
International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 10 Issue 2 ǁ 2022 ǁ PP. 53-71

www.ijres.org 53 | Page

Experimental Analysis of Algorithms to Enhance RSA

PRATHAM SAHAY
Vellore, Tamil nadu

PRABALJIT WALIA

Vellore, Tamil nadu

ABSTRACT
The RSA encryption algorithm, which was named after its 3 founders, Adi Shamir, Ron Rivest and Leonard
Adleman, was one of the first public key asymmetric encryption systems. It was one of the first viable public key
crypto systems extensively used to secure data channeling. This system is based on a public key and private key
asymmetric encryption dialect, where the sender of a message encrypts the message with the public key and the
received decrypts the encrypted message with a private key. The public key is visible but the private key is kept
confidential. The Encryption is very hard to break because of two very large prime number which are almost
impossible to retrace. Key generation excessively depends on detecting cofactors and using the modulo
operation. In this project, we will be using different algorithms to accelerate certain key generation steps and
explain its reduced time complexities.
KEYWORDS: Modulo Inverse, Encryption and Decryption, Prime Numbers, Euler toitient, Exponent, Base and
Divisor.
SOFTWARE: All calculation, graphs and tables are implemented using python’s latest version on Google
Collaboratory and libraries like matplotlib, time, pretty table were used.

Date of Submission: 02-02-2022 Date of acceptance: 16-02-2022

I. INTRODUCTION
There was a time when RSA was carried out using symmetric public key encryption but, now a days

the algorithm is enhanced by using a public key for encryption and private key for decryption process. The
private key and the public key are modulo inverse of each other and the general method to calculate the private
key is very long so, we have used an existing Extended Euclidean Algorithm and analyzed the execution time
with the general method. The Encryption and Decryption process involves Exponential Modulo which again
takes a long time if very large prime numbers are used which may take several hours so we have to use Modular
Exponentiation Algorithm and compared its time with the general method, to verify the above algorithms work
properly we have implemented the image encryption and decryption and results are verified. The Karatsuba fast
multiplication is a new way to multiply very large numbers that too very fast and effectively as compared to
general method multiplication, so we have verified the execution time by plotting it against the number of digits
and calculated its efficiency.

II. METHODOLOGY

2.1 MODULAR EXPONENTIATION ALGORITHM
1.1)
A) OVERVIEW

The method of Modular Exponentiation is a very important algorithm not only in the field of the
Encryption and Decryption but many other fields like competitive programming, in handling large data set
where the naïve methods prove to be ineffective and its effectiveness is based on the fact that it breaks the
exponent calculation into smaller parts and then the modulus is calculated which works faster. The time
complexity of the algorithm is less than the time complexity of the general method and ahead in the paper we
will observe that the efficiency of execution is a bit less in case of very small numbers as the number of digits
increases the efficiencies increases drastically to a very large extent and hence in the case of encryption and
decryption where the public key and the private key are 1024-bit it’s a very useful algorithm for example in an
image encryption decryption process there are 1500*800 points in a list and each point has another list of three
values r, g, b which multiply to 1500*800*3 values so you can see so many data’s are to be encrypted and
decrypted, in such cases the naïve methods will take a long time hence modular exponentiation method comes
to the rescue. Further in the paper we will observe the graphical analysis of the algorithm and compare it with

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 54 | Page

the naïve methods.

B) MATHEMATICAL BACKGROUND
Consider three very large numbers x, y, n and we want to calculate (xy% n) , So, we can represent y in terms of
its binary digits,

• y = (bn*2n) + (bn-1*2n-1)+………(b1*21)+(b0*20)
where bn = 0 or 1

• 𝑦 = 	∑ 𝑏!

"#$ i*2i = (bn*2n) + (bn-1*2n-1)+...+(b0*20) (1)

• xy = x(bn*2^n)+(bn-1*2^n-1)+………(b1*2^1)+(b0*2^0)

• xy = (x(bn*2^n))*(x(bn-1*2^n-1))…..*(x(b0*2^0))

• xy = ∏ (𝑥!

"#$
bi*2^i) - (2)

• Now when bi = 0, then

 x(0*2^i) = 1

• And when bi = 1, then

x(1*2^i) = x2^i

• Thus, we can show that

xy = ∏ (𝑥":&"'$
2^i) - (3)

• Now we assume ai = x2^i where i ≥ 0

Now, xy = ∏ (𝑎":&"'$ i) - (4)

• We also see that a0 = x2^0 =x
and ai = x2^i also ai+1 = x2^(i+1) = x(2^i)*(2^1)
which is ai+1 = (x2^i)2 = (ai)2

• Hence, we can conclude that the terms x0, a1, a2 … are related that is to obtain the next term we just
have to calculate the square of the preceding term.
• i.e ai+1 = (ai)2
• Since it is a modulo operation in each term, we take the modulo.
• Since (a*b)%n = (a%n)*(b%n).

C) ALGORITHM
STEP1: We check iteratively one by one the binary digit of the exponent and if it zero we go to step 3 or else
we go to step 2
y = (bnbn-1bn-2………b1b0)
STEP2: If the binary digit of the power is one then we implement modulo multiplication between answer and
the base and again carry out modulo operation and go to step3
answer = (answer*x)%n
STEP 3: In this step we do the modulo square of the ith base to get the (i+1)th and again carry out the modulo
operation x = (x*x)%n

STEP 4: Right shift the bit of the exponent and then carry out the steps until the exponent becomes zero.
y>>1 and perform all above steps till y ≠ 0

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 55 | Page

D) FLOW DIAGRAM

NO

 YES

 YES

 NO

START

ANS = 1

IF Y ≠ 0

IF D%2 =1

ANS=(ANS*X)%N

X = (X*X)%N

RETURN(ANS)

STOP

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 56 | Page

2.2 EXTENDED EUCLIDEAN ALGORITHM
A) OVERVIEW

Extended Euclidean algorithm is an extended form of the Euclidean Algorithm to find greatest
common divisor of two numbers when applied with the Bezouts theorem. In general, if the greatest common
divisor of two number m and n is k then using the extended Euclidean algorithm, we can represent the numbers
m and n in terms of k its gcd i.e. m*x + n*y = k and we can obtain different pairs of x and y for the equation.
When the number m and n are co-prime i.e. gcd (m, n) = 1hence x is the modular multiplicative inverse of (m)
modulo (n) and y is the modular multiplicative inverse of (n) modulo(m). The above algorithm is very useful
when we have to calculate the public and the private keys for Encryption and Decryption process because the
naïve method to calculate the keys becomes infeasible when the number becomes too large. Further in the paper
we will visualize graphs and efficiencies for different sets of prime numbers and draw conclusions.

B) MATHEMATICAL BACKGROUND

To calculate the gcd(m, n) we can find it using the Euclid algorithm by calculating the sequence qi, ri,
ai, bi for i ≥ 2 and r0 = m, r1 = n and after every operation we increase the value of i. We calculate the values of
qi, ri, ai, bi such that ri-2 = ri-1*qi + ri-(1), such that 0 ≤ ri≤ ri-1 using the Euclid Algorithm. We can write ri as
linear combination of m and n i.e ri = ai*m + bi*n -(2),
• from (1) and (2) we obtain
• = ri = (ai-2*m + bi-2*n) – (ai-1*m + bi-1*n)*qi
• = ri = (ai-2 - ai-1*qi)*m + (bi-2 – bi-1*qi)*n -(3).
• Comparing (2) and (3) we obtain
• That ai = ai-2 + ai-1*qi and bi = bi-2 + bi-1*qi.
• Since m = r0 = a0*m + b0*n, a0 = 1 and b0 =0.
• Also, n = r1 = a1*m + b1*n, a1 = 0 and b1 =1.
• Now when the ri-1 becomes 0 we stop and suppose it is the ith operation then ri-1 = 0 which means that
the gcd(m, n) = gcd(r0, r1) = gcd(r1, r2) = …………. gcd(rn-2, rn-1) = gcd(rn-2,0) = rn-2.
• Hence the linear combination we obtain,
gcd(m, n) = rn-2 = an-2*m + bn-2*n -(4).
• The values of ri decreases as we move ahead i.e r2> r3>r4>……………..>rn-2>rn-1 =0
• Hence we obtain zero at some point.

C) ALGORITHM
STEP 1: First we assign the variables the value m1, m2, n1,
n2, d1 and d2 as 1,0,0,1, euler toitient and public key.
STEP 2: We iterate till the variable d2 ≠ 1
STEP 3: We divide d1/d2 and assign it to a new variable q.
STEP 4: We calculate m2 =m1-(n2*q) and similarly for n2 and d2and also store the original values of m2, n2, d2
in m1, n1, d1.

STEP 5: We assign D = n2 and iterate again until d2=1.
STEP 6: If D larger then euler toitient
Then: we take modulus of the D with the euler toitient and
store it to D, otherwise we add euler toitient and assign it to D
STEP 7: The D is the private key generated and returned.

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 57 | Page

D) FLOW DIAGRAM

 NO

 YES Iterate->

 NO

 YES

 NO

 YES

START

m1,m2, n1, n2, d1 d2 =1, 0,
0, 1, et, e

While d2 ≠ 1

q = d1/d2

m2 = m1 –(m2*q), similarly calculate for n2,d2

Assign original values of m2, n2, d2 into m1,
n2, d2

If D > et

D = D%et

If D<0

D = D + et

STOP

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 58 | Page

2.3 KARATSUBA FASTMULTIPLICATION

A) OVERVIEW

The Karatsuba algorithm is a fast multiplication algorithm. The Algorithm was discovered by Anatoly
Karatsuba in the year 1960 and was published as a journal in 1962.Multiplication is a very important task in any
field whether be encryption or decryption process or image processing etc. So, enhancing and making it
efficient is a very important task. The time complexity of Karatsuba multiplication of two n-digit numbers is
O(nlog2^3) =O(n1.585). The time complexity of general method for Multiplication is O(n2) which suggest though
the time complexity of Karatsuba is less than the time complexity of the general multiplication method but we
also have to check for very large numbers and calculate its efficiency which we will be carrying out in the
paper.

B) MATHEMATICAL BACKGROUND

Let's use this method to multiply the base-10 numbers 1234 and 8765

x = (x1*Bm + x2) (1) y = (y1*Bm + y2) (2)
 = 12 * 10^2 + 34 = 67 * 10^2+89

 x*y = (x1*Bm + x2) * (y1*Bm + y2)(3)
 = (12 * 10^2 + 34) * (67 * 10^2 + 89)

x*y = (x1*y1)*B2m +(x1*y2)*Bm +(x2*y1)*B2m+(x2*y2) (4)
=12*67*10^4 + (12*89 + 34*67)* 10^2 + (89*34) = 83,77,626

C) ALGORITHM

STEP 1: First both the numbers x and y can be represented as x1, x2 and y1, y2 with
• x = (x1*Bm +x2)
• y = (y1*Bm + y2)
STEP 2:Now their product will be
• x*y = (x1*Bm + x2) * (y1*Bm + y2)
• x*y = (x1*y1)*B2m +(x1*y2)*Bm +(x2*y1)*B2m+(x2*y2)
STEP 3:Observe the equation obtained in Step 2which gives us 4 sub divisions of the main problem i.e x1*y1,
x1*y2, x2*y1, x2*y2.
STEP 4:Let a = x1*y1, b = x1*y2 + x2*y1, c = x2*y2,
This makes our product
• x*y = a*B2m + b*Bm + c Now,
• b = ((x1+x2)*(y1+y2)) – a – c
• The above algorithm can be applied recursively to a number until the numbers being multiplied are
only a single-digit long (base-case)

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 59 | Page

D) FLOW DIAGRAM

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 60 | Page

III.RESULTS AND INFERENCES

A) MODULAR EXPONENTIATION

As we know that Modular Exponentiation is used to calculate (XY%N) where X is base, Y is exponent
and N is the Divisor. Modular Exponentiation Time Comparison was carried out with the naïve method for four
different cases in order to understand the dependency and the term which affects the modular exponent
operation. The cases of variation like varying power and rest terms constant and similarly for base variation and
the divisor variation was carried out for both Modular Exponentiation Approach and the Naïve Approach and
the time variation graphs and efficiency variation graph along with the table to compare the execution time for
both the methods are also included.

CASE 1: EXPONENT VARIED WITH BASE AND DIVISOR CONSTANT

Figure 1 : Variation of Execution Time with Exponent for Both Modular and General Method.

Figure 2 Variation of Efficiency of Modular Exponentiation with Exponent

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 61 | Page

Table 1: Execution Time Comparison for Modular and General Approach when Power is Varied

Table 2 : Execution Time Comparison for very Large Number of Digits of Power

INFERENCES
Ø We observe from Figure 1 that Execution time almost remains the same when exponent is very small
but as the number of digits of the exponent increases keeping the base and the divisor constant there is a steep
rise in the execution time for the Naïve Method but for Modular Exponentiation the time increases
insignificantly.

Ø From the Figure 2 the efficiency for very small Exponent i.e number of digits is 2 or 3 is negative but
as the number of digits of the exponent increases the efficiencies increases sharply and for 8+ digits almost
reach 90%+.
Ø Table 1 contains all the execution time for the Modular Exponentiation and the Naïve Method along

with the Average time for number of digits less than 9 and we obtain an Average time of 5.8412*10-6sfor
Modular Approach and a Average time of 17.3345 s for the Naïve Approach which suggest a large difference in

execution time.

Ø Table 2 contains the time variation for both the methods when the number of digits for exponents are

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 62 | Page

very large as it can be observed that we have calculated the Execution time for 33000+ digits or a 110000 bit
number and the results are quite interesting i.e the naïve method did not get executed for any of the cases but for
the same cases we achieved a very less execution time with an Average time of 0.5862967 seconds, that is
Enormously less than the general methods we apply.

Ø From above inferences we can strongly conclude that the Modular Exponentiation Execution time is
very less even for 110000 bit or 33113-digit exponent and can be utilized for faster calculations.

CASE 2: BASE VARIED WITH EXPONENT

AND DIVISOR CONSTANT

Figure 3 Execution Time Comparison when Base is Varying

Figure 4 Efficiency Variation of Modular Exponentiation with Base

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 63 | Page

Table 2: Execution Time for both the Methods when the Base is Varied.

Table 4: Time Comparison for Very Lage Dataset up to 110000-bit Base keeping Exponent and divisor constant

INFERENCES

Ø From figure 3 it can be observed that the execution time is varying very steeply for general method but
for Modular Exponentiation method the time almost remained the same i.e we obtain a line with almost zero
slope.
Ø The figure 4 suggests that the efficiency is always positive and significantly largei.ethe Modular
Exponentiation algorithm works very efficiently no matter how large or small the base is when the exponent
and divisor remain constant.
Ø We also infer from the table 3 the execution time variation for small numbers and table 4 the time
variation for very large number that the execution time is always in the order of 10-6 and 10-5 as well as the
average execution time for the Modular Exponentiation method but it is amazing and quite surprising to observe
from both the tables that the average execution time changes from 3.186 s to 82.433 when the set of number of
digits are significantly increased keeping the exponent and divisor constant.

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 64 | Page

Ø From all of the above Inferences we conclude that the Modular Exponentiation algorithm is far better
than General or the Naïve approach and no matter how big the base be it works with a very less execution time.

CASE 3: DIVISOR VARIED WITH BASE AND EXPONENT CONSTANT

Figure 5: Execution time Variation when the Divisor is Varied keeping the base and exponent constant

Figure 6:Efficiency Variation when Divisor is varied keeping the base and the exponent constant.

Table 5: Execution Time and the Average Time for both the Approach when Divisor is Varied

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 65 | Page

INFERENCES
Ø Figure 5 suggest that the execution time variation is similar for both the approach when the divisor is
varied although the original method variation is a bit higher than the Modular Exponentiation approach that
suggests that the modular exponentiation method is better than the general approach.
Ø The efficiency variation from figure 6 is quite uneven which suggest that both the approach work with
similar execution time when the divisor is varied and the base, exponent is kept constant.
Ø Also, from the table we can observe that on an average the modular exponentiation is better than the
general method, as well as it can be inferred from the data that the average time for general method when
divisor is kept constant is better than the average time for the general method when the exponent or the base is
varied.
Ø Hence, we conclude that the modular exponentiation algorithm is quite better than the general method
as the data and the variations suggest. We also observe that though the divisor increases but time almost
remains constant in both the methods i.e higher the divisor easier it to find the remainder.

CASE 4: ALL THE FACTORS ARE VARIED

Figure 7: Execution Time Variation for both the methods when all
factors are Varied.

Figure 8: Efficiency Variation when all the factors are varied.

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 66 | Page

Figure 6: Table for Execution Time and Average Execution Time for both Methods

INFERENCES
Ø This case is to observe the variation of the execution time when all the factors are varied together to
observe how better the algorithm works as compared to the original method and draw conclusions on the basis
of the data obtained from the graphs and table.
Ø From figure 7 it is observed that the execution time steeply increases for general method but the plot
for the Modular Exponentiation suggest that the slope is almost zero from which we can infer that the Modular
Exponentiation method is better.
Ø The efficiency variation from figure 8 suggest that the efficiency of Modular Exponentiation is far
better over the general method. The value almost reaches 99% for larger set of number.
Ø From table 6 the average execution time for the modular exponentiation is 6.139*10-6s and the average
execution time for the general method is 0.0193 s which is quite higher than the Modular Exponentiation
approach and also for any set of numbers the execution time for Modular Exponentiation always remains in the
range of 10-6 and 10-5.
Ø From all the above inferences we conclude that the Modular Exponentiation method is far more better
than the general method even when all the factors are varied and also efficiency obtained in this case is the best
then all the cases which suggest Modular Exponentiation algorithm is the best.

FINAL CONCLUSION

Figure 9: Variation of all the cases

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 67 | Page

Table 7: Efficiencies and Average Efficiencies for all the cases.

Ø From figure 9 we conclude that the General method for exponential modular calculation depends
heavily on the exponent i.e as the number of digits of the exponent increases the execution time also increases
drastically whereas the same is not in the case of the base and the divisor.

Ø Table 7 contains the efficiencies for all the cases and as it can be observed from the table that avg
efficiency for base and division variation is 99.99% in both the cases which suggest that the no matter how large
number you may use for base or the divisor, the execution time will remain small. But not the same case with
the general method.

Ø Even when the power is varied the maximum time taken for the calculation for the modular
exponential is 3 seconds when the exponent is 110000-bit number or 33000+ digit numbers i.e the modular
exponentiation algorithm works with a very small execution time no matter which factor or how much it is
varied.

Ø From all the above results and efficiencies, we finally conclude that no matter how big the base or
exponent be the modular exponentiation algorithm works far better with a very less execution time. So, instead
of using the general method one must use the Modular Exponentiation Algorithm.

B) EXTENDED EUCLIDEAN ALGORITHM

Figure 10: Execution Time Variation with number of Bit for Extended Euclidean algorithm and the General

Method

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 68 | Page

Figure 10: Efficiency Variation with Number of Bits

Table 8: Execution Time and Average Time along with Efficiencies and Average Efficiencies

INFERENCES
Ø The method to calculate the private key is too long as one has to check for each and every value until
we obtain the value which satisfies the condition satisfies as explained in the overview. But as the number of
bits increases the execution time increases sharply. So, we calculated the variation and efficiencies for the
Extended Euclidean algorithm a different algorithm to calculate the private key.

Ø It is observed from the execution time variation graph that as the number of bits increases for the
randomly generated prime number the time for the general method increases sharply after certain bit whereas
the execution time remains almost constant and very less for the Extended Euclidean Algorithm.

Ø The efficiency variation increases sharply as the number of bits for randomly generated prime number
increases i.e for very small bit number the efficiency is negative whereas for very large bit number the
efficiency increases up to 99.999%

Ø The average execution time and the average efficiency for the extended Euclidean algorithm is
1.6530x10-5 s and 87.23% which is very much better than the execution time for the general method proposed.

FINAL CONCLUSION
Ø From all of the above inferences we conclude that the extended Euclidean algorithm is a very efficient
approach as compared to the general method and must be used to calculate the private key for RSA encryption
because the private key generated is 4096 bit or 2048 bit for a stronger and secure encryption.

Ø In order to check the correctness of the algorithm we implemented the results of both Extended
Euclidean and Modular Exponentiation Algorithm and encrypted and decrypted an Image and it was successful.

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 69 | Page

RESULTS FOR IMAGE ENCRYPTION AND DECRYPTION

C) KARATSUBA ALGORITHM

Figure 11: Result for Encrypted Image

Figure 12: Result for Decrypted Image

Figure 13: Execution Time Variation for Karatsuba and General
Multiplication Method

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 70 | Page

Figure 14: Efficiency Variation for Karatsuba Algorithm.

Table 9: Execution time, Average Execution time and Average Efficiency for Karatsuba Algorithm

INFERENCES
Ø The variation for Karatsuba algorithm increases slower as compared to the variation for the General
Multiplication Algorithm as the number of digit increases.
Ø As the number of digits increases the execution time difference increases which suggest that as the
number of digits for the numbers to be multiplied increases the Karatsuba will work faster than the General
Multiplication Method.
Ø The efficiency variation is a bit uneven for smaller number but as the number of digits increases the
efficiency gets a bit stable and reaches a range of 45% to 55%.
Ø The average time for Karatsuba algorithm is 4.36x10-5 and for the naïve method is 1 millisecond and
an average efficiency of 57.8366% that ranges between 45% to 58% which suggest that the Karatsuba algorithm
is better than the general method.

FINAL CONCLUSION
Ø From all of the above inferences we conclude that the Karatsuba Algorithm is approximately 50%
efficient than the General Multiplication method. We also conclude that for smaller digit both approach works
the similar way but as the number of digits increases the run time always remains constant or in a certain range,
Hence it can be used for different purposes.

VERDICT

The analysis of the algorithms in this paper conclusively proves the magnitude of difference in
execution time and efficiency over their naïve counterparts. The implications of using these algorithms in
consumer-based products are not limited to any one domain like cryptography, instead these methods could
save a lot of time in various domains involving large scale computations.

Experimental Analysis of Algorithms to Enhance RSA

www.ijres.org 71 | Page

REFERENCES

[1]. http://www.mathaware.org/mam/06/Kaliski.pdf
[2]. https://people.csail.mit.edu/rivest/Rsapaper.pdf
[3]. http://airccse.org/journal/nsa/6414nsa02.pdf
[4]. https://scialert.net/fulltext/?doi=itj.2013.1818.1824
[5]. https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf
[6]. https://core.ac.uk/download/pdf/82467764.pdf
[7]. https://patentimages.storage.googleapis.com/97/ea/37/7 0c3796ee1cf08/US20070083585A1.pdf
[8]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8270&rep=rep1&type=pdf
[9]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.300.7959&rep=rep1&type=pdf
[10]. D.E. Knuth, The Art of Computer Programming: Semi numerical Algorithms, Volume 2, Second edition, Addison-Wesley,

Reading, MA, (1981)
[11]. An RGB image Encryption using RSA Algorithm, International Journal for current Trends in Engineering and Research Volume 3

issued 3 March 2017.
[12]. T. E1Gamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information

Theory 31 (4), 469-472 (July1985)
[13]. On the complexity of extended Euclidean algorithm, by George Havas, published by Elsevier ScienceDirect.
[14]. Implementation of Karatsuba algorithm using polynomial multiplication by Sudhanshu Mishra and Manoranjan Pradhan published

under the journal Indian Journal of Computer Science and Engineering (IJCSE).
[15]. Comparative study of Efficient Modular Exponentiation Algorithm by Ibrahim Marouf, Mohammed Mosab Asad, Qasem Abu Al-

Haija, Published under (COMPUSOFT), an international journal of advanced computer technology, 6 (8), august-2017 (volume-vi,
issue-viii)

[16]. Image Encryption/Decryption Using RSA Algorithm by Sunita published under International Journal of Computer Science and
Mobile Application, Vol.5 Issue. 5, May- 2017, pg. 1-14

[17]. Implementation Color-Images Cryptography Using RSA Algorithm by Ali Saleh AL Najjar published under International Journals
of Advanced Research in Computer Science and Software Engineering ISSN: 2277-128X (Volume-7, Issue-11).

