
International Journal of Research in Engineering and Science (IJRES) 
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 
www.ijres.org Volume 10 Issue 2 ǁ 2022 ǁ PP. 53-71 
 

www.ijres.org                                                                                                                                              53 | Page 

Experimental Analysis of Algorithms to Enhance RSA 
 

PRATHAM SAHAY  
Vellore, Tamil nadu 

 
PRABALJIT WALIA  

Vellore, Tamil nadu
 
ABSTRACT 
The RSA encryption algorithm, which was named after its 3 founders, Adi Shamir, Ron Rivest and Leonard 
Adleman, was one of the first public key asymmetric encryption systems. It was one of the first viable public key 
crypto systems extensively used to secure data channeling. This system is based on a public key and private key 
asymmetric encryption dialect, where the sender of a message encrypts the message with the public key and the 
received decrypts the encrypted message with a private key. The public key is visible but the private key is kept 
confidential. The Encryption is very hard to break because of two very large prime number which are almost 
impossible to retrace. Key generation excessively depends on detecting cofactors and using the modulo 
operation. In this project, we will be using different algorithms to accelerate certain key generation steps and 
explain its reduced time complexities. 
KEYWORDS: Modulo Inverse, Encryption and Decryption, Prime Numbers, Euler toitient, Exponent, Base and 
Divisor. 
SOFTWARE: All calculation, graphs and tables are implemented using python’s latest version on Google 
Collaboratory and libraries like matplotlib, time, pretty table were used.    
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I. INTRODUCTION 
There was a time when RSA was carried out using symmetric public key encryption but, now a days 

the algorithm is enhanced by using a public key for encryption and private key for decryption process. The 
private key and the public key are modulo inverse of each other and the general method to calculate the private 
key is very long so, we have used an existing Extended Euclidean Algorithm and analyzed the execution time 
with the general method. The Encryption and Decryption process involves Exponential Modulo which again 
takes a long time if very large prime numbers are used which may take several hours so we have to use Modular 
Exponentiation Algorithm and compared its time with the general method, to verify the above algorithms work 
properly we have implemented the image encryption and decryption and results are verified. The Karatsuba fast 
multiplication is a new way to multiply very large numbers that too very fast and effectively as compared to 
general method multiplication, so we have verified the execution time by plotting it against the number of digits 
and calculated its efficiency. 

 
II. METHODOLOGY 

2.1 MODULAR EXPONENTIATION ALGORITHM 
1.1)  
A) OVERVIEW 

The method of Modular Exponentiation is a very important algorithm not only in the field of the 
Encryption and Decryption but many other fields like competitive programming, in handling large data set 
where the naïve methods prove to be ineffective and its effectiveness is based on the fact that it breaks the 
exponent calculation into smaller parts and then the modulus is calculated which works faster. The time 
complexity of the algorithm is less than the time complexity of the general method and ahead in the paper we 
will observe that the efficiency of execution is a bit less in case of very small numbers as the number of digits 
increases the efficiencies increases drastically to a very large extent and  hence in the case of encryption and 
decryption where the public key and the private key are 1024-bit it’s a very useful algorithm for example in an 
image encryption decryption process there are 1500*800 points in a list and each point has another list of three 
values r, g, b which multiply to 1500*800*3  values so you can see so many data’s are to be encrypted and 
decrypted, in such cases the naïve methods will take a long time hence modular exponentiation method comes 
to the rescue. Further in the paper we will observe the graphical analysis of the algorithm and compare it with 
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the naïve methods.  
 
B) MATHEMATICAL BACKGROUND 
Consider three very large numbers x, y, n and we want to calculate   (xy% n) , So, we can represent y in terms of 
its binary digits, 
 
• y = (bn*2n ) + (bn-1*2n-1)+………(b1*21)+(b0*20) 
where bn = 0 or 1 
 
• 𝑦 = 	∑ 𝑏!

"#$ i*2i = (bn*2n ) + (bn-1*2n-1)+...+(b0*20) (1) 
 
• xy = x(bn*2^n )+(bn-1*2^n-1)+………( b1*2^1)+(b0*2^0) 
 
• xy = ( x(bn*2^n) )*(x(bn-1*2^n-1))…..*(x(b0*2^0)) 
 
• xy = ∏ (𝑥!

"#$
bi*2^i) - (2) 

 
• Now when bi = 0, then  
 
 x(0*2^i) = 1 
 
• And when bi = 1, then 
 
x(1*2^i) = x2^i 

 

• Thus, we can show that 

xy = ∏ (𝑥":&"'$
2^i) - (3) 

 

• Now we assume ai = x2^i where i ≥ 0 
 
Now, xy =  ∏ (𝑎":&"'$ i) - (4) 
 
• We also see that a0 = x2^0 =x 
and ai = x2^i also ai+1 = x2^(i+1) = x(2^i)*(2^1) 
which is ai+1 = (x2^i)2 = (ai)2 
 
• Hence, we can conclude that the terms x0, a1, a2 … are related that is to obtain the next term we just 
have to calculate the square of the preceding term. 
• i.e  ai+1 = (ai)2 
• Since it is a modulo operation in each term, we take the modulo. 
• Since (a*b)%n = (a%n)*(b%n). 
 
C) ALGORITHM  
STEP1: We check iteratively one by one the binary digit of the exponent and if it zero we go to step 3 or else 
we go to step 2 
y = (bnbn-1bn-2………b1b0) 
STEP2: If the binary digit of the power is one then we implement modulo multiplication between answer and 
the base and again carry out modulo operation and go to step3 
answer = (answer*x)%n 
STEP 3: In this step we do the modulo square of the ith base to get the (i+1 )th and again carry out the modulo 
operation x = (x*x)%n 
 
STEP 4: Right shift the bit of the exponent and then carry out the steps until the exponent becomes zero. 
y>>1 and perform all above steps till y ≠ 0 
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D) FLOW DIAGRAM 
 
 
 
 
 
 
 
 
 

 
 
 
 

NO 
 
 
 
 
 YES 
 
 
 
 
 
 
 
 
                                              YES 
 
                                                                          NO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

START 

ANS = 1 

IF Y ≠ 0 

IF D%2 =1 

ANS=(ANS*X)%N 

X = (X*X)%N 

RETURN(ANS) 

STOP 
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2.2 EXTENDED EUCLIDEAN ALGORITHM 
A) OVERVIEW 

Extended Euclidean algorithm is an extended form of the Euclidean Algorithm to find greatest 
common divisor of two numbers when applied with the Bezouts theorem. In general, if the greatest common 
divisor of two number m and n is k then using the extended Euclidean algorithm, we can represent the numbers 
m and n in terms of k its gcd i.e.   m*x + n*y = k and we can obtain different pairs of x and y for the equation. 
When the number m and n are co-prime i.e. gcd (m, n) = 1hence x is the modular multiplicative inverse of (m) 
modulo (n) and y is the modular multiplicative inverse of (n) modulo(m). The above algorithm is very useful 
when we have to calculate the public and the private keys for Encryption and Decryption process because the 
naïve method to calculate the keys becomes infeasible when the number becomes too large. Further in the paper 
we will visualize graphs and efficiencies for different sets of prime numbers and draw conclusions. 
 
B) MATHEMATICAL BACKGROUND 

To calculate the gcd(m, n) we can find it using the Euclid algorithm by calculating the sequence qi, ri, 
ai, bi for i ≥ 2 and r0 = m, r1 = n and after every operation we increase the value of i. We calculate the values of 
qi, ri, ai, bi such that ri-2 = ri-1*qi + ri-(1), such that 0 ≤ ri≤ ri-1 using the Euclid Algorithm. We can write ri as 
linear combination of m and n i.e ri = ai*m + bi*n  -(2), 
• from (1) and (2) we obtain 
• = ri = (ai-2*m + bi-2*n) – (ai-1*m + bi-1*n)*qi 
• = ri = (ai-2 - ai-1*qi)*m + (bi-2 – bi-1*qi)*n  -(3). 
• Comparing (2) and (3) we obtain  
• That ai = ai-2 + ai-1*qi and bi = bi-2 + bi-1*qi. 
• Since m = r0 = a0*m + b0*n, a0 = 1 and b0 =0. 
• Also, n =  r1 =  a1*m + b1*n, a1 = 0 and b1 =1. 
• Now when the ri-1 becomes 0 we stop and suppose it is the ith operation then ri-1 = 0 which means that 
the gcd(m, n) = gcd(r0, r1) = gcd(r1, r2) = …………. gcd(rn-2, rn-1) = gcd(rn-2,0) = rn-2. 
• Hence the linear combination we obtain, 
gcd(m, n) = rn-2  = an-2*m + bn-2*n -(4). 
• The values of ri decreases as we move ahead i.e r2> r3>r4>……………..>rn-2>rn-1 =0 
• Hence we obtain zero at some point. 
 
C) ALGORITHM 
STEP 1: First we assign the variables the value m1, m2, n1, 
n2, d1 and d2 as 1,0,0,1, euler toitient and public key. 
STEP 2: We iterate till the variable d2 ≠ 1 
STEP 3: We divide d1/d2 and assign it to a new variable q. 
STEP 4: We calculate m2 =m1-(n2*q) and similarly for n2 and d2and also store the original values of m2, n2, d2 
in m1, n1, d1. 
 
STEP 5: We assign D = n2 and iterate again until d2=1. 
STEP 6: If D larger then euler toitient 
Then: we take modulus of the D with the euler toitient and  
store it to D, otherwise we add euler toitient and assign it to D 
STEP 7: The D is the private key generated and returned.   
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D) FLOW DIAGRAM 
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                                           YES 
 
 
 
 
 
 
 
 
 
 

START 

m1,m2, n1, n2, d1 d2 =1, 0, 
0, 1, et, e 

While d2 ≠ 1 

q = d1/d2 

m2 = m1 –(m2*q), similarly calculate for n2,d2 

Assign original values of m2, n2, d2 into m1, 
n2, d2 

If D > et 

D = D%et 

If D<0 

D = D + et 

STOP 
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2.3 KARATSUBA FASTMULTIPLICATION 
 
A) OVERVIEW 

The Karatsuba algorithm is a fast multiplication algorithm. The Algorithm was discovered by Anatoly 
Karatsuba in the year 1960 and was published as a journal in 1962.Multiplication is a very important task in any 
field whether be encryption or decryption process or image processing etc. So, enhancing and making it 
efficient is a very important task. The time complexity of Karatsuba multiplication of two n-digit numbers is 
O(nlog2^3) =O(n1.585). The time complexity of general method for Multiplication is O(n2) which suggest though 
the time complexity of Karatsuba is less than the time complexity of the general multiplication method but we 
also have to check for very large numbers and calculate its efficiency which we will be carrying out in the 
paper. 
 
B) MATHEMATICAL BACKGROUND 
 
Let's use this method to multiply the base-10 numbers 1234 and 8765 
 
x = (x1*Bm + x2) (1) y = (y1*Bm + y2) (2) 
    = 12 * 10^2 + 34    = 67 * 10^2+89 
 
 
     x*y = (x1*Bm + x2) * (y1*Bm + y2)(3) 
      = (12 * 10^2 + 34) * (67 * 10^2 + 89) 
 
x*y = (x1*y1)*B2m +(x1*y2)*Bm  +( x2*y1)*B2m+(x2*y2) (4) 
=12*67*10^4 + (12*89 + 34*67)* 10^2 + (89*34)  = 83,77,626 
 
 
C) ALGORITHM 
 
STEP 1: First both the numbers x and y can be represented as x1, x2 and y1, y2 with  
• x = (x1*Bm +x2) 
• y = (y1*Bm + y2) 
STEP 2:Now their product will be  
• x*y = (x1*Bm + x2) * (y1*Bm + y2) 
• x*y = (x1*y1)*B2m +(x1*y2)*Bm +( x2*y1)*B2m+(x2*y2) 
STEP 3:Observe the equation obtained in Step 2which gives us 4 sub divisions of the main problem i.e x1*y1, 
x1*y2, x2*y1, x2*y2. 
STEP 4:Let a = x1*y1, b = x1*y2 + x2*y1, c = x2*y2,  
This makes our product  
• x*y = a*B2m + b*Bm + c Now, 
• b = ((x1+x2)*(y1+y2)) – a – c 
• The above algorithm can be applied recursively to a number until the numbers being multiplied are 
only a single-digit long (base-case) 
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D) FLOW DIAGRAM 
 
 

 



Experimental Analysis of Algorithms to Enhance RSA 

www.ijres.org                                                                                                                                              60 | Page 

III.RESULTS AND INFERENCES 
 
A) MODULAR EXPONENTIATION 

As we know that Modular Exponentiation is used to calculate ( XY%N) where X is base, Y is exponent 
and N is the Divisor. Modular Exponentiation Time Comparison was carried out with the naïve method for four 
different cases in order to understand the dependency and the term which affects the modular exponent 
operation. The cases of variation like varying power and rest terms constant and similarly for base variation and 
the divisor variation was carried out for both Modular Exponentiation Approach and the Naïve Approach and 
the time variation graphs and efficiency variation graph along with the table to compare the execution time for 
both the methods are also included. 
 
CASE 1:  EXPONENT VARIED WITH BASE AND DIVISOR CONSTANT 

 

 
Figure 1 : Variation of Execution Time with Exponent for Both Modular and General Method. 

 

 
Figure 2 Variation of Efficiency of Modular Exponentiation with Exponent 
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Table 1:  Execution Time Comparison for Modular and General Approach when Power is Varied 

 

 
Table 2 : Execution Time Comparison for very Large Number of Digits of Power 

 
INFERENCES 
Ø We observe from Figure 1 that Execution time almost remains the same when exponent is very small 
but as the number of digits of the exponent increases keeping the base and the divisor constant there is a steep 
rise in the execution time for the Naïve Method but for Modular Exponentiation the time increases 
insignificantly. 
 
Ø From the Figure 2 the efficiency for very small Exponent i.e number of digits is 2 or 3 is negative but 
as the number of digits of the exponent increases the efficiencies increases sharply and for 8+ digits almost 
reach 90%+. 
Ø Table 1 contains all the execution time for the Modular Exponentiation and the Naïve Method along 

with the Average time for number of digits less than 9 and we obtain an Average time of 5.8412*10-6sfor 
Modular Approach and a Average time of 17.3345 s for the Naïve Approach which suggest a large difference in 

execution time. 
 
Ø Table 2 contains the time variation for both the methods when the number of digits for exponents are 
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very large as it can be observed that we have calculated the Execution  time for 33000+ digits or a 110000 bit 
number and the results are quite interesting i.e the naïve method did not get executed for any of the cases but for 
the same cases we achieved a very less execution time with an Average time of  0.5862967 seconds, that is 
Enormously less than the general methods we apply. 
 
Ø From above inferences we can strongly conclude that the Modular Exponentiation Execution time is 
very less even for 110000 bit or 33113-digit exponent and can be utilized for faster calculations. 

 
CASE 2: BASE VARIED WITH EXPONENT 

AND DIVISOR CONSTANT 

 
 

 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 Execution Time Comparison when Base is Varying 

Figure 4 Efficiency Variation of Modular Exponentiation with Base 
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Table 2: Execution Time for both the Methods when the Base is Varied. 

 

 
Table 4: Time Comparison for Very Lage Dataset up to 110000-bit Base keeping Exponent and divisor constant 

 
INFERENCES 

Ø From figure 3 it can be observed that the execution time is varying very steeply for general method but 
for Modular Exponentiation method the time almost remained the same i.e we obtain a line with almost zero 
slope. 
Ø The figure 4 suggests that the efficiency is always positive and significantly largei.ethe Modular 
Exponentiation algorithm works very efficiently no matter how large or small the base is when the exponent 
and divisor remain constant. 
Ø We also infer from the table 3 the execution time variation for small numbers and table 4 the time 
variation for very large number that the execution time is always in the order of 10-6 and 10-5  as well as the 
average execution time for the Modular Exponentiation method but it is amazing and quite surprising to observe 
from both the tables that the average execution time changes from 3.186 s to 82.433 when the set of  number of 
digits are significantly increased keeping the exponent and divisor constant. 
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Ø From all of the above Inferences we conclude that the Modular Exponentiation algorithm is far better 
than General or the Naïve approach and no matter how big the base be it works with a very less execution time. 
 
CASE 3: DIVISOR VARIED WITH BASE AND EXPONENT CONSTANT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Execution time Variation when the Divisor is Varied keeping the base and exponent constant 
 

 
Figure 6:Efficiency Variation when Divisor is varied keeping the base and the exponent constant. 

 

 
Table 5: Execution Time and the Average Time for both the Approach when Divisor is Varied 
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INFERENCES 
Ø Figure 5 suggest that the execution time variation is similar for both the approach when the divisor is 
varied although the original method variation is a bit higher than the Modular Exponentiation approach that 
suggests that the modular exponentiation method is better than the general approach. 
Ø The efficiency variation from figure 6 is quite uneven which suggest that both the approach work with 
similar execution time when the divisor is varied and the base, exponent is kept constant. 
Ø Also, from the table we can observe that on an average the modular exponentiation is better than the 
general method, as well as it can be inferred from the data that the average time for general method when 
divisor is kept constant is better than the average time for the general method when the exponent or the base is 
varied. 
Ø Hence, we conclude that the modular exponentiation algorithm is quite better than the general method 
as the data and the variations suggest. We also observe that though the divisor increases but time almost 
remains constant in both the methods i.e higher the divisor easier it to find the remainder. 

 
CASE 4: ALL THE FACTORS ARE VARIED 

 

 
 
 
 

 

 
 

Figure 7: Execution Time Variation for both the methods when all 
factors are Varied. 

Figure 8: Efficiency Variation when all the factors are varied. 
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Figure 6: Table for Execution Time and Average Execution Time for both Methods 

 
INFERENCES 
Ø This case is to observe the variation of the execution time when all the factors are varied together to 
observe how better the algorithm works as compared to the original method and draw conclusions on the basis 
of the data obtained from the graphs and table. 
Ø From figure 7 it is observed that the execution time steeply increases for general method but the plot 
for the Modular Exponentiation suggest that the slope is almost zero from which we can infer that the Modular 
Exponentiation method is better. 
Ø The efficiency variation from figure 8 suggest that the efficiency of Modular Exponentiation is far 
better over the general method. The value almost reaches 99% for larger set of number. 
Ø From table 6 the average execution time for the modular exponentiation is 6.139*10-6s and the average 
execution time for the general method is 0.0193 s which is quite higher than the Modular Exponentiation 
approach and also for any set of numbers the execution time for Modular Exponentiation always remains in the 
range of 10-6 and 10-5. 
Ø From all the above inferences we conclude that the Modular Exponentiation method is far more better 
than the general method even when all the factors are varied and also efficiency obtained in this case is the best 
then all the cases which suggest Modular Exponentiation algorithm is the best. 
 
FINAL CONCLUSION 

 

 
Figure 9: Variation of all the cases 
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Table 7: Efficiencies and Average Efficiencies for all the cases. 

 
Ø From figure 9 we conclude that the General method for exponential modular calculation depends 
heavily on the exponent i.e as the number of digits of the exponent increases the execution time also increases 
drastically whereas the same is not in the case of the base and the divisor. 
 
Ø Table 7 contains the efficiencies for all the cases and as it can be observed from the table that avg 
efficiency for base and division variation is 99.99% in both the cases which suggest that the no matter how large 
number you may use for base or the divisor, the execution time will remain small. But not the same case with 
the general method.  
 
Ø Even when the power is varied the maximum time taken for the calculation for the modular 
exponential is 3 seconds when the exponent is 110000-bit number or 33000+ digit numbers i.e the modular 
exponentiation algorithm works with a very small execution time no matter which factor or how much it is 
varied. 
 
Ø  From all the above results and efficiencies, we finally conclude that no matter how big the base or 
exponent be the modular exponentiation algorithm works far better with a very less execution time. So, instead 
of using the general method one must use the Modular Exponentiation Algorithm. 

 
B) EXTENDED EUCLIDEAN ALGORITHM 

 

 
Figure 10: Execution Time Variation with number of Bit for Extended Euclidean algorithm and the General 

Method 
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Figure 10: Efficiency Variation with Number of Bits 

 

 
Table 8: Execution Time and Average Time along with Efficiencies and Average Efficiencies 

 
INFERENCES 
Ø The method to calculate the private key is too long as one has to check for each and every value until 
we obtain the value which satisfies the condition satisfies as explained in the overview. But as the number of 
bits increases the execution time increases sharply. So, we calculated the variation and efficiencies for the 
Extended Euclidean algorithm a different algorithm to calculate the private key. 
 
Ø It is observed from the execution time variation graph that as the number of bits increases for the 
randomly generated prime number the time for the general method increases sharply after certain bit whereas 
the execution time remains almost constant and very less for the Extended Euclidean Algorithm. 
 
Ø The efficiency variation increases sharply as the number of bits for randomly generated prime number 
increases i.e for very small bit number the efficiency is negative whereas for very large bit number the 
efficiency increases up to 99.999% 
 
Ø The average execution time and the average efficiency for the extended Euclidean algorithm is 
1.6530x10-5 s and 87.23% which is very much better than the execution time for the general method proposed. 
 
FINAL CONCLUSION 
Ø From all of the above inferences we conclude that the extended Euclidean algorithm is a very efficient 
approach as compared to the general method and must be used to calculate the private key for RSA encryption 
because the private key generated is 4096 bit or 2048 bit for a stronger and secure encryption. 
 
Ø In order to check the correctness of the algorithm we implemented the results of both Extended 
Euclidean and Modular Exponentiation Algorithm and encrypted and decrypted an Image and it was successful.  
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RESULTS FOR IMAGE ENCRYPTION AND DECRYPTION 
 

C) KARATSUBA ALGORITHM 
 

 
Figure 11: Result for Encrypted Image 

 

 
Figure 12: Result for Decrypted Image 

 
 

Figure 13: Execution Time Variation for Karatsuba and General 
Multiplication Method 
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Figure 14: Efficiency Variation for Karatsuba Algorithm. 

 

 
Table 9: Execution time, Average Execution time and Average Efficiency for Karatsuba Algorithm 

 
INFERENCES 
Ø The variation for Karatsuba algorithm increases slower as compared to the variation for the General 
Multiplication Algorithm as the number of digit increases. 
Ø As the number of digits increases the execution time difference increases which suggest that as the 
number of digits for the numbers to be multiplied increases the Karatsuba will work faster than the General 
Multiplication Method.  
Ø The efficiency variation is a bit uneven for smaller number but as the number of digits increases the 
efficiency gets a bit stable and reaches a range of 45% to 55%.  
Ø The average time for Karatsuba algorithm is 4.36x10-5 and for the naïve method is 1 millisecond and 
an average efficiency of 57.8366% that ranges between 45% to 58% which suggest that the Karatsuba algorithm 
is better than the general method. 
 
FINAL CONCLUSION 
Ø From all of the above inferences we conclude that the Karatsuba Algorithm is approximately 50% 
efficient than the General Multiplication method. We also conclude that for smaller digit both approach works 
the similar way but as the number of digits increases the run time always remains constant or in a certain range, 
Hence it can be used for different purposes. 
 
VERDICT 

The analysis of the algorithms in this paper conclusively proves the magnitude of difference in 
execution time and efficiency over their naïve counterparts. The implications of using these algorithms in 
consumer-based products are not limited to any one domain like cryptography, instead these methods could 
save a lot of time in various domains involving large scale computations.  
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