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Abstract: One of the important tasks of quantum mechanics is to solve the Schrödinger equation with a physical 

potential. We have reported a list of exact bound state solutions of the Schrödinger equation generated from the 

quartic power law potentials using the extended transformation formalism. The bound state energy eigenvalues 

of the generated potential systems are obtained. The constraint equations relating the parameters of the 

potential and angular momentum quantum numbers are also obtained. 
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I. INTRODUCTION 

One of the important tasks of quantum mechanicsis to solve the Schrödinger equation with a physical. 

In recent years, there has been considerable interest in the study of exactly solvable quantum mechanical 

potentials of physical interest as it provides maximum information of the quantum system. Various methods are 

used in the calculation of exact analytic solutions (EAS) of the Schrödinger equation for quantum mechanical 

potentials.  

In this paper we present an efficient approach to generate/construct exactly solvable potentials in non-

relativistic quantum mechanics. The approach is based on a transformation/mapping procedure and is known as 

Extended Transformation (ET) method. The method has been found to be a neat and simple method to 

determine the energy eigenfunctions and associated energy eigenvalues spectrum of the generated quantum 

mechanical potentials. The extended transformation (ET) includes a coordinate transformation (CT) followed by 

a functional transformation (FT). A very useful property of the transformation method one should note is that 

the wavefunction of the generated quantum systems (QSs) are almost always normalizable. We have reported 

exact bound sate solutions of the Schrödinger equation for quartic and two term fractional power law potential 

in any chosen dimensional Euclidean spaces. 

 

II. FORMALISM 

The most general dimensionless Schrödinger equation for the already known termed as A-QS quartic potential 

  432 brcrbrarrVA    with  12  m is: 
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The exact analytic solution of A-QS is given by [3, 4]: 
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The energy eigenvalues for the potential system is given by [3, 4] 
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Under extended transformation (ET), which consist of coordinate transformation  rgr B  

and followed by functional transformation: 

      rgrfr BAB  1

 

Let us choose BD as the dimension of the B-QS.  

Then the co-efficient of the term  rB

' will take the form
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This leads to: 
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          To obtain the Standard Schrödinger equation form we make the following predefined ansatze [6-9]  

by taking the first term of A-QS potential as working potential. 
 

To implement Extended Transformation [ET],let  the working potential be selected as: 
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The analytic form of the transformation function is found as: 
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Which satisfies the local property   00 Bg  and asymptotic property   g , 

by putting the    integration constant equal to zero. 
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We obtain: 
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 is the Characteristic Constant of B-Qs and is given by: 
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The another ansatze is: 
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This leads to: 
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Therefore the potential of the newly constructed B-QS becomes: 
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The parameters of the potential are defined as: 
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The constraint equation relating the parameters of the potential are: 
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The energy eigenvalues of B-QS comes out to be: 
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The corresponding energy eigenfunctions of B-QS in desired -dimensional spaces becomes:          
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(i)  Exactly Solved Potentials (ESPs) generated from   432 drcrbrarrVA  and energy 

eigenvalues taking the other terms as working potential: 

QS  rVW
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(ii) Constraint equations relating the parameters of the potentials and energy eigenfunctions: 

QS Constraint equations Energy eigenfunctions 
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III. CONCLUSION 

In extended transformation method it is possible to generate a finite number of different exactly solved 

quantum systems by selecting the working potentials. We have found here a class of exactly solved potentials 

which includes Coulomb+fractional, fractional, Coulomb+linear+harmonic, coulomb potential perturbed by 

terms involving powers of , linear +fractional etc. This technique offers a general and efficient scheme for 

calculating these and other similar potentials of physical and mathematical interest in quantum mechanics. 
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