
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 10 Issue 4 ǁ 2022 ǁ PP. 58-74

www.ijres.org 58 | Page

Simulation of Co-Operative UAV Using Neighborhood

Optimization

Mr. G. Pradeep Kumar M.E.., (PhD.,)
Assistant Professor, Department of ECE, Velammal College of Engineering and Technology, Madurai,

Tamilnadu

M.Venu Vikaash, B.E.
Department of ECE, Velammal College of Engineering and Technology, Madurai, Tamilnadu

A. Jerome Akash, BE.
Department of ECE, Velammal College of Engineering and Technology, Madurai, Tamilnadu

S. Riyas Ahamed, BE.
Department of ECE, Velammal College of Engineering and Technology, Madurai, Tamilnadu

ABSTRACT
UAVs are going to be assigned different tasks like e.g., rendezvous and space coverage, which require

processing and communication capabilities. This work extends the architecture ROS/Gazebo with the likelihood

of simulation of co-operative UAVs. We assume UAV with the underlying attitude controller supported the

open-source Ardupilot software. the mixture of the coordination algorithm in Gazebo is implemented with

software modules extending Ardupilot with the aptitude of sending/receiving messages to/from drones, and

executing coordination protocol. As far as it concerns the simulation environment, we have extended the earth

in Gazebo to hold quite one drone and to open a particular communication port per drone. within the paper,
results on the simulation of a representative coordination algorithm are shown and discussed, during a scenario

where a little number of Iris Quadcopters are deployed.

--

Date of Submission: 02-04-2022 Date of acceptance: 16-04-2022

--

I. INTRODUCTION

1.1 UAV (UNMANNED AERIAL VEHICLE):

An unmanned aerial vehicle (UAV) (or uncrewed aerial vehicle, commonly called a drone) is an

aircraft without a personality's pilot on board. UAVs are a component of an unmanned aircraft system (UAS),

which include a UAV, a ground-based controller, and a system of communications between the 2. The flight of
UAVs may operate with various degrees of autonomy: either under remote by a personality's operator or

autonomously by onboard computers said as an autopilot.

Compared to crewed aircraft, UAVs were originally used for missions too "dull, dirty or dangerous" for

humans. While drones originated mostly in military applications, their use is rapidly finding more applications

including aerial photography, product deliveries, agriculture, policing and surveillance, infrastructure

inspections, science smuggling and drone racing.

Unmanned aerial vehicles (UAV) are a category of aircrafts which will fly without the onboard

presence of pilots [WAT 12]. Unmanned aircraft systems incorporates the aircraft component, sensor payloads

and a communication system station. they'll be controlled by onboard electronic equipments or via control

equipment from the bottom. When it's remotely controlled from ground it's called RPV (Remotely Piloted

Vehicle) and requires reliable wireless communication for control. Dedicated control systems is also dedicated

to large UAVs, and may be mounted aboard vehicles or in trailers to enable close proximity to UAVs that are
limited by range or communication capabilities.

UAVs are used for observation and tactical planning. This technology is now available to be used

within the emergency response field to help the crew members. UAVs are classified supported the altitude

range, endurance and weight, and support a good range of applications including military and commercial

applications. the littlest categories of UAVs are often in the middle of ground-control stations consisting of

laptop computers and other components that are sufficiently little to be carried easily with the aircraft in small

vehicles, aboard boats or in backpacks. UAVs that are fitted with high precision cameras can navigate round the

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 59 | Page

area, take pictures and permit the crew members to perform image and structural analysis. As UAV operations

require onsite personnel, it'll be helpful for onsite crew members to access the area first before entering the

disaster affected area. UAVs that are suitable for outdoor operation and may fly at reasonable altitude are used
for disaster impact analysis. The important aspect of such UAVs is that the initial assessment gives a transparent

disaster planning direction. After the survivors are detected via image analysis, crew members can then attempt

to make contact with the survivors and perform quick rescue operations. Nano UAVs is used in-built and

combined with robots capabilities and may be a really useful in detecting structural damages to buildings and

detect survivors trapped inside debris.

In recent years, increasing research efforts and developments are improving UAV for various

application and reliability. UAV continues to be in experimental stages at the instant. Also, a shortage of skilled

onsite crewman may be a bigger problem. [PRA 06] highlights that a minimum of three staff members is

required to control a UAV.

Full autonomy is obtainable for specific tasks, like airborne refueling or ground-based battery

switching; but higher-level tasks involve greater computing, sensing and actuating capabilities. One approach to
quantifying autonomous capabilities is predicated on OODA terminology, as suggested by a 2002 US Air Force

research lab, and utilized in the table below:

United States Autonomous control levels chart

Medium levels of autonomy, like reactive autonomy and high levels using cognitive autonomy, have

already been achieved to some extent and are very active research fields.

Reactive autonomy, like collective flight, real-time collision avoidance, wall following and corridor

centring, relies on telecommunication and situational awareness provided by range sensors: optic flow,[90]

lidars (light radars), radars, sonars.

Most range sensors analyze electromagnetic wave, reflected off the environment and coming to the

sensor. The cameras (for visual flow) act as simple receivers. Lidars, radars and sonars (with sound mechanical

waves) emit and receive waves, measuring the round-trip transit time. UAV cameras don't require emitting

power, reducing total consumption. Radars and sonars are mostly used for military applications.
Reactive autonomy has in some forms already reached consumer markets: it should be widely available

in but a decade.Cutting-edge (2013) autonomous levels for existing systems Simultaneous localization and

mapping

SLAM combines odometry and external data to represent the globe and therefore the position of the

UAV in it in three dimensions. High-altitude outdoor navigation doesn't require large vertical fields-of-view and

may depend on GPS coordinates (which makes it simple mapping instead of SLAM).

Two related research fields are photogrammetry and LIDAR, especially in low-altitude and indoor 3D

environments.

Indoor photogrammetric and stereophotogrammetric SLAM has been demonstrated with quadcopters.

Lidar platforms with heavy, costly and gimbaled traditional laser platforms are proven. Research attempts to
handle cost, 2D to 3D expansion, power-to-range ratio, weight and dimensions. LED range-finding applications

are commercialized for low-distance sensing capabilities. Research investigates hybridization between light

emission and computing power: phased array spatial light modulators, and frequency-modulated-continuous-

wave (FMCW) MEMS-tunable vertical-cavity surface-emitting lasers (VCSELs).

Robot swarming refers to networks of agents ready to dynamically reconfigure as elements leave or enter the

network. they supply greater flexibility than multi-agent cooperation. Swarming may open the trail to data

fusion. Some bio-inspired flight swarms use steering behaviors and flocking.[clarification needed]

Future military potential

In the military sector, American Predators and Reapers are made for counterterrorism operations and in war

zones during which the enemy lacks sufficient firepower to shoot them down. they're not designed to face up to
antiaircraft defenses or air-to-air combat. In September 2013, the chief of the US Air Combat Command stated

that current UAVs were "useless during a contested environment" unless crewed aircraft were there to safeguard

them. A 2012 Congressional Research Service (CRS) report speculated that within the future, UAVs is also able

to perform tasks beyond intelligence, surveillance, reconnaissance and strikes; the CRS report listed air-to-air

combat ("a tougher future task") as possible future undertakings. The Department of Defense's Unmanned

Systems Integrated Roadmap FY2013-2038 foresees a more important place for UAVs in combat. Issues

include extended capabilities, human-UAV interaction, managing increased information flux, increased

autonomy and developing UAV-specific munitions. DARPA's project of systems of systems, or General

Atomics work may augur future warfare scenarios, the latter disclosing Avenger swarms equipped with High

Energy Liquid Laser Area weapons system (HELLADS).

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 60 | Page

1.2 ROS (ROBOT OPERATING SYSTEM):

ROS (Robot Operating System) may be a standard actual for robot software development.

Analogously, for simulation of UAV aircraft, Gazebo has been widely employed in the scientific community. In
Gazebo, Ardupilot is that the open-source software that enables to hold out the control of various unmanned

vehicles mainly through its four different components: the Antenna Tracker, the APM Rover, the ArduPlane and

also the Arducopter. specifically, Arducopter implements the particular drone control. So far, this ROS/Gazebo

architecture only allows for the simulation/emulation of one aircraft.

during this work we present a possible extension of the architecture enabling the simulation of possibly

multiple heterogeneous vehicles, adhering to their own individual dynamics, further as interacting with one

another per shared co-operation strategies. specifically, we consider UAVs with an underlying attitude controller

supported Ardupilot, which uses the MAVLink protocol (Micro Air Vehicle Link) for the communication. the

combination of the co-ordination algorithm in Gazebo is implemented with software modules extending

Ardupilot with the aptitude of (i) sending/receiving MAVLink messages to/from drones, and (ii) executing the

co-ordination protocol. An abstraction of the communication by which drones exchange information is
implemented with a co-ordination script, which is executed locally by each drone instance. Every fixed interval

a drone sends information (e.g. actual position) to other drones. Each drone uses the information received from

the opposite drones via the coordination script to compute a brand new target point, supported the task the

drones need to perform. A case study has been developed, where atiny low number of Quadcopters are deployed

and perform space-coverage operations by applying a rather modified version of co-ordination algorithm .

Robot software

The definition of the word “robot” tends to differ looking on whom you ask, but the key characteristic

of the robots running ROS and being simulated in Gazebo is actuation. So no chatbots or spambots; we’re

talking about robots that are physically able of interacting with their environments, moving themselves and even

other objects. And they’re not wind-up toys moving blindly either; they’re equipped with sensors that allow

them to watch how the planet is changing around them. Tying it all at once, they need logic making sense of

those observations to create informed decisions about what movement to form next to finish a particular task.
this is often called the sense-think-act cycle, and Dolly’s software is organized to reflect these three pieces.

ROS 2 is being developed with the goal of offering a customary software platform to industry and

academia that may support them from research and prototyping up to deployment and production. ROS 2 builds

on the success of ROS 1, which is already used today in various robotics applications everywhere the planet. a

crucial a part of this transition is to take care of the core ROS concepts and tools that have made ROS so

successful within the robotics community to this point. one among these well-known concepts is that of a

“node,” which could be a unit of computation accountable for a awfully specific task. each bit of Dolly’s sense-

think-act cycle is mapped to a node. The “laser” node senses the globe, the “follow” node processes that data to

search out the closest point ahead and generate a command with the direction to maneuver, and therefore the

“diff-drive” node moves the wheels as commanded (so called because Dolly may be a differential wheeled

robot). As Dolly moves, its laser readings change, and also the cycles starts again. Dolly’s software only has
three nodes for simplicity, but large robotics applications may have many nodes working together, each

answerable for a discrete well-defined task.

The foremost basic method of communication in ROS uses a many-to-many publisher-subscriber

mechanism through channels called “topics”. The laser node publishes scans on the “scans” topic, which the

follow node subscribes to; successively, the follow node publishes movement commands on the “cmds” topic,

which the diff-drive node subscribes to. Dolly only uses topics, but additionally to the present one-way sort of

communication, ROS also offers a request-response mechanism called “services,” yet as “actions,” which are

used for triggering longer behaviours.

When using these communication patterns, ROS developers tend to use standardized messages

whenever possible, which makes it convenient to share nodes among various projects. during this distributed

architecture, nodes don’t care about which other nodes they’re reproof, they only care about which topic, service

or action is getting used. this suggests that if in some unspecified time in the future someone decides to get rid
of Dolly’s wheels and exchange them for propellers to show it into a flying sheep, they won’t have to touch the

laser or the follow nodes. they're going to only have to swap the diff-drive node for something else that

translates the movement commands on the cmds topic in a very way that matches the robot’s new body.

The convenience of code reuse is one in every of ROS’s greatest strengths because it allows developers

to leverage each other’s work the maximum amount as possible. By building atop existing software within the

ROS ecosystem, developers can target the unique aspects of their particular applications. In fact, implementing

Dolly only required writing the follow node, which has but 100 lines of code. The laser and diff-drive nodes are

provided by gazebo_ros_pkgs, a regular ROS package that creates the bridge between simulation-specific and

non-specific logic. When Dolly is prepared to become a physical robot, those nodes would be substituted by

hardware-specific drivers and controllers, but the follow node will be kept the identical because it publishes and

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 61 | Page

subscribes to plain messages. But as you'll imagine, the follow node isn’t the brightest robot logic out there. In

fact, Dolly can’t tell someone from a tree. during a real application developers would leverage other capabilities

provided by the community, like the navigation stack, which might allow Dolly to maneuver autonomously
within the world.

All of the communication patterns mentioned above are migrated from ROS 1 to ROS 2 and improved

along the way. While ROS 1 uses a custom communication layer, ROS 2 is made on top of DDS. DDS is an

industry standard proven in mission-critical applications like aviation and nuclear energy. you'll read more

details about the DDS integration during this article on InfoQ.

Additionally to the messaging system, ROS 2 provides powerful developer tools. for instance, RViz

may be a visualizer for ROS topics that's invaluable during application development and debugging. it's a 3D

scene during which data from any a part of the applying is displayed together, like point clouds and coordinate

frames. RViz also provides control interfaces like 3D markers which will be dragged to maneuver a true robot.

RQt is another handy graphical tool that lets developers quickly put together widgets to interact with any aspect

of their robotics application, be it simulated or not. The image below shows Dolly’s laser scans in RViz
alongside Gazebo’s view showing the visualization within simulation. RViz will display scans the identical way,

no matter whether they’re simulated or coming from hardware.

ROS, an open-source project, provides a standard framework for robotics applications. ROS is heavily

utilized by the research community for service robotics applications, but its technology will be applied to other

application areas, including industrial robotics. ROS capabilities, like advanced perception and path/grasp

planning, can enable manufacturing robotic applications that were previously technically infeasible or cost

prohibitive.

ROS-Industrial

ROS-Industrial is an open-source project that extends the advanced capabilities of ROS to

manufacturing automation and robotics. The ROS-Industrial repository includes interfaces for common

industrial manipulators, grippers, sensors, and device networks. It also provides software libraries for automatic
2D/3D sensor calibration, process path/motion planning, applications like Scan-N-Plan, developer tools just like

the Qt Creator ROS Plugin, and training curriculum that's specific to the wants of manufacturers. ROS-I is

supported by a global Consortium of industry and research members.

Provides a one-stop location for manufacturing-related ROS

Software.

Striving towards software robustness and reliability that meets the requirements of business applications.

Combines the relative strengths of ROS and existing technology, combining ROS high-level functionality with

the low-level reliability and safety of an industrial robot controller, as opposition replacing anyone technology

entirely.

Stimulates the event of hardware-agnostic software by standardizing interfaces.

Provides an "easy" path to use cutting-edge research to industrial applications by employing a common ROS
architecture.

Provides simple, easy-to-use, well-documented application programming interfaces.

ROS Industrial Benefits

1.2.1 THE ROS-INDUSTRIAL STACK:

LEVERAGES POWERFUL FUNCTIONALITY WITHIN ROS:

● Custom inverse kinematics for manipulators, including solutions for manipulators with greater than six

degrees-of-freedom.

● Advanced 2-D (image) and 3-D (point cloud) perception.

● Rich toolset for development, simulation, and visualization.

ENABLES NEW APPLICATIONS

● Unstructured applications that include advanced perception for identifying robot work pieces as
opposed to hard tooling.

● Scan-N-Plan algorithms based upon advanced perception and just-in-time planning as opposed to

simply replaying taught paths.

● Model-based approaches that permit automated programming for thousands of unique CAD parts.

SIMPLIFIES ROBOT PROGRAMMING TO THE TASK LEVEL

● Eliminates path planning and teaching. Collision-free, optimal paths are automatically calculated given

tool path waypoints.

● Applying abstract programming principles to similar tasks (useful in low-volume applications or with

slight variations in work pieces).

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 62 | Page

1.3 GAZEBO SIMULATOR:

Robot simulation is an important tool in every roboticist's toolbox. A well-designed simulator makes it possible

to rapidly test algorithms, design robots, perform regression testing, and train AI system using realistic
scenarios. Gazebo offers the power to accurately and efficiently simulate populations of robots in complex

indoor and outdoor environments. At your fingertips may be a robust physics engine, high-quality graphics, and

convenient programmatic and graphical interfaces. better of all, Gazebo is free with a vibrant community.

Gazebo Simulation

Gazebo (opens new window)is a strong 3D simulation environment for autonomous robots that's particularly

suitable for testing object-avoidance and computer vision. This page describes its use with SITL and one

vehicle. Gazebo also can be used with HITL and for multi-vehicle simulation.

Running the Simulation

Run a simulation by starting PX4 SITL and gazebo with the airframe configuration to load (multicopters,

planes, VTOL, optical flow and multi-vehicle simulations are supported).

the simplest thanks to do that is to open a terminal within the root directory of the PX4 PX4-Autopilot
repository and call wreak the required target. as an example, to begin a quadrotor simulation (the default).

The commands above launch one vehicle with the total UI. Other options include:

Starting PX4 and Gazebo separately in order that you'll keep Gazebo running and only re-launch PX4 when

needed (quicker than restarting both).

Run the simulation in Headless Mode, which doesn't start the Gazebo UI (this uses fewer resources and is far

faster)

Usage/Configuration Options

Headless Mode

Gazebo is run during a headless mode within which the Gazebo UI isn't launched. This starts up more quickly

and uses less system resources (i.e. it's a more "lightweight" thanks to run the simulation).

Set Custom Takeoff Location

The takeoff location in SITL Gazebo are often set using environment variables. this may override both the
default takeoff location, and any value set for the globe.

Change Simulation Speed

The simulation speed are often increased or decreased with regard to realtime using the environment variable

PX4_SIM_SPEED_FACTOR

Change Wind Speed

To simulate wind speed, add this plugin to your world file and replace SET_YOUR_WIND_SPEED with the

required speed

Using a Joystick

Joystick and thumb-joystick support are supported through QGroundControl (setup instructions here).

Improving Distance Sensor Performance

this default world is PX4/sitl_gazebo/worlds/iris.world (opens new window)), which uses a heightmap as
ground.This can cause difficulty when employing a distance sensor. If there are unexpected results we

recommend you modify the model in iris.model from uneven_ground to asphalt_plane

Simulating GPS Noise

Gazebo can simulate GPS noise that's kind of like that typically found in real systems (otherwise reported GPS

values are noise-free/perfect). this is often useful when engaged on applications that may be impacted by GPS

noise - e.g. precision positioning.

GPS noise is enabled if the target vehicle's SDF file contains a price for the gpsNoise element (i.e. it's the line:

true). it's enabled by default in many vehicle SDF files: solo.sdf, iris.sdf, standard_vtol.sdf, delta_wing.sdf,

plane.sdf, typhoon_h480, tailsitter.sdf.

To enable/disable GPS noise:

Build any gazebo target so as to come up with SDF files (for all vehicles). Open the SDF file for your target
vehicle

Search for the GPS Noise element:

If it's present, GPS is enabled. you'll disable it by deleting the If it's not preset GPS is disabled. you'll enable it

by adding the gpsNoise element to the gps_plugin section (as shown above). the following time you build/restart

Gazebo it'll use the new GPS noise setting.

Loading a particular World

PX4 supports variety of Gazebo Worlds, which are stored in PX4/sitl_gazebo/worlds (opens new window)) By

default Gazebo displays a flat featureless plane, as defined in empty.world (opens new window).

you'll be able to load any of the worlds by specifying them because the final option within the PX4

configuration target.

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 63 | Page

Set World Location

The vehicle gets spawned very near the origin of the planet model at some simulated GPS location

II. LITERATURE SURVEY

LITERATURE SURVEY 1:

 Hoang, V.T., Phung, M.D., Dinh, T.H. and Ha, Q.P., 2018, October. Angle-encoded swarm

optimization for uav formation path planning. In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (pp. 5239-5244). IEEE.

 This paper presents a completely unique and feasible path planning technique for a bunch of unmanned

aerial vehicles (DAVs) conducting surface inspection of infrastructure. the final word goal is to minimise the

travel distance of DAVs while simultaneously avoid obstacles, and maintain altitude constraints also because the

shape of the UAV formation. A multiple-objective optimisation algorithm, called the Angle-encoded Particle

Swarm Optimization (θ- PSO) algorithm, is proposed to accelerate the swarm convergence with angular velocity
and position being employed for the situation of particles. the entire formation is modelled as a virtual rigid

body and controlled to keep up a desired geometric shape among the paths created while the centroid of the

group follows a pre-determined trajectory. supported the testbed of 3DR Solo drones equipped with a

proprietary Mission Planner, and therefore the Internet-of- Things (loT) for multi-directional transmission and

reception of knowledge between the DAV s, extensive experiments are conducted for triangular formation

maintenance along a monorail bridge. The results obtained confirm the feasibility and effectiveness of the

proposed approach.

LITERATURE SURVEY 2:

 Bernardeschi, C., Fagiolini, A., Palmieri, M., Scrima, G. and Sofia, F., 2018, October. Ros/gazebo

based simulation of co-operative uavs. In International Conference on Modelling and Simulation for

Autonomous Systesm (pp. 321-334). Springer, Cham.

 UAVs is assigned different tasks like e.g., rendezvous and space coverage, which require processing

and communication capabilities. This work extends the architecture ROS/Gazebo with thepossibility of

simulation of co-operative UAVs. We assume UAV with the underlying attitude controller supported the open-

source Ardupilot software. the combination of the co-ordination algorithm in Gazebo is implemented with

software modules extending Ardupilot with the potential of sending/receiving messages to/from drones, and

executing the co-ordination protocol. As far because it concerns the simulation environment, we've extended the

planet in Gazebo to carry quite one drone and to open a particular communication port per drone. within the

paper, results on the simulation of a representative co-ordination algorithm are shown and discussed, in a very

scenario where atiny low number of Iris Quadcopters are deployed

LITERATURE SURVEY 3:

 Pierre, D.M., Zakaria, N. and Pal, A.J., 2011, December. Master-slave parallel vector-evaluated

genetic algorithm for unmanned aerial vehicle's path planning. In 2011 11th International Conference on

Hybrid Intelligent Systems (HIS) (pp. 517-521). IEEE.

 The demand of Unmanned Aerial Vehicle (UAV) to monitor natural disasters extends its use to

multiple civil missions. While the utilization of remotely control UAV reduces the human casualties’ rates in

hazardous environments, it's reported that almost all of UAV accidents are caused by human factor errors. so as

to automate UAVs, several approaches to path planning for UAVs, mainly supported Genetic Algorithm (GA),

are proposed. However, none of the proposed paradigms optimally solve the trail planning problem with

contrasting objectives. We are proposing a Master-Slave Parallel Vector-Evaluated Genetic Algorithm

(MSPVEGA) to unravel the trail planning problem. MSPVEGA takes advantage of the advanced computational
capabilities to process multiple GAs concurrently. In our present experimental set-up, the MSPVEGA gives

optimal results for UAV

LITERATURE SURVEY 4

 Schermer, D., Moeini, M. and Wendt, O., 2018. A variable neighborhood search algorithm for

solving the vehicle routing problem with drones. In Technical Report. TU Kaiserslautern.

 Drones have began to play an increasing role in logistic systems in both, academic research and

practical context. specifically, drones have already been applied in various public and personal service sectors

including energy, agriculture, and emergency response. Recently, the Vehicle Routing Problem with Drones

(VRPD) has been introduced as a variant of the Vehicle Routing Problem. In

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 64 | Page

the case of the VRPD, a fleet of vehicles, each of them equipped with a collection of drones, is tasked with

delivering parcels to customers. the target consists in designing feasible routes with minimal mission time. The

drones could also be launched from and retrieved by the vehicles and move at a velocity which may differ from
the vehicle’s speed. Furthermore, drones possess a limited flight endurance and tiny carrying capacity. The

VRPD will be formulated as a Mixed Integer Linear Program (MILP) and, consequently, be solved by any

standard MILP solver. With the aim of improving the performance of solvers, we introduce some sets of valid

inequalities. Additionally, thanks to limited performance of the solvers in addressing large-scale instances, we

address this issue by proposing an algorithm supported the well-known Variable Neighborhood Search (VNS)

approach. so as to judge the performance of the introduced algorithm furthermore because the solver in solving

the VRPD instances, we applied extensive computational experiments.

LITERATURE SURVEY 5

 Tahir, A., Böling, J.M., Haghbayan, M.H. and Plosila, J., 2020. Comparison of linear and

nonlinear methods for distributed control of a hierarchical formation of UAVs. IEEE Access, 8, pp.95667-

95680.

 A key problem in cooperative robotics is that the maintenance of a geometrical configuration during

movement. As an answer for this, a multi-layered and distributed system is proposed for the swarm of drones

within the formation of hierarchical levels supported the leader-follower approach. The complexity of

developing an oversized system is reduced during this way. to confirm the tracking performance and interval of

the ensemble system, nonlinear and linear control designs are presented; (a) Sliding Mode Control connected

with Proportional-Derivative controller and (b) Linear Quadratic Regular with integral action respectively. The

safe travel distance strategy for collision avoidance is introduced and integrated into the control designs for

maintaining the hierarchical states within the formation. Both designs provide a rapid adoption with regard to

their settling time without introducing oscillations for the dynamic flight movement of vehicles within the cases

of (a) nominal, (b) plant-model mismatch, and (c) external disturbance inputs. Also, the nominal settling time of
the swarm is improved by 44% on the average when using the nonlinear method as compared to the linear

method. Furthermore, the proposed methods are fully distributed in order that each UAV autonomously

performs the feedback laws so as to attain better modularity and scalability

LITERATURE SURVEY 6

 Yasin, J.N., Haghbayan, M.H., Heikkonen, J., Tenhunen, H. and Plosila, J., 2019, September.

Formation maintenance and collision avoidance in a swarm of drones. In Proceedings of the 2019 3rd

International Symposium on Computer Science and Intelligent Control (pp. 1-6)..

 Distributed formation control and obstacle avoidance are two important challenges in autonomous
navigation of a swarm of drones and may negatively affect one another thanks to possible competition that

arises between them. In such a platform, a multi-priority control strategy is required to be implemented in every

node so as to dynamically optimise the tradeoffs between collision avoidance and formation control w.r.t. given

system constraints, e.g. on energy and latency, by reordering priorities in run-time and selecting the appropriate

formation and collision avoidance approach supported the state of the swarm, i.e., the kinematic parameters and

geographical distribution of the nodes also because the location of the observed obstacles. during this paper, we

propose a technique for formation/collision co-awareness with the goal of energy consumption and latency

minimisation. The algorithm consists of two partial nested feedback-based control loops and supported three

observations: 1) for formation maintenance the relative location of the neighbour nodes; 2) observation of an

obstacle by a neighborhood sensor, represented by a boolean value, used for both formation control and

collision avoidance; and 3) in critical situations for avoiding collisions, the gap of an obstacle to the node. The

obtained comprehensive experimental results show that the proposed approach appropriately keeps the
formation during the swarm's travel within the presence of various obstacles.

LITERATURE SURVEY 7

 Bürkle, A., Segor, F. and Kollmann, M., 2011. Towards autonomous micro uav swarms. Journal

of intelligent & robotic systems, 61(1), pp.339-353.

 Micro Unmanned Aerial Vehicles (UAVs) like quadrocopters have gained great popularity over the last

years, both as a groundwork platform and in various application fields. However, some complex application

scenarios imply the formation of swarms consisting of multiple drones. during this paper a platform for the

creation of such swarms is presented. it's supported commercially available quadrocopters enhanced with on-

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 65 | Page

board processing and communication units enabling full autonomy of individual drones. Furthermore, a generic

communication system station is presented that is integration platform. It allows the seamless coordination of

various sorts of sensor platforms.

LITERATURE SURVEY 8

 Duan, H., Tong, B., Wang, Y. and Wei, C., 2019, July. Mixed game pigeon-inspired optimization

for unmanned aircraft system swarm formation. In International Conference on Swarm Intelligence (pp.

429-438). Springer, Cham.

 This paper proposes a unique mixed game pigeon-inspired optimization (MGPIO) algorithm for

unmanned aircraft system (UAS) swarm formation control. The outer loop controller supported artificial

potential field method is intended to rework the UAS swarm formation into abstract movements within the

potential field. The inner loop controller supported PIO is meant to unravel the optimal UAS position. a unique

pigeon-inspired optimization integrated with mixed theory of games is proposed to reinforce its capacity and

convergence speed to resolve complex problem while reducing the computational load. This method maintains
the potential of the PIO to diversify the pigeons’ exploration within the solution space. Moreover, the proposed

method improves the standard of the pigeons supported things. A series of simulation experiments are

conducted compared with basic PIO and Particle Swarm Optimization (PSO) approach. The experimental

results verify the feasibility and effectiveness of the proposed method.

LITERATURE SURVEY 9

 Mirzaeinia, A., Hassanalian, M., Lee, K. and Mirzaeinia, M., 2019. Energy conservation of V-

shaped swarming fixed-wing drones through position reconfiguration. Aerospace Science and

Technology, 94, p.105398.

 There is currently a growing interest within the area of drag reduction of unmanned aerial vehicles.

during this paper, the swarming flight of the fixed-wing drones and a load balancing mechanism during the
swarm is investigated. As an example, the swarm flight of EBee Sensfly flying wings is analyzed through the

proposed methodology. The aerodynamic drag forces of every individual drone and therefore the swarm are

modeled theoretically. it's shown that drones through the swarming flight can lay aside to 70% of their energy

and consequently improve their performance. As swarming drones have different loads and consume a unique

level of energy reckoning on their positions, there's a desire to exchange them during the flight so as to reinforce

their efficiency. to the current end, regarding the quantity of drones, a replacement algorithm is defined for them

in order that they'll be ready to save more energy during their mission. it's shown that there's quite 21 percent

improvement on the wing time and distance of swarming drones after replacement. This method of replacement

and formation is considered mutually of the effective factors in an exceedingly drag reduction of swarming

aerial vehicles.

LITERATURE SURVEY 10

 Kim, H.J. and Ahn, H.S., 2016, December. Realization of swarm formation flying and optimal

trajectory generation for multi-drone performance show. In 2016 IEEE/SICE International Symposium

on System Integration (SII) (pp. 850-855). IEEE.

 in this paper, we introduce the multi-drone platform which is realized by swarm algorithm. one in all

the foremost challenging problems when maneuvering multiple drones is guaranteeing collision avoidance.

Since our swarm algorithm is predicated on the bogus potential function(APF), collision avoidance between

quadrotors is guaranteed. First, the constructive thanks to generate swarm controller are going to be given very

well. Then, swarm-based platform may be applied to useful application like visual performance show using

multiple drones. The optimal trajectory generation method is additionally provided by using optimization

technique.

III. EXISTING METHODOLOGIES

In this section, we describe the current algorithm for a swarm of drones. the strategy is to combine

swarm formation control and collision avoidance mechanism to facilitate the strategy of autonomous swarm

navigation. To accomplish this, a very unique top-level algorithm is developed, composed of two partial

feedback-based algorithms: one for formation control and one for collision avoidance. The feedback for each

drone’s controller comprises both collision radius and formation distance, and also the goal is to cut back their

errors, i.e., differences between the observed values and thus the reference values. The angular error is that the

difference of the required angle from the observed angle, indicating what quantity the node should communicate

maintain its position w.r.t. its neighbour. Correspondingly, the gap error is that the difference of the measured

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 66 | Page

distance from the reference distance, indicating what proportion the node should meet with or farther to or from

its neighbor.

If there is no feedback for an object detected by the on-board sensor system, indicating there isn't any external
object within the vicinity, the algorithm maintains the formation by dynamically checking and adjusting the gap

of the drone to its neighbours. The goal is to remain the space greater than the collision radius and shut to the

pre-specified formation distance.

Upon detection of an obstacle, the algorithm raises the priority of the collision avoidance part. The collision

avoidance part of the algorithm gets the simplest priority once the UAV approaches the minimum safe distance

from the obstacle.

After bypassing the obstacle(s), a Failsafe/Fault-Tolerance check is executed to see if the UAV has lost its

connection or if it still encompasses a relation to its respective leader.

3.1 OPTIMAL SWARM RECONFIGURATION

After observing an obstacle in its flight path, a UAV has got to maneuver around it in line with rules set
by the collision avoidance algorithm. Such maneuvers generally distort the shape of the swarm’s formation from

the originally planned shape which will, sometimes, be crucial to the success of its mission. it is the intent of our

submission to repeatedly guard the collision avoidance maneuvers specified the disturbance from the planned,

i.e. optimal, formation is kept at the minimum during the course of the maneuver(s) which, after navigating past

the obstacle(s), the swarm is returned back to its initial formation. This process raises a formation construction

problem that's widely covered within the literature. However, in our case, the formation algorithm, or in other

words the disturbance rejection of a swarm, must be compatible with our obstacle avoidance algorithm whose

main target is to reduce the final settling time and energy of the system. it's worth mentioning that we deploy a

non-rigid mapping function for efficiency reasons. that's to say that the tactic of returning the swarm formation

to its original shape isn't required to re-establish initial neighbouring states among the drones since all the drones

are considered to be identical. as an example, within the initial state drone 2 has two neighbours drones 1 and

three, after reconstructing the formation its new neighbours could even be drones 4 and 5, it should even
become the new global leader. within the subsequent text, we refer to the primary i.e. the desired formation

shape because the model formation, while the shape at any instant during the flight is remarked because the

scene. within the method of getting back from the scene to the model, there are two main inquiries to be

addressed. Firstly, what is the optimal alignment of nodes within the scene to node positions within the model?

We name this because the mapping problem. Secondly, what is the optimal trajectory of each node within the

scene so as that it's mapped into the required node position within the model. For the first issue, we apply the

well-know concept of point set registration , which relies on thin-plate splines formulation (TPS) that's

commonly accustomed solve data interpolation and smoothing problems . After determining the mapping

strategy, for the second problem, the proposed collision avoidance algorithm utilizes the shortest path scheme

for deciding trajectories of individual nodes. Though a more efficient solution for the second part could even be

possible, our current focus is on designing an optimal mapping strategy, thus, it suffices to point, here, that
search for an efficient trajectory of each node is one avenue for future work

.

3.2 MASTER-SLAVE PARALLEL VECTOR EVALUATED GENETIC ALGORITHM (MSPVEGA)

MSPVEGA relies on master-slave strategy. In MSPVEGA, the master coordinates the migration while the

slaves run the parallel GAs. All GAs execute concurrently. Each GA operates with its own population which is

evaluated with one objective. Fig.1 depicts the building blocks of MSPVEGA

MSPVEGA Building Blocks

After a predefined number of iterations, a specific subset of the local population migrates from the local GA to

the master node. The master node reshuffles all the received individuals, segregates them in keeping with the

target with which they perform better. Finally, the segregated groups are sent back to the suitable slaves. Within
each GA, the fitness function with which each individual is evaluated could be a mathematical representation of

a specific objective. Given variety of objectives, α, MSPVEGA dynamically configures b+1 slaves indexed

from 0 to b; the slave indexed by b runs a selected GA that mixes all the objectives in Objective Weighting

Genetic Algorithm. The fitness function such as such objective.

3.3 ANT COLONY ALGORITHM

Ant colony algorithm is inspired by the method of finding food and transferring it to the nest by ants. Ants

secrete pheromone on the way to the food. This pheromone goes up for better paths, though pheromones also

have evaporation properties. This method is a population-based met heuristic that can be used to find

approximate solutions to difficult optimization problems.

Figure 4: Pseudo code of ACO optimization algorithm.

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 67 | Page

The choice of a solution component from Ni k is done probabilistically at each construction step. The exact rules

for the probabilistic choice of solution components vary across different ACO variants. The best known rule is

equation 3.

 Selection of the next sensor is done by the roulette wheel method, which is chosen randomly with a

uniform distribution from one of the sensors not previously selected. So the next sensors are selected until all the

sensors are considered. After repeating the algorithm, the shortest path is found that is the optimal path.

IV. PROPOSED METHODOLOGIES

4.1 VARIABLE NEIGHBORHOOD SEARCH: BASIC CONCEPTS

 Variable Neighborhood Search (VNS) could be a metaheuristic framework that was for solving

complex optimization problems. The authors propose a scientific change of increasingly distant neighborhoods

of the present incumbent solution. The new neighborhoods are then explored by an area search method so as to

spot the local optima. a replacement solution is accepted if and on condition that an improvement was made.

Let y be a feasible solution to an optimization problem min f(y). Algorithm 1 details the abstract structure of the

fundamental Variable Neighborhood Search (BVNS). More precisely, BVNS consists of several components

and requires an initial solution y, moreover as two integer parameters kmax and imax that impose the utmost

depth of the neighborhood and maximum number of iterations, respectively. within the following, we offer a
brief description of the components.

y’ ← Shake(y, k) A shake could be a random move that's wont to generate a replacement solution y0 ∈ Nk(y).

We visit Nk(y) because the k-th neighborhood of y. Given an answer y, the neighborhood Nk(y) are often

reached from y through exactly k shakes.

y’’ ← LocalSearch(y0) a neighborhood search procedure is employed to aim improving the answer y0 that was

found in Nk(y) (i.e., the k-th neighborhood of y), which could cause a brand new solution y’’
.

y, k ← NeighborhoodChange(y, y00, k) Here, the operator determines if the new solution y’’ replaces y because

the incumbent solution. Algorithm 2 details the structure of the neighborhood change operator

for a minimization problem. That is, if f(y’’) < f(y), then y’’ will become the new incumbent solution y.

Furthermore, we reset the parameter k to If f(y’’) ≥ f(y) we increase the worth of the parameter k by 1.

Algorithm 1 BVNS(y, kmax, imax)

1: i ← 1;

2: repeat

3: repeat

4: yJ ← Shake(y, k);

5: yJJ ← LocalSearch(yJ);

6: y, k ← NeighborhoodChange(y, yJJ, k);

7: until k = kmax

8: until i = imax

9: return y;

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 68 | Page

Algorithm 2 NeighborhoodChange(y, yJJ, k)

1: if f (yJJ) < f (y) then

2: y ← y
JJ
;

3: k ← 1;

4: else

5: k ← k + 1;

6: end if

7: return y, k;

 Several extensions to BVNS are proposed and an outline of the proposed methods is given These

extensions include Variable Neighborhood Descent (VND) that searches the neighborhoods in a very

determenistic way, Reduced VNS (RVNS) that skips the local search procedure, and Skewed VNS (SVNS) that
permits for the exploration of solutions that are in distant neighborhoods of the incumbent solution. during this

context, Variable Neighborhood Decomposition Search (VNDS) is another extensions of the VNS method that

was introduced. It extends the fundamental VNS into a nested two-level VNS scheme, supported a

decomposition of the optimization problem. Through our preliminary computational experiments, we were

determined that VNDS could be a well-suited approach for solving the VRPD. so as to explain VNDS for the

VRPD, we introduce the variables x and y that denote feasible solutions to a VRPD and VRP, respectively.

The VRPD will be embedded as follows into the VNDS framework:

• We try to find an answer y to a VRP, where no drones are used, through VNS. it would be assumed that this

decomposed sub problem is less complicated to unravel than the initial VRPD. Furthermore, existing

optimization techniques, that are successfully applied to the VRP, may be wont to solve the decomposed sub-

problem.

• Once we've got found a VRP solution y, we transform it to a VRPD solution x by inserting drones into the

present route of every vehicle k ∈ K.

We design VNDS in a very thanks to to manage the interaction of the sub-problems in an exceedingly way, such

an honest heuristic solution will be achieved. Algorithm 3 details the abstract structure of the VNDS approach
that has been adapted for the VRPD. The parameter k defines the depth of the neighborhood that may be

explored and is initially set to 1. The parameter tmax determines the utmost run time.

The structure of VNDS (Algorithm 3) consists of several components:

• y ← Shake(y(x), k) : A Shake may be a random move that's wont to generate an answer y of a VRP sub-

problem that favors characteristics of the answer x of the VRPD problem. • y 0 ← BV NS(y, k) : A BVNS

heuristic is employed to get a brand new solution y 0 to the VRP subproblem by improving the answer y (see

Algorithm 1). The operators that we use during BVNS are introduced in Section 4.3.

• x 0 ← LocalSearch(y 0 , D) : Once we've found an answer y 0 to the VRP sub-problem, we generate an answer

x 0 to the VRPD problem by applying a neighborhood search operator. In our case, the local search operator

could be a drone insertion operator that improves a VRP solution by adding feasible drone sorties. The drone

insertion operators that we use are introduced thoroughly
. • x, y(x), k ←NeighborhoodChange(x, x0 , y0 , k) : This operator determines if the new solution x 0 replaces x

because the incumbent solution. Algorithm 4 details the structure of the neighborhood change operator. If the

target value is improved, i.e., f(x 0) < f(x), then x 0 will become the new incumbent solution. Furthermore, we

reset the parameter k to 1 and keep track of y 0 . If f(x 0) ≥ f(x) we increment the worth of the parameter k by 1.

Algorithm 3 VNDS(G, K, D, kmax, tmax)

1: repeat

2: k ← 1;

3: repeat

4: y ← Shake(y(x), k);

5: yJ ← BV NS(y, k);
6: xJ ← LocalSearch(yJ, D);

7: x, y(x), k ← NeighborhoodChange(x, xJ, yJ, k);

8: until k = kmax

9: until t > tmax

10: return x;

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 69 | Page

Algorithm 4 NeighborhoodChange(x, xJ, yJ, k)

1: if f (xJ) < f (x) then

2: x ← xJ;

3: y(x) ← y
J
;

4: k ← 1;

5: else

6: k ← k + 1;

7: end if

8: return x, k;

4.1.1 Initialization
 For generating an initial VRP solution, we use two-phase heuristic, called route-first, cluster second

(RFCS) and references therein. The RFCS approach 12 works as follows: First, we build an initial tour using the
Nearest-Neighbor-Heuristic (NNH) . More precisely, ranging from the depot, we gradually construct a route by

adding the closest unvisited vertex to the tour before returning to the depot. Afterwards, the tour is split equally,

supported the amount of accessible vehicles within the set Shake and native Search Operators for BVNS This

section is devoted to explaining the operators utilized in the VNDS and BVNS algorithms. within the case of

VNDS, the shake operator will take the answer y(x) to the VRP sub-problem that was either generated by RFCS

during initialization or stored after performing a part Change Before introducing the BVNS-related operators,

we discuss about some classical approaches in solving the VRP. Indeed, the classical heuristics that are utilized

in improving VRP solutions may well be classified in two categories

• Single-Route improvement heuristics (also referred to as Intraroute),

• Multi-Route improvement heuristics (also referred to as Interroute).

Single-Route improvements concentrate on improving the routing of one vehicle. Since the general objective

consists in minimizing the most recent point, that's determined by the last vehicle to return to the depot, single-
route improvements are valuable. Perhaps, the foremost well-known heuristic for improving one route is that the

k-opt, which could be a generalization of the 2-opt operator . Multi-Route improvements on the opposite hand

try and improve the target function by considering the routing of multiple vehicles at the identical time. The

multiroute improvements as follows, all of which might be considered as special cases of a 2-cyclic exchange

• String Cross (SC), where two edges are exchanged by crossing two edges of two different routes.

• String Relocation (SR), where one vertex is relocated from one route and added to a different route.

• String Exchange (SE), where two vertices are exchanged between two different routes.

• String Mix (SM), which may be a combination of SR and SE that selects the most effective move among the 2.

For applying shake and native search moves during BVNS, we use the 2-opt, SR, and SE moves. particularly, all

moves work by generating a random number to work out which vertices (and which routes within the case of SE

and SR) may be tormented by a 2-opt, SE, and SR.
• y’ ← Shake(y, k) : within the case of a shake, we take the present routes (belonging to every vehicle in K) and

apply a random sequence of k operations (consisting of 2-opt, SR, and SE) to the routes. so as to produce a deep

exploration of the answer space and to stir out of local minima, we always accept changes from shake operators

whether or not the target value is worse after applying a shake.

• y’’ ← LocalSearch(y 0) : within the case of local search, we apply the identical operations (i.e. 2-opt, SR, and

SE) to the new routes. However, we apply a greedy search, that consists in applying a move providing it

improves the present incumbent objective value.

BLOCK DIAGRAM

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 70 | Page

FLOW DIAGRAM

V. EXPERIMENATATION AND RESULTS

Experimental Parameters
Parameter Value

Drone Speed 50 m/s 50 m/s

Processing Time 20 seconds 20 seconds

Request Rate uniform(1, 5) minutes

Battery Life 100 minutes (with no recharging at the

station)

Number of clients 5

Number of drones From 1 to 10

Serviced Area 1000 x 1000m

Max Run Time Unlimited

Parameters of QUAD COPTER machine
Parameter Value Description

W(m) 0.1050 Width of hub

D(m) 0.1050 Depth of hub

h(m) 0.0390 Height of hub

Q[kg] 0.0400 Mass of motor

P[kg] 0.1000 Mass of hub

R[m] 0.0130 Radius of motor-body

Hm[m] 0.0150 Height of motor-body

R[m] 0.2475 Motor to hub distance

CT 0.5000 Thrust Coefficient

M[kg] 1.0000 Total mass

DRONE PLACEMENT IN STRUCTURE

 Total Energy Transmission Vs Number Of Rounds

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 71 | Page

 Total Energy Transmission Vs Number Of Rounds

Comparison Results For Existing And Proposed Methods

 Total Energy Vs Number Of Rounds

Comparison Results For Existing And Proposed Methods

Live Nodes Vs Number Of Rounds

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 72 | Page

Comparison Results For Existing And Proposed Methods

 Latency Vs Number Of Rounds

Drone Simulation

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 73 | Page

Quad copter flight simulation model

Instrument panel for Quadcopter

REFERENCES
[1]. Hoang, V.T., Phung, M.D., Dinh, T.H. and Ha, Q.P., 2018, October. Angle-encoded swarm optimization for uav formation path

planning. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5239-5244). IEEE.

[2]. Bernardeschi, C., Fagiolini, A., Palmieri, M., Scrima, G. and Sofia, F., 2018, October. Ros/gazebo based simulation of co-operative

uavs. In International Conference on Modelling and Simulation for Autonomous Systesm (pp. 321-334). Springer, Cham.

[3]. Pierre, D.M., Zakaria, N. and Pal, A.J., 2011, December. Master-slave parallel vector-evaluated genetic algorithm for unmanned

aerial vehicle's path planning. In 2011 11th International Conference on Hybrid Intelligent Systems (HIS) (pp. 517-521). IEEE.

[4]. Schermer, D., Moeini, M. and Wendt, O., 2018. A variable neighborhood search algorithm for solving the vehicle routing problem

with drones. In Technical Report. TU Kaiserslautern.

[5]. Tahir, A., Böling, J.M., Haghbayan, M.H. and Plosila, J., 2020. Comparison of linear and nonlinear methods for distributed control

of a hierarchical formation of UAVs. IEEE Access, 8, pp.95667-95680.

[6]. Yasin, J.N., Haghbayan, M.H., Heikkonen, J., Tenhunen, H. and Plosila, J., 2019, September. Formation maintenance and collision

avoidance in a swarm of drones. In Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent

Control (pp. 1-6)..

[7]. Bürkle, A., Segor, F. and Kollmann, M., 2011. Towards autonomous micro uav swarms. Journal of intelligent & robotic systems,

61(1), pp.339-353.

[8]. Duan, H., Tong, B., Wang, Y. and Wei, C., 2019, July. Mixed game pigeon-inspired optimization for unmanned aircraft system

swarm formation. In International Conference on Swarm Intelligence (pp. 429-438). Springer, Cham.

[9]. Mirzaeinia, A., Hassanalian, M., Lee, K. and Mirzaeinia, M., 2019. Energy conservation of V-shaped swarming fixed-wing drones

through position reconfiguration. Aerospace Science and Technology, 94, p.105398.

[10]. Kim, H.J. and Ahn, H.S., 2016, December. Realization of swarm formation flying and optimal trajectory generation for multi-drone

performance show. In 2016 IEEE/SICE International Symposium on System Integration (SII) (pp. 850-855). IEEE.

[11]. 3DRobotics: Dronekit-python’s documentation (2016).http://python.dronekit.io/

[12]. Adams, S.M., Friedland, C.J.: A survey of unmanned aerial vehicle (UAV) usage for imagery collection in disaster research and

management. In: 9th International Workshop on Remote Sensing for Disaster Response, p. 8 (2011)

[13]. ArduPilot-DevTeam: ArduPilot documentation (2016). http://ardupilot.org/ ardupilot/

[14]. Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment for model-based analysis of cyber-physical

systems. IEEE Trans. Softw. Eng.44(6), 512–533 (2018)

[15]. Chandler, P.R., et al.: Complexity in UAV cooperative control. In: Proceedings of the 2002 American Control Conference (IEEE

http://ardupilot.org/

Simulation of Co-Operative UAV Using Neighborhood Optimization

www.ijres.org 74 | Page

Cat. No. CH37301), vol. 3, pp. 1831–1836. IEEE (2002)

[16]. Dronecode-Project: MAVlink developer guide (2018).https://mavlink.io/en/

[17]. Ham, Y., Han, K.K., Lin, J.J., Golparvar-Fard, M.: Visual monitoring of civil infrastructure systems via camera-equipped

unmanned aerial vehicles (UAVs): a review of related works. Vis. Eng.4(1) (2016)

[18]. Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: IROS, vol. 4, pp. 2149–

2154. Citeseer (2004)

[19]. Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical systems: the INTO-CPS project. In: 2016 2nd

International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6, April 2016

[20]. Lu, P., Geng, Q.: Real-time simulation system for UAV based on Matlab/Simulink. In: 2011 IEEE 2nd International Conference on

Computing, Control and Industrial Engineering (CCIE), vol. 1, pp. 399–404. IEEE (2011)

