0
pos

0.2

0.1

0.0

0.1

0.2

1.0 0.5 0.0 0.5 1.0
pos

0.2

0.1

0.0

0.1

0.2

1 0 1
pos

0.2

0.1

0.0

0.1

0.2

1.0

0.5

0.0

0.5

1.0

0.00

0.02

0.04

0.06

0.08

0.10

Figure 5.3: Visualization of the growing viable subsets learned by CRABS in Move .
To illustrate the 4-dimensional state space, we project a state from [x, θ, ẋ, θ̇] to
[x, θ]. Top row illustrates the learned Chφ at different epochs. The red curve encloses
superlevel set Chφ , while the green points indicate the projected trajectory of the
current safe policy. We can also observe that policy π learns to move left as required
by the task. We note that shown states in the trajectory sometimes seemingly are
not be enclosed by the red curve due to the projection. Bottom row illustrates the
size of confidence region (defined by Equation (5.7.1)) of the dynamics model Mω at
different epochs. Darker states mean the learned dynamics model is less confident.
We can observe that the learned dynamics model tends to be confident at more states
after diverse data are collected.

(b) Constrained Policy Optimization (CPO) [Achiam et al., 2017], a safe RL

algorithm which builds a trust-region around the current policy and optimizes the

policy in the trust-region, (c) RecoveryRL [Thananjeyan et al., 2021] which leverages

offline data to pretrain a risk-sensitive Q function and also utilize two policies to

achieving two goals (being safe and obtaining high rewards), and (d) SQRL [Srinivasan

et al., 2020] which leverages offline data in an easier environment and fine-tunes the

policy in a more difficult environment. SAC and CPO are given an initial safe policy

for safe exploration, while RecoveryRL and SQRL are given offline data containing 40K

steps from both mixed safe and unsafe trajectories which are free and are not counted.

CRABS collects more data at each iteration in Swing than in other tasks to learn

a better dynamics model M . For SAC, we use the default hyperparameters because

153

we found they are not sensitive. For RecoveryRL and SQRL, the hyperparameters

are tuned in the same way as in Thananjeyan et al. [2021]. For CPO, we tune the

step size and batch size. More details of experiment setup and the implementation of

baselines can be found in Section 5.7.1.

Results. Our main results are shown in Figure 5.2. From the perspective of total

rewards, SAC achieves the best total rewards among all of the 5 algorithms in Move

and Swing . In all tasks, CRABS can achieve reasonable total rewards and learns

faster at the beginning of training, and we hypothesize that this is directly due to its

strong safety enforcement. RecoveryRL and SQRL learn faster than SAC in Move ,

but they suffer in Swing . RecoveryRL and SQRL are not capable of learning in

Swing , although we observed the average return during exploration at the late stages

of training can be as high as 15. CPO is quite sample-inefficient and does not achieve

reasonable total rewards as well.

From the perspective of safety violations, CRABS surpasses all baselines without

a single safety violation. The baseline algorithms always suffer from many safety

violations. SAC, SQRL, and RecoveryRL have a similar number of unsafe trajectories in

Upright, Tilt, Move , while in Swing , SAC has the fewest violations and RecoveryRL

has the most violations. CPO has a lot of safety violations. We observe that for some

random seeds, CPO does find a safe policy and once the policy is trained well, the

safety violations become much less frequent, but for other random seeds, CPO keeps

visiting unsafe trajectories before it reaches its computation budget.

Visualization of learned viable subset Chφ. To demonstrate that the algorithms

work as expected, we visualized the viable set Chφ in Figure 5.3. As shown in the

figure, our algorithm CRABS succeeds in certifying more and more viable states and

does not get stuck locally, which demonstrates the efficacy of the regularization at

Section 5.5.2. We also visualized how confident the learned dynamics model is as

154

training goes on. More specifically, the uncertainty of a calibrated dynamics model M

at state s is defined as

Uncertainty(M, s) , max
s1,s2∈M(s,0)

‖s1 − s2‖2. (5.7.1)

We can see from Figure 5.3 that the initial dynamics model is only locally confident

around the initial policy, but becomes more and more confident after collecting more

data.

Handcrafted barrier function h. To demonstrate the advantage of learning a

barrier function, we also conduct experiments on a variant of CRABS, which uses a

handcrafted barrier certificate by ourselves and does not train it, that is, Algorithm 12

without Line 5. The results show that this variant does not perform well: It does

not achieve high rewards, and has many safety violations. We hypothesize that the

policy optimization is often burdened by adversarial training, and the safeguard policy

sometimes cannot find an action to stay within the superlevel set Ch.

5.7.1 Implementation Details

Our code is implemented by Pytorch [Paszke et al., 2019] and runs in a single RTX-

2080 GPU. Typically it takes 12 hours to run one seed for Upright , Tilt and Move ,

and for Swing it takes around 60 hours. In a typical run of Swing , 33 hours are

spent on learning barrier functions.

Environment. All the environments are based on OpenAI Gym [Brockman et al.,

2016] where MuJoCo [Todorov et al., 2012b] serves as the underlying physics engine.

We use discount γ = 0.99.

The tasks Upright and Tilt are based on Pendulum-v0. The obsevation is [θ, θ̇]

where θ is the angle between the pole and a vertical line, and θ̇ is the angular velocity.

155

The agent can apply a torque to the pendulum. The task Move and Swing is based

on InvertedPendulum-v2 with observation [x, θ, ẋ, θ̇]. The agent can control how the

cart moves.

As all of the constraints are in the form of ‖θ‖ ≤ θmax and |x| ≤ xmax. For each

type of constraint, we design Bunsafe to be

Bunsafe(s) = max (ω (θ/θmax) , ω (x/xmax)) ,

with ω(x) = max(0, 100(|x|−1)). If there is no constraint of x, we just take Bunsafe(s) =

ω (θ/θmax). One can easy check that Bunsafe(s) is continuous and equals to 1 at the

boundary of safety set.

Policy. We parametrize our policy using a feed-forward neural network with ReLU

activation and two hidden layers, each of which contains 256 hidden units. Similar to

Haarnoja et al. [2018], the output of the policy is squashed by a tanh function.

The initial policy is obtained by running SAC for 105 steps, checking the interme-

diate policy for every 104 steps and picking the first safe intermediate policy.

In all tasks, we optimize the policy for 2000 steps in a single epoch.

Dynamics Model. We use an ensemble of five learned dynamics models as the

calibrated dynamcis model. Each of the dynamics model contains 4 hidden layers

with 400 hidden units and use Swish as the activation function [Ramachandran et al.,

2017]. Following Chua et al. [2018b], we also train learnable parameters to bound the

output of σω. We use Adam [Kingma and Ba, 2014] with learning rate 0.001, weight

decay 0.000075 and batch size 256 to optimize the dynamics model.

In the experiment Move and Swing , the initial model is obtained by traininng

one a data for 20000 steps with 500 safe trajectories, obtained by adding different

noises to the initial safe policy.

156

At each epoch, we optimize the dynamics models for 1000 steps.

Barrier certificate h. The barrier certificate is parametrized by a feed-forward

neural network with ReLU activation and two hidden layers, each of which contains

256 hidden units. The coefficient λ in Equation (5.5.1) is set to 0.001.

Collecting data. In Upright , Tilt and Move , the Line 3 in Algorithm 12 collects

a single episode. In Swing , the Line 3 collects six episodes, two of which are

from Algorithm 13 with a uniform random policy, another two are from the current

policy, and the remaining two are from the current policy but with more noises. In

Algorithm 13, we first draw n = 100 Gaussian samples ζi ∼ N (0, I), and the sampled

actions are ai = tanh(µθ(s) + ζiσθ(s)), where σθ(s) and µθ(s) are the outputs of the

exploration policy πexpl.

RecoveryRL. We use the code in https://github.com/abalakrishna123/

recovery-rl. We remark that when running experiments in Recovery RL, we do not

add the violation penalty for an unsafe trajectory. We set εrisk = 0.5 (chosen from

[0.1, 0.3, 0.7, 0.7]) and discount factor γrisk = 0.6 (chosen from [0.8, 0.7, 0.6, 0.5]). The

offline dataset Doffline, which is used to pretrain the Qπ
risk, contains 20K transitions

from a random policy and another 20K transitions from the initial (safe) policy used

by CRABS. The violations in the offline dataset is not counted when plotting.

Unfortunately, with chosen hyperparameters, we do not observe reasonable high

reward from the policy, but we do observe that after around 400 episodes, RecoveryRL

visits high reward (15-20) region in the Swing task and there are few violations since

then.

SAC. We implement SAC ourselves with learned temperature α, which we hypothe-

size is the reason of it superior performance over RecoveryRL and SQRL. The violation

157

https://github.com/abalakrishna123/recovery-rl
https://github.com/abalakrishna123/recovery-rl

penalty is chosen to be 30 from [3, 10, 30, 100] by tuning in the Swing and Move

task. We found out that with violation penalty being 100, SAC has slightly fewer

violations (around 167), but the total reward can be quite low (< 2) after 106 samples,

so we choose to show the result of violation penalty being 30.

SQRL. We use code provided by RecoveryRL with the same offline data and

hyperparameters. However, we found out that the ν parameter (that is, the La-

grangian multiplier) is very important and tune it by choosing the optimal one from

[3, 10, 30, 100, 300] in Swing . The optimal ν is the same as that for SAC, which is 30.

As SQRL and RecoveryRL use a fixed temperature for SAC, we find it suboptimal in

some cases, e.g., for Swing .

CPO. We use the code in https://github.com/jachiam/cpo. To make CPO more

sample efficient and easier to compare, we reduce the batch size from 50000 to 5000

(for Move and Tilt) or 1000 (for Tilt and Upright). We tune the step size in

[0.02, 0.05, 0.005] but do not find substantial difference, while tuning the batch size

can significantly reduce its sample efficiency, although it is still sample-inefficient.

5.8 Conclusion

In this chapter, we propose a novel algorithm CRABS for training-time safe RL. The

key idea is that we co-train a barrier certificate together with the policy to certify

viable states, and only explore in the learned viable subset. The empirical rseults

show that CRABS can learn some tasks without a single safety violation. We consider

using model-based policy optimization techniques to improve the total rewards and

sample efficiency as a promising future work.

We focus on low-dimensional continuous state space in this chapter because it

is already a sufficiently challenging setting for zero training-time violations, and we

158

https://github.com/jachiam/cpo

leave the high-dimensional state space as an important open question. We observed

in our experiments that it becomes more challenging to learn a dynamics model in

higher dimensional state space that is sufficiently accurate and calibrated even under

the training data distribution (the distribution of observed trajectories). Therefore,

to extend our algorithms to high dimensional state space, we suspect that we either

need to learn better dynamics models or the algorithm needs to be more robust to the

errors in the dynamics model.

159

Bibliography

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of
linear quadratic systems. In Proceedings of the 24th Annual Conference on Learning
Theory, pages 1–26, 2011.

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. arXiv preprint arXiv:1705.10528, 2017.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement
learning: worst-case regret bounds. In Advances in Neural Information Processing
Systems, pages 1184–1194, 2017.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Jacopo Aleotti and Stefano Caselli. Grasp recognition in virtual reality for robot
pregrasp planning by demonstration. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pages 2801–2806.
IEEE, 2006.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. Safe reinforcement learning via shielding. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil
Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications.
In 2019 18th European Control Conference (ECC), pages 3420–3431. IEEE, 2019.

Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosym-
bolic reinforcement learning with formally verified exploration. arXiv preprint
arXiv:2009.12612, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.

160

Hindsight experience replay. In Advances in Neural Information Processing Systems,
pages 5048–5058, 2017.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and autonomous systems, 57(5):
469–483, 2009.

Kavosh Asadi, Dipendra Misra, and Michael L Littman. Lipschitz continuity in
model-based reinforcement learning. arXiv preprint arXiv:1804.07193, 2018.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds
for reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 263–272. JMLR. org, 2017.

J Andrew Bagnell. An invitation to imitation. Technical report, CARNEGIE-MELLON
UNIV PITTSBURGH PA ROBOTICS INST, 2015.

Michael Bain and Claude Sommut. A framework for behavioural claning. Machine
intelligence, 15(15):103, 1999.

Peter L Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for
reinforcement learning in weakly communicating mdps. In Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pages 35–42. AUAI Press,
2009.

Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause.
Safe model-based reinforcement learning with stability guarantees. arXiv preprint
arXiv:1705.08551, 2017.

Julian Besag. Comments on “representations of knowledge in complex systems” by u.
grenander and mi miller. J. Roy. Statist. Soc. Ser. B, 56(591-592):4, 1994.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian
Shkurti, and Animesh Garg. Conservative safety critics for exploration. arXiv
preprint arXiv:2010.14497, 2020.

Ross Boczar, Nikolai Matni, and Benjamin Recht. Finite-data performance guar-
antees for the output-feedback control of an unknown system. arXiv preprint
arXiv:1803.09186, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee. Sample-Efficient Rein-
forcement Learning with Stochastic Ensemble Value Expansion. ArXive-prints, July
2018.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion.
In Advances in Neural Information Processing Systems, pages 8224–8234, 2018.

161

Michael Carter. Foundations of mathematical economics. MIT press, 2001.

Jessica Chemali and Alessandro Lazaric. Direct policy iteration with demonstrations.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end
safe reinforcement learning through barrier functions for safety-critical continuous
control tasks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3387–3395, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh.
A lyapunov-based approach to safe reinforcement learning. arXiv preprint
arXiv:1805.07708, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Moham-
mad Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control.
arXiv preprint arXiv:1901.10031, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models.
In Advances in Neural Information Processing Systems, pages 4754–4765, 2018a.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
reinforcement learning in a handful of trials using probabilistic dynamics models.
In NeurIPS, 2018b.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and
Pieter Abbeel. Model-based reinforcement learning via meta-policy optimization.
arXiv preprint arXiv:1809.05214, 2018.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru,
and Yuval Tassa. Safe exploration in continuous action spaces. arXiv preprint
arXiv:1801.08757, 2018.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret:
Uniform pac bounds for episodic reinforcement learning. In Advances in Neural
Information Processing Systems, pages 5713–5723, 2017.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the
sample complexity of the linear quadratic regulator. CoRR, abs/1710.01688, 2017.
URL http://arxiv.org/abs/1710.01688.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret
bounds for robust adaptive control of the linear quadratic regulator. Advances in
Neural Information Processing Systems, 31, 2018.

162

http://arxiv.org/abs/1710.01688

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the
sample complexity of the linear quadratic regulator. Foundations of Computational
Mathematics, 20(4):633–679, 2020.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv
preprint arXiv:1205.4839, 2012.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472, 2011.

Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to control
a low-cost manipulator using data-efficient reinforcement learning. 2011.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy
search for robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov.
Openai baselines. https://github.com/openai/baselines, 2017.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the
expressivity of neural networks for deep reinforcement learning. In International
Conference on Machine Learning, pages 2627–2637. PMLR, 2020.

Priya L Donti, Melrose Roderick, Mahyar Fazlyab, and J Zico Kolter. Enforcing robust
control guarantees within neural network policies. arXiv preprint arXiv:2011.08105,
2020.

Yilun Du and Karthik Narasimhan. Task-agnostic dynamics priors for deep reinforce-
ment learning. arXiv preprint arXiv:1905.04819, 2019.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmark-
ing deep reinforcement learning for continuous control. In International Conference
on Machine Learning, pages 1329–1338, 2016.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace:
Learning to reset for safe and autonomous reinforcement learning. arXiv preprint
arXiv:1711.06782, 2017.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss
function for model-based reinforcement learning. In Artificial Intelligence and
Statistics, pages 1486–1494, 2017.

V Feinberg, A Wan, I Stoica, MI Jordan, JE Gonzalez, and S Levine. Model-based
value expansion for efficient model-free reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), 2018a.

163

https://github.com/openai/baselines

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and
Sergey Levine. Model-based value estimation for efficient model-free reinforcement
learning. arXiv preprint arXiv:1803.00101, 2018b.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection
between generative adversarial networks, inverse reinforcement learning, and energy-
based models. arXiv preprint arXiv:1611.03852, 2016a.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International Conference on Machine
Learning, pages 49–58, 2016b.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-
span-constrained exploration-exploitation in reinforcement learning. arXiv preprint
arXiv:1802.04020, 2018.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial
inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks
in deep q-learning algorithms. In International Conference on Machine Learning,
pages 2021–2030, 2019.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement
learning without exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation
error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018b.

Yang Gao, Ji Lin, Fisher Yu, Sergey Levine, Trevor Darrell, et al. Reinforcement
learning from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey
Levine. Q-prop: Sample-efficient policy gradient with an off-policy critic. arXiv
preprint arXiv:1611.02247, 2016a.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep
q-learning with model-based acceleration. In International Conference on Machine
Learning, pages 2829–2838, 2016b.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormal-
ized statistical models, with applications to natural image statistics. Journal of
Machine Learning Research, 13(Feb):307–361, 2012.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In International Conference on Machine Learning, pages 1856–1865, 2018.

164

Elad Hazan, Sham Kakade, and Karan Singh. The nonstochastic control problem. In
Algorithmic Learning Theory, pages 408–421. PMLR, 2020.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and
Yuval Tassa. Learning continuous control policies by stochastic value gradients. In
Advances in Neural Information Processing Systems, pages 2944–2952, 2015.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning
from demonstrations. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Karl Hinderer. Lipschitz continuity of value functions in markovian decision processes.
Mathematical Methods of Operations Research, 62(1):3–22, 2005.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in Neural Information Processing Systems, pages 4565–4573, 2016.

K Jetal Hunt, D Sbarbaro, R Żbikowski, and Peter J Gawthrop. Neural networks for
control systems—a survey. Automatica, 28(6):1083–1112, 1992.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for
reinforcement learning. Journal of Machine Learning Research, 11(Apr):1563–1600,
2010.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alexandru C Serban, and Rod-
erick Bloem. Safe reinforcement learning via probabilistic shields. arXiv preprint
arXiv:1807.06096, 2018.

Wonseok Jeon, Seokin Seo, and Kee-Eung Kim. A bayesian approach to generative
adversarial imitation learning. In Advances in Neural Information Processing
Systems, pages 7429–7439, 2018.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning
provably efficient? In Advances in Neural Information Processing Systems, pages
4863–4873, 2018.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement
learning for atari. ArXiv, abs/1903.00374, 2019.

S. Kakade, M. Wang, and L. F. Yang. Variance Reduction Methods for Sublinear
Reinforcement Learning. ArXiv e-prints, February 2018.

165

Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In ICML, volume 2, pages 267–274, 2002.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
arXiv preprint arXiv:1806.10293, 2018.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous
deep reinforcement learning. In Conference on Robot Learning, pages 195–206, 2017.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial
time. Machine learning, 49(2-3):209–232, 2002.

S Mohammad Khansari-Zadeh and Aude Billard. Learning stable nonlinear dynamical
systems with gaussian mixture models. IEEE Transactions on Robotics, 27(5):
943–957, 2011.

Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning
from limited demonstrations. In Advances in Neural Information Processing Systems,
pages 2859–2867, 2013.

Kee-Eung Kim and Hyun Soo Park. Imitation learning via kernel mean embedding.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jonathan Ko and Dieter Fox. Gp-bayesfilters: Bayesian filtering using gaussian process
prediction and observation models. Autonomous Robots, 27(1):75–90, 2009.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and
Jonathan Tompson. Discriminator-actor-critic: Addressing sample inefficiency and
reward bias in adversarial imitation learning. 2018.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:1179–1191, 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-
ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Kailasam Lakshmanan, Ronald Ortner, and Daniil Ryabko. Improved regret bounds
for undiscounted continuous reinforcement learning. In International Conference on
Machine Learning, pages 524–532, 2015.

166

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. Dart:
Noise injection for robust imitation learning. arXiv preprint arXiv:1703.09327, 2017.

Martin Lawitzky, Jose Ramon Medina, Dongheui Lee, and Sandra Hirche. Feedback
motion planning and learning from demonstration in physical robotic assistance:
differences and synergies. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3646–3652. IEEE, 2012.

Hoang M Le, Yisong Yue, Peter Carr, and Patrick Lucey. Coordinated multi-agent
imitation learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1995–2003. JMLR. org, 2017.

Hoang M Le, Nan Jiang, Alekh Agarwal, Miroslav Dudík, Yisong Yue, and Hal
Daumé III. Hierarchical imitation and reinforcement learning. arXiv preprint
arXiv:1803.00590, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy
search under unknown dynamics. In Advances in Neural Information Processing
Systems, pages 1071–1079, 2014.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference
on Machine Learning, pages 1–9, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research, 17(1):
1334–1373, 2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. In International Conference on Learning Representations,
2016.

Rudolf Lioutikov, Alexandros Paraschos, Jan Peters, and Gerhard Neumann. Sample-
based informationl-theoretic stochastic optimal control. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 3896–3902. IEEE, 2014.

Yuping Luo and Tengyu Ma. Learning barrier certificates: Towards safe reinforce-
ment learning with zero training-time violations. Advances in Neural Information
Processing Systems, 34, 2021.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma.
Algorithmic framework for model-based deep reinforcement learning with theoretical
guarantees. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019a.

167

Yuping Luo, Huazhe Xu, and Tengyu Ma. Learning self-correctable policies and
value functions from demonstrations with negative sampling. arXiv preprint
arXiv:1907.05634, 2019b.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and
Stefano Ermon. Calibrated model-based deep reinforcement learning. arXiv preprint
arXiv:1906.08312, 2019.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a
competitive approach to reinforcement learning. arXiv preprint arXiv:1803.07055,
2018.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

Teodor Mihai Moldovan, Sergey Levine, Michael I Jordan, and Pieter Abbeel.
Optimism-driven exploration for nonlinear systems. In Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on, pages 3239–3246. IEEE,
2015.

Igor Mordatch, Nikhil Mishra, Clemens Eppner, and Pieter Abbeel. Combining model-
based policy search with online model learning for control of physical humanoids.
In RoboticsandAutomation(ICRA),2016IEEEInternationalConferenceon, pages 242–
248. IEEE, 2016.

Jun Morimoto and Christopher G Atkeson. Minimax differential dynamic programming:
An application to robust biped walking. In Advances in neural information processing
systems, pages 1563–1570, 2003.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and
efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1054–1062, 2016.

168

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free
fine-tuning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 7559–7566. IEEE, 2018.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages
6292–6299. IEEE, 2018.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning.
In Icml, volume 1, page 2, 2000.

Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for enforcing
high relative-degree safety-critical constraints. In 2016 American Control Conference
(ACC), pages 322–328. IEEE, 2016.

Frank Nielsen and Richard Nock. On the chi square and higher-order chi distances for
approximating f-divergences. IEEE Signal Processing Letters, 21(1):10–13, 2014.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances
in Neural Information Processing Systems, pages 6118–6128, 2017.

Motoya Ohnishi, Li Wang, Gennaro Notomista, and Magnus Egerstedt. Barrier-
certified adaptive reinforcement learning with applications to brushbot navigation.
IEEE Transactions on robotics, 35(5):1186–1205, 2019.

Takayuki Osa, Amir M Ghalamzan Esfahani, Rustam Stolkin, Rudolf Lioutikov, Jan
Peters, and Gerhard Neumann. Guiding trajectory optimization by demonstrated
distributions. IEEE Robotics and Automation Letters, 2(2):819–826, 2017.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel,
Jan Peters, et al. An algorithmic perspective on imitation learning. Foundations
and Trends® in Robotics, 7(1-2):1–179, 2018.

Razvan Pascanu, Guido F Montufar, and Yoshua Bengio. On the number of inference
regions of deep feed forward networks with piece-wise linear activations. 2013.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien
Racanière, David Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia.
Learning model-based planning from scratch. arXiv preprint arXiv:1707.06170,
2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In

169

H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen,
Yide Shentu, Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell.
Zero-shot visual imitation. In International Conference on Learning Representations,
2018.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal.
Probabilistic planning with sequential monte carlo methods. 2018.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted bellman residual minimiza-
tion handling expert demonstrations. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 549–564. Springer, 2014.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy
gradient methods. In Advances in Neural Information Processing Systems, pages
1394–1402, 2013.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz
markov decision processes. Machine Learning, 100(2-3):255–283, 2015.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash
Kumar, and Wojciech Zaremba. Multi-goal reinforcement learning: Challenging
robotics environments and request for research, 2018.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pages 305–313, 1989.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference
models: Model-free deep rl for model-based control. arXiv preprint arXiv:1802.09081,
2018a.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference
models: Model-free deep rl for model-based control. International Conference on
Learning Representations, 2018b.

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier
certificates. In International Workshop on Hybrid Systems: Computation and
Control, pages 477–492. Springer, 2004.

Stephen Prajna and Anders Rantzer. On the necessity of barrier certificates. IFAC
Proceedings Volumes, 38(1):526–531, 2005.

170

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, et al. Imagination-augmented agents for deep reinforcement learning. In
Advances in neural information processing systems, pages 5690–5701, 2017.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.
Epopt: Learning robust neural network policies using model ensembles. arXiv
preprint arXiv:1610.01283, 2016.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. Learning complex dexterous ma-
nipulation with deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.
arXiv preprint arXiv:1710.05941, 2017.

Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical systems,
2018.

Melrose Roderick, Vaishnavh Nagarajan, and J Zico Kolter. Provably safe pac-mdp
exploration using analogies. arXiv preprint arXiv:2007.03574, 2020.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 661–668, 2010.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via
interactive no-regret learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learn-
ing and structured prediction to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics, pages
627–635, 2011.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin
Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics
engines for inference and control. arXiv preprint arXiv:1806.01242, 2018.

Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample efficient imitation
learning for continuous control. 2018.

Igal Sason and Sergio Verdú. f -divergence inequalities. IEEE Transactions on
Information Theory, 62(11):5973–6006, 2016.

Stefan Schaal. Learning from demonstration. In Advances in neural information
processing systems, pages 1040–1046, 1997.

171

Yannick Schroecker and Charles L Isbell. State aware imitation learning. In Advances
in Neural Information Processing Systems, pages 2911–2920, 2017.

Yannick Schroecker, Mel Vecerik, and Jon Scholz. Generative predecessor models for
sample-efficient imitation learning. 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau, and Yoshua
Bengio. The bottleneck simulator: A model-based deep reinforcement learning
approach. arXiv preprint arXiv:1807.04723, 2018.

Harshit Sikchi, Wenxuan Zhou, and David Held. Lyapunov barrier policy optimization.
arXiv preprint arXiv:2103.09230, 2021.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbren-
ner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017a.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim
Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,
et al. The predictron: End-to-end learning and planning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3191–3199. JMLR.
org, 2017b.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362
(6419):1140–1144, 2018. ISSN 0036-8075. doi: 10.1126/science.aar6404.

172

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht.
Learning without mixing: Towards a sharp analysis of linear system identification.
arXiv preprint arXiv:1802.08334, 2018.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Universal planning networks. arXiv preprint arXiv:1804.00645, 2018.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn.
Learning to be safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603,
2020.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement
learning by pid lagrangian methods. In International Conference on Machine
Learning, pages 9133–9143. PMLR, 2020.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman.
Pac model-free reinforcement learning. In Proceedings of the 23rd international
conference on Machine learning, pages 881–888. ACM, 2006.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell.
Deeply aggrevated: Differentiable imitation learning for sequential prediction. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 3309–3318. JMLR. org, 2017.

Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Com-
bining reinforcement learning & imitation learning. arXiv preprint arXiv:1805.11240,
2018a.

Wen Sun, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Dual policy
iteration. arXiv preprint arXiv:1805.10755, 2018b.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Model-based rl in contextual decision processes: Pac bounds and exponential
improvements over model-free approaches. In Conference on Learning Theory, pages
2898–2933, 2019.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and
reacting. SIGART Bulletin, 2:160–163, 1990a.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Machine Learning Proceedings 1990,
pages 216–224. Elsevier, 1990b.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting.
ACM SIGART Bulletin, 2(4):160–163, 1991.

Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P Bowling.
Dyna-style planning with linear function approximation and prioritized sweeping.
arXiv preprint arXiv:1206.3285, 2012.

173

István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly
tight exploration complexity bounds. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 1031–1038, 2010.

Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pages 780–789,
2014.

Aviv Tamar, Dotan Di Castro, and Ron Meir. Integrating a partial model into
model free reinforcement learning. Journal of Machine Learning Research, 13(Jun):
1927–1966, 2012.

Voot Tangkaratt, Syogo Mori, Tingting Zhao, Jun Morimoto, and Masashi Sugiyama.
Model-based policy gradients with parameter-based exploration by least-squares
conditional density estimation. Neural networks, 57:128–140, 2014.

Andrew J Taylor, Victor D Dorobantu, Hoang M Le, Yisong Yue, and Aaron D Ames.
Episodic learning with control lyapunov functions for uncertain robotic systems.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6878–6884. IEEE, 2019.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy
optimization. arXiv preprint arXiv:1805.11074, 2018.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srini-
vasan, Minho Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken
Goldberg. Recovery rl: Safe reinforcement learning with learned recovery zones.
IEEE Robotics and Automation Letters, 6(3):4915–4922, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012a.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 5026–5033. IEEE, 2012b.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018.

Stephen Tu and Benjamin Recht. The gap between model-based and model-free
methods on the linear quadratic regulator: An asymptotic viewpoint. arXiv preprint
arXiv:1812.03565, 2018.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh
Agarwal. Safe reinforcement learning via curriculum induction. arXiv preprint
arXiv:2006.12136, 2020.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

174

Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal
Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging demonstrations for deep reinforcement learning on robotics problems
with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks.
arXiv preprint arXiv:1906.08649, 2019.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. arXiv preprint arXiv:1611.01224, 2016.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas
Heess. Robust imitation of diverse behaviors. In Advances in Neural Information
Processing Systems, pages 5320–5329, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):
279–292, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist rein-
forcement learning algorithms. Connection Science, 3(3):241–268, 1991.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

Chris Xie, Sachin Patil, Teodor Moldovan, Sergey Levine, and Pieter Abbeel. Model-
based reinforcement learning with parametrized physical models and optimism-driven
exploration. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 504–511. IEEE, 2016.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Ac-
celerating safe reinforcement learning with constraint-mismatched policies. arXiv
preprint arXiv:2006.11645, 2020.

Gu Ye and Ron Alterovitz. guided motion planning. In Robotics research, pages
291–307. Springer, 2017.

Michael C Yip and David B Camarillo. Model-less feedback control of continuum
manipulators in constrained environments. IEEE Transactions on Robotics, 30(4):
880–889, 2014.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization.
arXiv preprint arXiv:2005.13239, 2020.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in
reinforcement learning without domain knowledge using value function bounds. In
International Conference on Machine Learning, pages 7304–7312, 2019.

175

Moritz A Zanger, Karam Daaboul, and J Marius Zöllner. Safe continuous control
with constrained model-based policy optimization. arXiv preprint arXiv:2104.06922,
2021.

Jun Zeng, Bike Zhang, and Koushil Sreenath. Safety-critical model predictive control
with discrete-time control barrier function. arXiv preprint arXiv:2007.11718, 2020.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual
learning without normalization. arXiv preprint arXiv:1901.09321, 2019.

Shengjia Zhao, Tengyu Ma, and Stefano Ermon. Individual calibration with randomized
forecasting. arXiv preprint arXiv:2006.10288, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

176

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview
	1.2 Previously Published Works
	1.3 Notations and General Setup

	2 Algorithmic Framework with Theoretical Guarantees
	2.1 Background
	2.2 Related Work
	2.3 Preliminaries
	2.4 Algorithmic Framework
	2.4.1 Sample Complexity Bounds

	2.5 Discrepancy Bounds Design
	2.5.1 Norm-based Prediction Error Bounds
	2.5.2 Representation-invariant Discrepancy Bounds
	2.5.3 Refined Bounds

	2.6 Practical Implementation and Experiments
	2.6.1 Practical Implementation
	2.6.2 Experimental Results
	2.6.3 Ablation Study
	2.6.4 Implementation Details

	2.7 Conclusion

	3 Expressivity of Neural Networks in Deep Reinforcement Learning
	3.1 Background
	3.2 Related Work
	3.3 Preliminaries
	3.4 Approximability of Q-functions and Dynamics
	3.4.1 A Provable Construction of MDPs with Complex Q
	3.4.2 Extension of the Constructed Family
	3.4.3 Approximability of Q-function
	3.4.4 Sample Complexity Lower Bound of Q-learning
	3.4.5 Approximability of Q-functions of Randomly Generated MDPs

	3.5 Model-based Bootstrapping Planner
	3.6 Experiments
	3.6.1 Ablation Study
	3.6.2 Implementation Details

	3.7 Conclusion

	4 Imitation Learning via Negative Sampling
	4.1 Background
	4.2 Related Work
	4.3 Problem Setup and Challenges
	4.4 Theoretical Motivations
	4.5 Main Approach
	4.6 Experiments
	4.6.1 Experimental Setup
	4.6.2 Experiment Results
	4.6.3 Ablation Study
	4.6.4 Implementation Details

	4.7 Conclusion

	5 Safe Reinforcement Learning with Zero Training-time Violations
	5.1 Background
	5.2 Related Work
	5.3 Problem Setup and Preliminaries
	5.3.1 Barrier Certificate
	5.3.2 Metropolis-Adjusted Langevin Algorithm (MALA)

	5.4 Learning Barrier Certificates via Adversarial Training
	5.5 Main Approach
	5.5.1 Safe Exploration with Certified Safeguard Policy
	5.5.2 Regularizing Barrrier Certificates
	5.5.3 Learning a Calibrated Dynamics Model
	5.5.4 Policy Optimization

	5.6 High-risk, High-reward Environments
	5.7 Experiments
	5.7.1 Implementation Details

	5.8 Conclusion

	Bibliography

