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Abstract

The aim of this paper is to derive some Holder’s inequalities for the extended Chaudhary-Zubair gamma
function, which is also known as the j-m Chaudhary-Zubair gamma function. Furthermore, some refinements of
Holder’s inequality are also derived.
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I. INTRODUCTION
The aim of this paper is to derive some inequalities of the extended Chaudhary-Zubair gamma function
which is also known as the j-mChaudhary-Zubair gamma function. To be specific, we are going to apply the
generalizations of the Holder’s inequality derived by Mohamed Akkouchi and Mohamed Amine Ighachanein
their paper [1]. Furthermore, using their generalizations of the Holder’s inequality, some new refinements of the
Holder’s inequality are also established. In [2], Chaudhary and Zubair gave the following extension of the
gamma function:

r,(x)= jt“eftf?m .
0

The above extension of the gamma function has wide applications in mathematics in the area of statistical
distributions. Since then, many generalizations of 1.1 have been derived in the literature. Consider for example
the following m-analogue of the Chaudhary-Zubair gamma function [3]

t" o™

T, (X)= [t ™ mdt
0

and the j-m analogue:

t"

w 0t

Fw,m'j(x)z_[tx‘le 1 dt
where @>0and j,m>0.

I1. Main results
Leté and & be two non-negative integrable functions over the range of [a,b]. Let p,q>Osuch that

P+ =1. Then, we define Holder’s inequality as

@5" (t)dt}'l) (iéq (t)dt}q > Ig(t)g(t)dt ,
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For the particular case of p =0 =2, the above inequality is reduced to the Cauchy-Schwarz inequality.
Akkouchi&lghachane gave the following refinement of the above Holder’s inequality:

Theorem 1:Let& and ggbe two non-negative integrable functions over the range of Q2:[a,b]. Let p,q>0
suchthat P+ " =1. Then for n > 2 we have

HCHO O Etr EE S e

1

)

n I
where = n is the usual binomial coefficient for all k {O,l, 2,..., n} .
k) (n—khk!

Furthermore, they also gave a equivalence of Holder’s and Cauchy-Schwarz inequalities as follows.

Theorem 2: Let& and ggbe two non-negative integrable functions over the range of Q:[a,b]. Let p,q>0
such that P~ + q’l =1. Then we have

fleEC0fou()<(1-2 e, ], +-21e 12?1 4 auto

(Ilél du(x ][Hé‘\ du(x J

Now, we apply Theorem 1to m-analogue and j-m-analogue of the Chaudhary-Zubair gamma function.

Theorem 3:Let @ >0. Let a,b >0 with a+b=1and u,v > 0. Then for n > 2 we have

r,.(au+bv)
1 k n—k _
< (a” +b" )Fw . Z( ja b™r, ,(u) "l (v)b_T Con (%u + %vj
k=1
<r,.(u)'r,, (v)b .

Proof: To apply Theorem 1 to the k-analogue of Chaudhary-Zubair gamma function, we first set and let the
t" "
1

measure £ given by d z(t) —e ™ ™"dt. Now, let £(x)=x x*“ Y and §( )=X X and p :é’q =5

which implies that a+b =1. Thus, now we get

[ [t =y
8, ={e0utn | <rao

and
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Using theorem 1, we have
r,.(au+bv)

n—1 L
<(a"+b")r,, ()T, (v) + (njakb"‘kl“w’m (uy™nr, (V) jx” x " du(x)
1
k n—-k —
= (a” +b" )Fw’m (u)'r, ., (v)b + (Ejakb“‘kl“m (u)y'nr, ., (v)b_T I (Eu + Mv] :

Since Fw’m (X) is logarithmically convex, we get

_ k (n—k)
L, (%u + (n - K) vj ST ,m(U)n T, (V) n

forall 1<k <n—1.We have

r,.(au+bv)

n-1 n—k

k —
< (@ +b")T, (U)' Ty (V) + Z(Ejakb”‘krwlm (W, ()T, (%u . (n_nk)vj
k=1
<r, (U)'T,.(v).
This completes our proof.

Theorem 4:Let @>0. Let a,b >0 with a+b=1and u,v > 0. Then for n > 2 we have

| R (au+bv)

n-1 k _
< (an +bn)rw,m,j (u)a 1—‘a),m,j (V)b +;(EJakbnkra),m,j (U)EFE 1—‘co,m,j (V)biT 1—‘w,myj (EU +—(n k) V)

<Tyn; (W) Ty, (V).

Proof: To apply Theorem 1 to the j-m-analogue of Chaudhary-Zubair gamma function, we first set and let the

t"

S
measure L/ given by d,u(t) =e Jdt.Now, let §(X) = x*Y ang E(X) = x*Y ang p=-,q :%

Q|

which implies that a+b =1. Thus, now we get

I2), - @xw—ndﬂ(x)f e

and
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[ N p(x) =T, (au+bv)
0

Using theorem 1, we have
L, ni(au+bv)

o,m, ]

n—

1 k © Ko -
) 0 o 0 0 07 0 o

k=

-1 k —K _
= (" +B") (U) T (V) + nZ(Ejakb”‘ka'm’j (U)o (V)0 Ty, (%u +(“_n'<)VJ
k=1
Since Fw’m'j (X) is logarithmically convex, we get
k (n—=Kk) k (n=k)
| (Hu + - vj STy (U, (V) m
forall 1<k <n-—1. Thus, we get
L, (au+bv)
n-1 k -k _
< (a“ +b" )Fw’m’j (u)a | (v)b + Z(Ejakb”krwym]j (u)a’ﬁ | R (v)b*nT | (%u + w\/}
k=1

<T,. (u)'T, . (V).

This completes our proof.

Now, we present the following two refinements of the Holder’s inequality derived from Theorem 1 and 2.
Theorem 5:Let i and ¢ be two non-negative integrable functions over the range of Q:[a,b]. Let p,q>0

-1 -1 m n. .
suchthat p~+q~ =1.Let m,n > 0such that — +— is an integer. Then we have

P q
m,n I . omf) 1 onfts 11

[lpor e du(X)S(l——] wPe® | vt +=lweP| vie| [lwe"lwe" | du(x)
o Pg p q g p qg ©

1 1
S(”l//gpm‘dy(x)ij‘t/ﬂp" d,u(x)jq.

Q Q
1 m 1 n

Proof: Replace & and & in Theorem 2 with 1 P ® and y % respectively and the desired result readily
follows.

Theorem 6:Let i and @ be two non-negative integrable functions over the range of Q:[a,b]. Let p,q>0

- ~ m n
such that ! +( Y=1 Let m, n > O such that — + — is an integer. Then for N > 2 we have
P q
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m . n 1 1 1 m 1 n j-1 1 1 m 1’kT-p 1 n lf(n_jk)q
o = - <1in = 7 =
[lwoP o|du(x)< et U I AT Y B om0 I S
p ¢ p q

PR
ﬂwm\j\w"\]j du(x)<| [lwedu(x)| | [lwe|du(x) |
Q Q Q

1 m 1 n

Proof: Replace & and ggin Theorem 1 with (//B(pB and 1//a(oa respectively and the desired result readily
follows.

I1l. CONCLUSION
In this paper, we have derived some inequalities for the extended Chaudhary-Zubair gamma

functions.Furthermore, using the results of Mohamed Akkouchi and Mohamed Amine Ighachane, we have
derived some refinements of the Holder’s inequality in the form of Theorem 5 and 6. The substitutions that we
have used in deriving Theorem 5 and 6 were previously useful in deriving the Turan-type inequalities for
polygama function and other special functions [5]. Thus, we believe that Theorem 5 and 6 can also be used in
deriving Turan-type inequalities for the same special functions.
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