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Abstract

The dynamic analysis of the piping system is significant, as most of the piping loads are time dependent and the
equivalent static analysis method does not provide information for predicting fatigue failures, especially when
the loads are acting simultaneously. The primary step in the dynamic analysis is to determine the Mass matrix of
the piping system. The finite element model of the piping system consists of pipe spools, pipe elbows and other
elements classified as rigid elements. The pipe spools can be considered as beam elements and mass matrix of
beam elements are widely available in the literature, but pipe elbows are modeled using equivalent lengths of
piping. In this paper, the mass matrix of the pipe elbow is determined from first principles of virtual work and
the mass matrix coefficients are tabulated for standard pipe elbow sizes.
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I. INTRODUCTION
In the dynamic analysis of the piping system, the combined mass matrix is computed by assembling the
mass matrices of individual piping elements. Mass matrix of the pipe elbow, which is a part of the piping
system, is derived using the virtual work method in this paper. The method of determination of mass matrix for
2D pipe elbow is similar to that of the method used for determining mass matrix of beam elements. But pipe
elbow mass matrix evaluation is more complex than the straight beam elements due to its geometry. In the
below sections, the method used for derivation of mass matrix of pipe elbow is discussed in detail.

Il. FORMULATION FOR MASS MATRIX

2.1 METHOD FOR FORMULATION

To calculate the coefficients of the consistent mass matrix, it is necessary first to determine the
displacement functions corresponding to unit displacement of each node. The displacement function, N;(x), is
the vertical deflection (from the initial undeformed shape to the deformed shape) of every point on the elbow,
when degree of freedom for corresponding node of the pipe elbow is displaced by unity. The vertical deflection
is assumed to vary linearly with the value of the nodal displacement, for small deflection in the elastic regions of
deformation. The total deflection v(x,t), at a point in the elbow is the sum of the displacement functions obtained
from the individual nodal displacements.

v(x,t) = Ny (x)v,(8) + Ny (x)6, (t) + N3(x)v,(8) + Ny(x)0, ()

where, vi(t) and i(t) are the vertical and angular deflection of node ‘i’, at time ‘t’. Acceleration at a

point located ‘x’ distance from the origin of the elbow at time ‘t’ is given as
2

0 .. ..
52 V00 ) = Ny ()91 (1) + N> ()8, (1) + N3 (x)9(8) + Na(2)6, (1)

The inertial force developed on an infinitesimal element at a location ‘x’, due to nodal accelerations, is
obtained by the product of the mass of the infinitesimal element ‘dm’ and the acceleration of the element. When
such inertial force is distributed along the beam, unit nodal displacement in each degree of freedom is achieved
by applying a force or moment. The external work done by the applied force or moment is equated to the
internal work done by the inertial force acting on the beam. Equating the internal work done with the external
work done by the nodal forces, the relationship between the acceleration and the applied forces is obtained. The
below table provides a clear picture of the virtual work method in derivation of the mass matrix of pipe elbow.
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Using Work Energy principle, External Work done by a force to move a unit nodal displacement is equated to
the internal work done by the inertial force. Putting in the matrix form

l[;[yl]l |[m:11 m:12 m:13 m:14]| (1671\

m m m m .
| z1 | — ’21 ’22 ’23 124— { ”1 } — [ml] {X}
Fy2 M3y M3y M3zz Myl
lezj lm’41 m'y; My m’44J k6’2)

2.2 INCLUSION OF AXIAL EFFECTS

When horizontal unit displacement is applied at node-1, the distance moved by different points in the
elbow is shown in the following diagram. The line slopes from unity to zero for points from origin to ‘R’, when
ul=1.
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Horizontal Displacement
(due to ul=1 displacement)

0]
=

x=0 X

Ns (X) is the horizontal displacement function, which gives horizontal movement of a point in elbow located ‘x’
distance from the origin due to unit horizontal displacement at node-1.

The horizontal displacement at a location for imposed displacement at node 1 is given by, N<(x) = (1 - %)

Similarly, when the node -2 is given a unit horizontal displacement, the horizontal displacement distribution is
shown in the following diagram.

Horizontal
Displacement (due
to u2 displacement)

v

x=0 x=R
Ng (X) is the horizontal displacement function, which gives horizontal movement of a point in elbow located ‘x’
distance from the origin due to unit horizontal displacement at node-2.
The horizontal displacement at a location for imposed displacement at node 2 is given by, Ny(x) = (5)

R
Net horizontal displacement along x direction as a function of nodal deflections is given as
u(x)= Ns(x) ul + Ng(x) u

Stage-1 (Acceleration Applied) Stage-2 (Nodal Displacement applied) Internal Energy Stored
Imposed Imposed | External
set of set of Work
Nodal Inertial force on Nodal Done \
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- i - dm’ located at distance ‘x° | inertial force on the entire stretch using mass
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External work done (with unit displacements) and internal energy are equated and written in Matrix form as

below.

{Fxl} _ [m"n m"12] {u1}

Fy2 m"y; m"y) i,
Including the axial effects (derived in sec 2.3) to the mass matrix coefficients (m’;) derived in section 2.4, the
complete mass matrix for a planar elbow is formulated as given below.
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[Fxl '| [m"11 0 0 m";,
[ Fya | I 0 my; my,;, O
|le | | 0 m'y; My, 0
| Fy, | [m" 11 0 0 m"y,
leZ J [ 0 m,31 m,32 0
Mg, 0 my My, 0

A )
M3 My I [ V1|
m'zs m’24|{ 6, }

0 0 |liiy |
mas Mall vz |
My My, k92)

The coefficients are renumbered for the complete mass matrix. The inertial force and the nodal acceleration for
a planar elbow are related with the mass matrix as given below.

[Fa] [ O 0 m,
[Fyi| | 0 My, Myy 0
[ M, | | 0 my, mg 0
|F | | myq 0 0 Myy
lF J l 0 mg, msgs 0

0 mg, mgs 0

0 0 ](i}q
M| | V1]
m36|{91}

0 0 il
mssjwzl
Mee k@zj

The inertial forces and nodal accelerations which are related by the mass matrix as given above, need to be
determined. To determine the mass coefficients, the shape functions have to be found.
The vertical displacement function is given below.

In the section below, the different shape functions will be derived.

v(x,t) = Ny (v () + No(0)8,(8) + N3 (x)v, (£) + Nu(x)0,(t)
The Horizontal displacement function is given below.

u(x,t) = N5 (0w, () + Ne(0)u (t)

2.3 DERIVATION OF SHAPE FUNCTIONS FOR ELBOW AND THEIR PLOT
FShape Boundary Conditions Plot of Deflected Shape
unction
A
. . . - vi=1
The node 1 of pipe elbow is moved vertically up by unit distance. i
The elbow centerline which was part of a circle, now takes | &[T —
the shape of a parabola, with its major axis as the ‘y’ axis. The I~
equation of the deflected shape, y(x), is given in the implicit form .
below.
x? v .
Ni0) | R2 T (R+ 12 :

The ordinate difference between the deflected shape and the original
shape, N1(X) is given by.

M= @enx [1-5 ) (F=w)
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The deflected shape of the element, y(x), when node-1 is rotated
anticlockwise by unity, is derived as follows.

Boundary Conditions:

Y (x=R) = o0; y’(x=0) = 1

Satisfying the above slope conditions,

ax +R
y

y'(x) =

ydy = (ax + R)dx

2 2

y \
Applying boundary condition, y(x=0)=R gives,
RZ
C= -
Applying boundary condition, y(x=R)=0 gives, \
0="C+R*+% a=-3 ‘
The ordinate difference between the deflected shape and the original
shape, Na(x) is given below. )
Ny () = (V=3x7 + 2Rx + R?) - (VR? = x2)
The node 2 of pipe elbow is moved vertically up by unit distance. Or—
The elbow centerline which was part of a circle, now takes S
the shape of a parabola, with major axis as the x axis. The equation N
of the deflected shape, y(x), is given in the implicit form below. ““\
¥ O-DP
RZT(R-1?
Na(X)
The ordinate difference between the deflected shape and the original .
shape, N3(X) is given below.
x2 . \
NyGo) =[ 1+ (R-1)x /1—ﬁ - (VRZ=x2)
1 v2=l
|
@2
D =
The deflected shape of the element, y(x), when node-2 is rotated 1 ~
anticlockwise by unity, is derived as follows.
Boundary Conditions: N
y(x=0)=R; .
y(x=R)=0;
Y’ (x=0)=0;
y’(x=R)=1
Na(X) With four boundary conditions, the general equation can be written
as
y(x) =ax®+bx?+cx+d
The ordinate difference between the deflected shape and the original 7
shape, N4(x) is given below. /./ﬁ 02=1
' w‘_i'l

3 4
Ny(x) = (Faﬂ —Ex2 + R) - (\/R2 - x?)
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The horizontal displacement at a location for imposed unit
displacement at node-1 is given by,

weo=(1-3)

ul=1

@4 — 1+

N5(X)
Horizontal Displacement
(due to ul displacement) \
\
z\
x=0 x=R
The horizontal displacement at a location for imposed unit @ —
displacement at node-2 is given by, : N
N = (3) ]
\\
N (x) \
Horizontal
Displacement (due
to u2 displacement)
x=0 x=R I\
2
u2=1
2.4 MASS COEFFICIENTS OF THE MASS MATRIX
The mass matrix is consolidated from the above sections and is given below.
- R R
stNsdx 0 0 jN5N6dx 0 0
0 0
R R R R
0 leNldx leNde 0 fN1N3dx fN1N4dx
0 0 0 0
R R R R
0 fNZNldx fNZNde 0 fN2N3dx fN2N4dx
T
M=mxzX| g 0 0 R 0 0
fNéNde 0 0 fN6N6dx 0 0
0 0
R R R R
0 fN3N1dx fN3N2dx 0 fN3N3dx fN3N4dx
0 0 0 0
R R R R
0 fN4N1dx fN4N2dx 0 fN4N3dx fN4N4dx
0 0 0 0
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Presenting closed form solutions will be too detailed and hence the mass matrix for different elbows is
computed and tabulated below. The mass per unit length, m in kg/m, is to be separately calculated depending on
pipe schedule and is to be used along with the mass coefficients matrix given below.

TABLE -1: Mass Matrix Coefficients for Standard Pipe Sizes

SI.No Eé?few Mass Matrix = im x 1072 x Matrix
8.98 0 0 4.49 0 0
0 17.95 0.68 0 3.2 -1.23
1 0 0.68 0.03 0 0.19 -0.07
4 4.49 0 0 8.98 0 0
0 3.2 0.19 0 2.58 -0.47
0 -1.23 -0.07 0 -0.47 0.15
13.22 0 0 6.61 0 0
0 26.44 1.47 0 4.71 -2.67
2 0 1.47 0.1 0 0.41 -0.21
6” 6.61 0 0 13.22 0 0
0 4.71 0.41 0 3.8 -1.02
0 -2.67 -0.21 0 -1.02 0.47
17.21 0 0 8.6 0 0
0 34.42 2.49 0 6.13 -4.52
3 0 2.49 0.22 0 0.69 -0.46
8” 8.6 0 0 17.21 0 0
0 6.13 0.69 0 4.95 -1.73
0 452 0.46 0 1.73 1.04
21.45 0 0 10.72 0 0
0 42.9 3.87 0 7.64 -7.03
4 0 3.87 0.43 0 1.07 -0.89
10~ 10.72 0 0 21.45 0 0
0 7.64 1.07 0 6.17 -2.69
0 7.03 -0.89 0 2.69 2.01
25.44 0 0 12.72 0 0
0 50.87 5.44 0 9.06 -9.88
5 0 5.44 0.72 0 1.51 -1.48
127 12.72 0 0 25.44 0 0
0 9.06 1.51 0 7.32 -3.78
0 -9.88 -1.48 0 -3.78 3.34
21.45 0 0 10.72 0 0
0 429 3.87 0 7.64 -7.03
0 3.87 0.43 0 1.07 -0.89
10.72 0 0 21.45 0 0
6 147 0 7.64 1.07 0 6.17 -2.69
0 -7.03 -0.89 0 -2.69 2.01
! 187 35.91 0 0 17.95 0 0
0 71.82 10.83 0 12.79 -19.7
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0 10.83 2.03 0 3.01 -4.16
17.95 0 0 35.91 0 0

0 12.79 3.01 0 10.33 -7.54

0 -19.7 -1.416 0 -7.54 9.41
39.9 0 0 19.95 0 0

0 79.8 13.38 0 14.21 -24.32

8 0 13.38 2.78 0 3.72 -5.71
20” 19.95 0 0 39.9 0 0

0 14.21 3.72 0 11.48 -9.31

0 -24.32 -5.71 0 -9.31 12.91
47.88 0 0 23.94 0 0

0 95.76 19.26 0 17.05 -35.02

9 0 19.26 4.81 0 5.35 -9.86
24> 23.94 0 0 47.88 0 0

0 17.05 5.35 0 13.77 -13.41

0 -35.02 -9.86 0 -13.41 22.3

To find Mass matrix for a particular pipe elbow, coefficients of the matrix given for each pipe elbow size, has to
be multiplied with m x 10~2, where mass per unit meter, m is in kg/m.

I1l. CONCLUSION

Virtual work method is used to derive the 2D mass matrix of pipe elbow, which can be used for
determining the overall mass matrix of the piping system. Mass matrices for different standard pipe elbows are
given in this paper and solutions given in simple form, instead of large algebraic equations. The Coordinate
transfer method can be used for the elbow in different orientations, similar to the methods used for skewed beam
elements. Based on the schedule (thickness) and material of the pipe elbow, the mass per unit length m (kg/m),
of the pipe elbow can be found using the tabulated values. Thus, instead of an equivalent pipe length method, a
consistent mass matrix of pipe elbow is determined using virtual work method and presented in this paper.
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