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Abstract 

This paper deals with the theoretical investigation of the thermal convection in a Maxwell ferromagnetic fluid 

layer saturating in a porous medium using linear stability theory. The linear stability analysis is based on the 
classical normal mode technique. For a flat fluid layer contained between two free boundaries, an exact 

solution is obtained using Galerkin method. For the stationary convection, the thermal Rayleigh number and the 

magnetic thermal Rayleigh number has been obtained analytically. It is also observed that the stress relaxation 

parameter of Maxwell ferromagnetic fluid does not play any role in stationary convection. It is found that all the 

three parameters buoyancy magnetization parameter, non-buoyancy magnetization parameter, and medium 

permeability parameter always have destabilizing effect on the system. The principle of exchange of stabilities is 

valid under certain conditions. The results are depicted both analytically and graphically. 
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I. Introduction 

Magnetic fluids or ferrofluids are colloidal suspensions of fine ferromagnetic mono domain 

nanoparticles in non-conducting fluids. The method for making ferrofluids was developed in the 1960s. Several 

researchers from time to time have contributed to the development of ferrofluids. Finlayson [1] studied the 

convective instability of the ferrofluid layer heated from below and obtained a precise solution for the case of 

free boundaries and approximate solutions (for stationary convection) for rigid boundaries. In the recent past, 

studies on ferrofluids have attracted the attention of many researchers because of their wide applications in 

several areas. A detailed account of thermal convection problems in Newtonian fluids was given by 

Chandrasekhar [2].  Further, a detailed introduction to this subject was provided by Rosensweig [3, 4] in his 

monograph and review article.  

Several convection problems in ferrofluids were investigated by Lalas and Carmi [5], Shliomis [6], 
Stiles and Kagan [7], Venkatasubramanian and Kaloni [8], Abraham [9], Sunil and their co-workers [10-12]. 

Jasmine [13] studied thermoconvective stability of a ferrofluids in presence of magnetic field. . Prakash [14] 

examined the effect of magnetic field dependent viscosity on the thermal convection in a ferromagnetic fluid 

layer. Siddheshwar et al. [15] discussed the finite-amplitude ferro-convection and electro-convection in a 

rotatory fluid. Nadian et al. [16, 17] presented the study on couple stress ferromagnetic fluids under varying 

gravity field. Meghana and Pranesh [18] investigated four types of effects of rotation modulation on Rayleigh–

Bénard convection in a ferromagnetic fluid with couple stress.  

Thermal convection in a non-Newtonian fluid layer in porous media has attracted considerable 

attention of the researchers, due to its wide applications in different fields as bio-rheology, geophysics, and 

petroleum industries. The first visco-elastic rate type model, which is still used widely, is due to Maxwell. 

Several studies have been carried on thermal convection in Maxwell fluid. Narayana et al. [19] carried out a 
linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium. Chand and 

Kumar [20] examined the effects of rotation on thermal instability of Maxwell visco-elastic fluid with variable 

gravity in porous medium. Gaikwad and Kamble [21] investigated the effects of cross diffusion on convective 

instability of Maxwell fluid in porous medium. Mahajan et al. [22] performed a linear stability analysis of 

penetrative convection via internal heating in a ferrofluid saturated porous layer. Prakash et al. [23] studied the 

ferromagnetic convection in a densely packed porous medium with magnetic-field-dependent viscosity. Awasthi 

et al. [24] considered a problem of triply diffusive convection in a Maxwell fluid saturated porous layer with 

internal heat source. Singh et al. [25] considered a problem on onset of soret driven instability in a Darcy–

Maxwell nanofuid.   



Thermal convection of Maxwell ferromagnetic fluid through porous medium 

www.ijres.org                                                                                                                                            165 | Page 

To the best of our knowledge, the thermal convection in Maxwell ferromagnetic fluid layer through 

porous medium has not been investigated yet. Therefore, an attempt has been made to study the thermal 

convection of the ferromagnetic fluid saturated porous layer using Darcy-Maxwell model. In this paper, we 
consider an infinite, incompressible Maxwell ferromagnetic fluid saturated porous layer contained between two 

free boundaries. Our aim is to study the effect of stress relaxation parameter as well as other magnetization 

parameters for stationary convection and to check the validity of principle of exchange of stabilities. Following 

the linear stability analysis, the analytical thermal Rayleigh number and magnetic thermal Rayleigh number has 

been obtained using normal mode technique. 

 

II. Mathematical Formulation 

Consider an infinite, horizontal layer of thickness d  of an electrically non-conducting incompressible Maxwell 

ferromagnetic fluid layer in a Darcy porous medium. The Maxwell ferromagnetic fluid layer is heated from 

below and the temperature at the bottom and the top surface is 
0

T  and 
1

T  respectively and a uniform 

temperature gradient 
d T

d z
    is maintained. The gravity field (0 , 0 , )g g   pervades the system. 

 
Figure1: Geometrical Configuration 

 

The equations of continuity, motion and heat for a Maxwell ferromagnetic fluid layer through a Darcy porous 

medium for the above model are as follows: 

0 (1)q  

     0

0 1 0

1

1 1 1 ( 2 )
q

p T T g H B q
t t t k

 
   



     
              

     

 
2

0 , 0 0 1

, ,

1 (3)
V H s s

V H V H

M d T T M d H
C H c T K T

T d t t T d T
     

      
           

       

where q   is the Darcian (filter) velocity,   denotes medium porosity, 
1

k   represents the medium permeability, 

p   denotes the pressure,    denotes stress relaxation time ,   is viscosity, H is magnetic field, 

 0, 0 ,g g   is acceleration due to gravity, 
,V H

C  is heat capacity at constant volume and magnetic field, 

0
  is magnetic permeability, T  is temperature, M  is magnetization, 

1
K  is thermal conductivity,   is the 

coefficient of volume expansion,   is the density of the fluid and 
0

  is the density of the fluid at some 

reference temperature 
0

T  .   .

                                                                                                                                                                 For a non conducting fluid with no displacement current, Maxwell’s equations are given by 

0 , ( 4 )B a  

0 , ( 4 )H b  
                                                                                                                                                                                                                

where the magnetic induction is given by 
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 0
, (5 )B H M 

                                                                                                                                                                                                 

We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the magnitude 

of the magnetic field as well as the temperature as: 

 , , ( 6 )
H

M M H T
H

 
  

 

The linearized magnetic equation of state is given by 

   0 0 2 0
, (7 )M M H H K T T    

where 
0

M is the magnetization when magnetic field is 
0

H and temperature 
0

T , 

0 0
,H T

M

H


 
  

 

is the 

magnetic susceptibility and 

0 0

2

,H T

M
K

T

 
   

 

 is the pyromagnetic coefficient. 

3. Basic State 

The basic state is assumed to be stationary. Thus the solution of equations (1) to (7) in the basic state is given by 

     
0 1

0

2 2

0 0 0 0 0

0 , , p p , , ,

, , (8 )
1 1

b b b b

e x t

b b

T T
q q z z T T z T z

d

K z K z
H H k M M k H M H

   

 

 


       

   
        

    

   
4. Perturbed State 

Following Finlayson [1], the perturbations in the basic state are given by; 

     

   

, , , ,

, (9 )

b b b b

b b

q q q z p p z p T T z

H H z H M M z M

             

    

where  , , , , , , ,q u v w p H M           are infinitesimal perturbations in velocity, density, pressure, 

temperature, magnetic field intensity, and magnetization. Substituting equation (9) into the equations (1) – (7) 

and using the basic state solutions (8), the following linearized perturbation equations are obtained. 

0 , (1 0 )
u v w

x y z

    
  

  

 
0 1

0 0 0

1

1 1 (1 1)
Hu p

H M u
t t t x z k

 
  



         
          

        
 

 
0 2

0 0 0

1

1 1 (1 2 )
Hv p

H M v
t t t y z k

 
  



         
          

        
 

 
3

0 0 0 0

0

2

10 2

0 2 3

1 1 (1 3)

1

Hp
g H M

w z z
w

t t t kK
K H

   
 

 
   

 


  
    

               
       

  
 

2

2 0 0 2

1 0 0 2 1 2
(1 4 )

1

T K
C T K K C w

t t z

  
    



      
       

      

where 

 1 0 , 0 2 0
1 , (15)

V H s s
C C K H C       

and
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2 0 , 0 2 0
, (1 6 )

V H
C C K H      

     1 1 2 2 3 3
0 , , (1 7 )H M H M H M H

x y z


  
              

  

                                                                                                                                                                                     

where    is the perturbed magnetic potential, and 

   
0

3 3 3 2 1 1

0

1 , 1 , 1, 2 . (1 8 )
i

M
H M H K H M H i

H
 

 
             

 

where we have assumed   2 0 .
1K d H     

Eliminating , ,u v p    between (11), (12) and (13) and using (10), we obtain 

2 2

2 2 2 20 0 2 1

0 1 0 2 1

1

1 1 (1 9 )
1

K
w g K w

t t t z k

    
       

 

       
                

         

                                                                                                                                                                  Now, 

combining (17) and (18) we obtain  

 

2

20

1 22

0

1 1 0 ( 2 0 )
M

K
z H z

 
 

   
      

  

 

5. Normal Mode Technique 

Now analyze the disturbances into the normal mode and let the perturbed quantities are of the form

           , , , , , , , ex p ( 2 1)
x y

w x y z t w z z z i k x k y n t                                                                                                                                                                                                                         
Using (21), in (19), (14) and (20) and non-dimensionalizing the variables by setting 

 

 

 

   

 

   

 

2

1 / 2

1

2

2

1 / 2

1 2 11

12

2 2 0 1 1

4 2 2

2 0 2 0 0 2

1 2

1 0 2

0

2

0

3 2

, , , t , , ,

1
, , , P , P ,

, , M ,
1 1

1

, , ( 2 2 )
1

r r

K a Rz d t
z w w a k d D D d

d d C d

K a R C Ck
k

K C d K Kd

g d C K T K
R M

K g C

M

H n d
M G

d


 

   

    
  

   

     

     

 


 

        


    

  
 



  


                                                                                                                                                                                              

where 
1 2 3
, ,M M M  are magnetization parameters and G  is  the non-dimensional stress relaxation parameter. 

On dropping the asterisks for simplicity we obtain  

     
1 2 2 1 / 2

1 1

1

1
1 1 ( 2 3)G D a w a R M D M

k


  



 
         

 

   
2 2 1 / 2

2 2
1 ( 2 4 )

r r
D a P P M D M a R w        

 
2 2

3
(2 5)D a M D  

  

6. Exact solution for free boundaries  
Using Galerkin method, the exact solution of the system of equations (23) – (25) subject to the boundary 

conditions 
2

0 0 1 ( 2 6 )w D w D a t z a n d z      

                                                                                                                                                                                                     

is written in the form  

0 0
s in , s in ( 2 7 )w w z z    

where 
0 0

,w   are constants. Substituting (27) into the equations (23) – (25), we obtain 



Thermal convection of Maxwell ferromagnetic fluid through porous medium 

www.ijres.org                                                                                                                                            168 | Page 

     

2
1 2 2 1 / 2 1

0 1 02 2

1 3

1
1 1 0 ( 2 8 )

M
G a w a R M

k a M


  

 

   
        

   

 

   
2

1 / 2 2 2

2 0 2 02 2

3

1 P P 0 ( 2 9 )
r r

M a R w a M
a M


   



  
       

  

For the existence of non trivial solutions of the above equations, the determinant of the coefficients of  
0 0

,w   

in equations (28) and (29) must vanish. After simplifying this determinant we obtain the equation of the form 
3 2

3 2 1 0
0 (3 0 )T T T T     

                                                                                                                                                                                      

where 

   
2 2 2 2 2

3 3 2

1
(3 1)

r r
T a a M G P P M G  



    
 

       
2 2 2 2 2 2 2 2 2

2 3 3 2

1
(3 2 )

r r
T a a a M G a M P P M    



       
 

       

      

2
2 2 2 2 2 2 2 2

3 3

1

1

2 2 2 2 2 2

2 2 1 3

1

1 1

(3 3)
1

1 1

r

r

a a M a a M P
k

T

a P M a R M a M M G
k

   


  

 
    

 

 
 

     
 
 

        
2

2 2 2 2 2 2 2

0 3 2 1 3

1

1
1 1 (3 4 )T a a M a R M a M M

k
  

 
       
 

      

7. Stationary Convection  

When the instability sets in as stationary convection and
2

0M  , the marginal state will be characterized by 

0   , then the Rayleigh number will become 

 

2

3

1

1 3

(1 ) (1 )
(3 5 )

1 1
l

x xM
R

xP x M M

 


   

where 
2

2

1 14 2
, ,

l

R a
R x P k

 
  

                                                                                                                                                                                                              which expresses the modified Rayleigh number as a function of the dimensionless wavenumber x  , the 

buoyancy magnetization parameter 
1

M  , the  non-buoyancy magnetization parameter 
3

M  and the medium 

permeability parameter 
l

P  (Darcy number). 

To investigate the effects of non-buoyancy magnetization, buoyancy magnetization and medium permeability, 

we examine the behavior of 
1

3

d R

d M
,

1

1

d R

d M
 and 

1

l

d R

d P
 analytically. 

 

2

1 1

2

3
1 3

(1 )
(3 6 )

1 1
l

d R x M

d M P x M M


 

   

 

 

 

2

3 31

2

1
1 3

(1 ) 1
(3 7 )

1 1
l

x M x Md R

d M P x M M

 
 

   

   

   

 

2

3 1 31

2
2

1 3

(1 ) 1 1 1
(3 8 )

1 1l
l

x x M x M Md R

d P x P x M M

     
 

   

 

It is found that, for stationary convection, all of the three, the non-buoyancy magnetization, buoyancy 

magnetization and medium permeability always have destabilizing effect on the system.                                                                                                                                                                
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For sufficiently large
1

M , we obtain the magnetic thermal Rayleigh number 

2

3

1 1 1 2

3

(1 ) (1 )
(3 9 )

l

x xM
N R M

x P M

 
 

The 

role of the medium permeability and the magnetic parameters discussed above can also be illustrated with the 

help of Figures 2 - 6.  

 

Figure 2: Variation of 
1

R  with 
1

M  for 0 .0 0 1
l

P  and 
3 3 3

1, 2 , 3M M M    

 

Figure 3: Variation of 
1

R  with 
3

M  for 
1

5M  and 0 .0 0 1, 0 .0 0 2 , 0 .0 0 3
l l l

P P P    
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Figure 4: Variation of 
1

R  with 
l

P  for 
3

1M  and 
1 1 1

0 , 1, 2M M M    

In Figure 2, 
1

R  is plotted against 
1

M  for 0 .0 0 1
l

P  and 
3 3 3

1, 2 , 3M M M   . It is clear that 

with the increase in buoyancy magnetization parameter 
1

M , the thermal Rayleigh number 
1

R
 
 decreases, 

therefore buoyancy magnetization parameter 
1

M  has destabilizing effect on the system. In Figure 3, 
1

R  is 

plotted against 
3

M  for 
1

5M   and 0 .0 0 1, 0 .0 0 2 , 0 .0 0 3
l l l

P P P   . It is clear that with the increase 

in non-buoyancy magnetization parameter 
3

M , the thermal Rayleigh number
1

R
 

decreases, thereby non-

buoyancy magnetization parameter 
3

M  showing the destabilizing effect on the system. In Figure 4, 
1

R  is 

plotted against 
l

P  for 
3

1M   and 
1 1 1

0 , 1, 2M M M   . It is clear that with the increase in medium 

permeability 
l

P , the thermal Rayleigh number 
1

R
 
decreases, thus the  medium permeability 

l
P  has the 

destabilizing effect on the system. 

 

Figure 5: Variation of 
1

N  with 
l

P  for 
3 3 3

1, 2 , 3M M M    

 

 

Figure 6: Variation of 
1

N  with 
3

M  for 0 .0 0 1, 0 .0 0 2 , 0 .0 0 3
l l l

P P P    

 

In Figure 5, 
1

N  is plotted against 
l

P  for 
3 3 3

1, 2 , 3M M M   . It is clear that with the increase in 

magnetic permeability 
l

P , the magnetic thermal Rayleigh number 
1

N
 
decreases, indicating that the magnetic 

permeability 
l

P
 

has destabilizing effect on the system. In Figure 6, 
1

N  is plotted against 
3

M
 

for 
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0 .0 0 1, 0 .0 0 2 , 0 .0 0 3
l l l

P P P   . It is clear that with the increase in non-buoyancy magnetization 

parameter
3

M , the magnetic thermal Rayleigh number 
1

N
 
decreases, thereby the non-buoyancy magnetization 

parameter
3

M showing the destabilizing effect on the system. 

 

8. Principle of Exchange of Stabilities 

To examine the possibility of oscillatory modes, we put 
i

i   in equation (30). Equating the imaginary part 

of equation (30), we get 

   

       

      

2 2 2 2 2 2

3 2

2
2 2 2 2 2 2 2 2

3 3

1

2 2 2 2 2 2

2 2 1 3

1

1

1 1
0 ( 4 0 )

1
1 1

r r i

ri

r

a a M G P P M G

a a M a a M P
k

a P M a R M a M M G
k

   


   


  

      
  
 

  
       

  

       
  
  

 
 

It is evident from equation (41) that 
i

  may be either zero or non-zero, meaning that the modes may be either 

non-oscillatory or oscillatory. In the absence of stress relaxation parameter G  , we get 

       

 

2
2 2 2 2 2 2 2 2

3 3

1

2 2 2

2

1

1 1

0 ( 4 1)
1

r

i

r

a a M a a M P
k

a P M
k

   




 

 
    

 

  
 

 
 
 

 
Here the quantity inside bracket is positive definite if  

   
2 2 2 2 2

3 2

1 1

1 1 1
( 4 2 )

r r
a P a M P M

k k
  



 
    

 

which implies that 0
i

  . Hence, the principle of exchange of stabilities is valid and the oscillatory modes are 

not allowed.  

 

III. Conclusion 

In this paper, thermal convection in a Maxwell ferromagnetic fluid layer through a porous medium is 

studied and the linear stability analysis and normal mode technique is used. An exact solution is obtained for a 

flat Maxwell ferromagnetic fluid layer contained between two free boundaries using Galerkin method. The 
thermal Rayleigh number and the magnetic thermal Rayleigh number have been obtained. We have investigated 

the effects of stress relaxation parameter G , buoyancy magnetization parameter 
1

M , non-buoyancy 

magnetization parameter 
3

M  and the medium permeability parameter 
l

P  . It is found that all the three 

parameters, buoyancy magnetization parameter 
1

M , non-buoyancy magnetization parameter 
3

M  and the 

medium permeability parameter 
l

P  have destabilizing effect on the system. The stress relaxation parameter G

vanishes in stationary convection. It is also observed that the in the absence of stress relaxation parameter G  , 

the principle of exchange of stabilities is valid for the certain conditions. 
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