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Abstract 

An analysis is made on unsteady flow and heat transfer through the vertical channel subject to the time dependent 

periodic suction when the left plate of the channel fluctuates with time. The velocity field, shear stresses, 

temperature field and rate of heat transfer has been obtained in a closed form. The variations of non-dimensional 

parameters such as Reynolds number, Prandtl number, frequency parameter and Grashoff number on velocity 

and temperature field are shown graphically. The variations of non-dimensional parameters on shear stresses 

and rate of heat transfer are presented in the form of tables.  
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I. Introduction 

Viscous fluid flow through vertical channel has applications in transpiration cooling in reentry vehicles. 

Combined convective flow as well as free convective hydrodynamic flow in a vertical channel were studied by 

Aung[1] and Aung and Worku[2]. Wang and Skalak[3] studied three dimensional fluid flow through one side of a 

long vertical channel for Newtonian fluid. An extension of the problem were studied by Sharma and Chaudhary[4] 

for viscoelastic fluid, Baris[5] for second grade fluid and Baris [6] for Walter’s B’ Fluid. Sing et. al [7] studied the 

free convection flow and heat transfer along a porous vertical wall. Chaudhary and Chand [8] studied the effect of 

injection on flow through vertical channel embedded in porous medium.  Berletta et. al [9] studied the mixed 

convection flows in a vertical channel.  

Guria and Jana[10] the studied unsteady flow past a vertical porous plate subject to a periodic suction. 

Due to periodic suction the flow becomes three dimensional. Guria and Jana[11] also studied the free convection 

flow and heat transfer through vertical channel subject to the  periodic suction. Guria et. al [12] extended this 

problem by applying transverse magnetic field. Guria et. al [13] also studied the radiation effect on three 

dimensional vertical channel flow. Guria[14] extended this problem by considering the flow through porous 

media.  

The main object of this paper is to study the effect of time dependent periodic suction and buoyancy force 

on unsteady flow through vertical channel when the temperature at the left plate fluctuates with time. Our problem 

presents a non-trivial extension of Guria and Jana[11] by introducing (a) time dependent periodic suction and (b) 

temperature at the left plate fluctuates with time. 

 

II. Basic Equations 

We consider the unsteady flow of viscous, incompressible fluid through the vertical channel at a distance 𝑑 apart. 

Here the 𝑥⋆- axis is chosen along the direction of the flow[see Fig.1]. The temperature at the plate 𝑦∗ = 𝑑 is 𝑇∞  

and that at the plate 𝑦∗ = 0 fluctuates with time  

 

𝑇∗ = 𝑇𝑤 + 𝜖 𝑇𝑤 − 𝑇∞ cos  
𝜋𝑧⋆

𝑑
− 𝑐𝑡⋆ ,  (2.1) 

where 𝜖(≪ 1) is the amplitude of the suction velocity. 

The plate 𝑦⋆ = 𝑑 is subjected to a uniform injection 𝑉0 and the plate 𝑦⋆ = 0 to a time dependent periodic 

suction of the form  

 𝑣⋆ = −𝑉0  1 + 𝜖 cos  
𝜋𝑧∗

𝑑
− 𝑐𝑡∗  , (2.2) 

   

                                                      
1 Corresponding author: mrinmoy9832@yahoo.com 
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Fig.1: Physical model and Co-ordinates system 

 

Let 𝑢⋆, 𝑣⋆, 𝑤⋆  be the velocity components in the directions 𝑥⋆−, 𝑦⋆ − and 𝑧⋆ −  axes respectively. The 

governing  equations are 

 
𝜕𝑣⋆

𝜕𝑦⋆ +
𝜕𝑤⋆

𝜕𝑧⋆ = 0, (2.3) 

 
𝜕𝑢⋆

𝜕𝑡∗
+ 𝑣⋆ 𝜕𝑢⋆

𝜕𝑦⋆ + 𝑤⋆ 𝜕𝑢⋆

𝜕𝑧⋆ = 𝜈  
𝜕2𝑢⋆

𝜕𝑦⋆2 +
𝜕2𝑢⋆

𝜕𝑧⋆2 + 𝑔𝛽(𝑇∗ − 𝑇∞), (2.4) 

 
𝜕𝑣⋆

𝜕𝑡∗
+ 𝑣⋆ 𝜕𝑣⋆

𝜕𝑦⋆ + 𝑤⋆ 𝜕𝑣⋆

𝜕𝑧⋆ = −
1

𝜌

𝜕𝑝⋆

𝜕𝑦⋆ + 𝜈  
𝜕2𝑣⋆

𝜕𝑦⋆2 +
𝜕2𝑣⋆

𝜕𝑧⋆2 , (2.5) 

 
𝜕𝑤⋆

𝜕𝑡∗
+ 𝑣⋆ 𝜕𝑤⋆

𝜕𝑦⋆ + 𝑤⋆ 𝜕𝑤⋆

𝜕𝑧⋆ = −
1

𝜌

𝜕𝑝⋆

𝜕𝑧⋆ + 𝜈  
𝜕2𝑤⋆

𝜕𝑦⋆2 +
𝜕2𝑤 ⋆

𝜕𝑧⋆2  , (2.6) 

 
𝜕𝑇⋆

𝜕𝑡∗
+ 𝑣⋆ 𝜕𝑇∗

𝜕𝑦⋆ + 𝑤⋆ 𝜕𝑇∗

𝜕𝑧⋆ = 𝜈  
𝜕2𝑇∗

𝜕𝑦⋆2 +
𝜕2𝑇∗

𝜕𝑧⋆2 , (2.7) 

 where 𝜈 is the kinematic coefficient of viscosity, 𝜌 is the density, 𝑝⋆ is the fluid pressure, 𝑔 is the acceleration 

due to gravity, 𝛽 is the coefficient of thermal expansion. 

 The boundary conditions  are  

 𝑢⋆ = 0, 𝑣⋆ = −𝑉0  1 + 𝜖cos  
𝜋𝑧⋆

𝑑
− 𝑐𝑡⋆  , 𝑤⋆ = 0, 

 𝑇∗ = 𝑇𝑤 + 𝜖 𝑇𝑤 − 𝑇∞ cos  
𝜋𝑧⋆

𝑑
− 𝑐𝑡⋆                 a𝑡               𝑦⋆ = 0,  

 𝑢⋆ = 0, 𝑣⋆ = −𝑉0, 𝑤⋆ = 0, 𝑇∗ = 𝑇∞, 𝑝⋆ = 𝑝∞      a𝑡              𝑦⋆ = 𝑑. (2.8) 

 Introducing the non dimensional variables  

 𝑦 =
𝑦⋆

𝑑
, 𝑧 =

𝑧⋆

𝑑
, 𝑝 =

𝑝⋆

𝜌𝑉0
2 , 𝑢 =

𝑢⋆

𝑉0
, 𝑣 =

𝑣⋆

𝑉0
, 𝑤 =

𝑤⋆

𝑉0
, 𝜃 =

(𝑇∗−𝑇∞)

(𝑇𝑤−𝑇∞)
, (2.9) 

 equations (2.3)-(2.7) become  

 
𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0, (2.10) 

 𝜔
𝜕𝑢

𝜕𝑡
+ 𝑅𝑒  𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 =  

𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2 + 𝑅𝑒𝐺𝑟𝜃, (2.11) 

 𝜔
𝜕𝑣

𝜕𝑡
+ 𝑅𝑒  𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 = −𝑅𝑒

𝜕𝑝

𝜕𝑦
+  

𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑧2 , (2.12) 

 𝜔
𝜕𝑤

𝜕𝑡
+ 𝑅𝑒  𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
 = −𝑅𝑒

𝜕𝑝

𝜕𝑧
+  

𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2  , (2.13) 

 𝑃𝑟𝜔
𝜕𝜃

𝜕𝑡
+ 𝑅𝑒𝑃𝑟  𝑣

𝜕𝜃

𝜕𝑦
+ 𝑤

𝜕𝜃

𝜕𝑧
 =  

𝜕2𝜃

𝜕𝑦2 +
𝜕2𝜃

𝜕𝑧2 , (2.14) 

 where 𝑅𝑒 = 𝑉0𝑑/𝜈, the Reynolds number, 𝑃𝑟 = 𝜈/𝜌, the Prandtl number and 𝐺𝑟 = 𝑑𝑔𝛽(𝑇𝑤 − 𝑇∞)/𝑉0
2, the 

Grashof number, 
2 /cd  , the frequency parameter. Using (2.9), the boundary conditions (2.8) become  

 𝑢 = 0, 𝑣 = − 1 + 𝜖cos 𝜋𝑧 − 𝑡  , 𝑤 = 0, 𝜃 = 1 + 𝜖cos(𝜋𝑧 − 𝑡),      at    𝑦 = 0, 

 𝑢 = 0, 𝑣 = −1, 𝑤 = 0, 𝜃 = 0, 𝑝 =
𝑝∞

𝜌
2

0V
      at    𝑦 = 1. (2.15) 

*T T

*z

* 0y 

*y d

*y

*x

0V

* ( - )

cos( * / - *)

w wT T T T

z d ct




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
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III. Solution of the Problem 

 To solve the differential equations (2.10)-(2.14), we assume  

 𝑢(𝑦, 𝑧, 𝑡) = 𝑢0(𝑦) + 𝜖𝑢1(𝑦, 𝑧, 𝑡) + 𝜖2𝑢2(𝑦, 𝑧, 𝑡) + ⋯, 
 𝑣(𝑦, 𝑧, 𝑡) = 𝑣0(𝑦) + 𝜖𝑣1(𝑦, 𝑧, 𝑡) + 𝜖2𝑣2(𝑦, 𝑧, 𝑡) + ⋯, 
 𝑤(𝑦, 𝑧, 𝑡) = 𝑤0(𝑦) + 𝜖𝑤1(𝑦, 𝑧, 𝑡) + 𝜖2𝑤2(𝑦, 𝑧, 𝑡) + ⋯, (3.1) 

 𝑝(𝑦, 𝑧, 𝑡) = 𝑝0(𝑦) + 𝜖𝑝1(𝑦, 𝑧, 𝑡) + 𝜖2𝑝2(𝑦, 𝑧, 𝑡) + ⋯, 
 𝜃(𝑦, 𝑧, 𝑡) = 𝜃0(𝑦) + 𝜖𝜃1(𝑦, 𝑧, 𝑡) + 𝜖2𝜃2(𝑦, 𝑧, 𝑡) + ⋯. 
 On substituting (3.1) in equations (2.10)-(2.14) , we get the term free from 𝜖  

 𝑣0
′ = 0, (3.2) 

 𝑢0
′′ − 𝑅𝑒𝑣0𝑢0

′ = −𝑅𝑒𝐺𝑟𝜃0, (3.3) 

 𝜃0
′′ − 𝑅𝑒𝑃𝑟𝑣0𝜃0

′ = 0. (3.4) 

The corresponding boundary conditions become  

𝑢0 = 0, 𝑣0 = −1, 𝜃0 = 1 at  𝑦 = 0,  and  𝑢0 = 0, 𝑣0 = −1, 𝜃0 = 0 at  𝑦 = 1. (3.5) 

 The solution of the equations (3.2) to (3.4), subject to the boundary conditions (3.5) are  

 𝑣0(𝑦) = −1,     (3.6) 

 

 𝜃0(𝑦) =
 𝑒−𝑅𝑒𝑃𝑟 −𝑒−𝑅𝑒𝑃𝑟𝑦  

 𝑒−𝑅𝑒𝑃𝑟 −1 
, (3.7) 

 𝑢0 𝑦 = 𝐴1𝑦 + 𝐴2 𝑒
−𝑅𝑒𝑃𝑟𝑦 − 1 + 𝐴3 𝑒

−𝑅𝑒𝑦 − 1 ,           for  𝑃𝑟 ≠ 1, (3.8) 

            𝑢0 𝑦 =
−2Gr e−Re

 1−e−Re  
2  1 − 𝑒−𝑅𝑒𝑦  +

𝐺𝑟    𝑦

 1−𝑒−𝑅𝑒  
 𝑒−𝑅𝑒 + 𝑒−𝑅𝑒𝑦  ,  for  𝑃𝑟 = 1,  (3.9) 

 where  

 𝐴1 =
−𝐺𝑟𝑒−𝑅𝑒𝑃𝑟

(𝑒−𝑅𝑒𝑃𝑟 −1)
 

 𝐴2 =
𝐺𝑟

𝑅𝑒𝑃𝑟 (𝑃𝑟−1)(𝑒−𝑅𝑒𝑃𝑟 −1)
 

 𝐴3 =
𝐴1+𝐴2 𝑒

−𝑅𝑒𝑃𝑟 −1 

(1−𝑒−𝑅𝑒 )
. (3.10) 

 The coefficient of 𝜖 is  

 
𝜕𝑣1

𝜕𝑦
+

𝜕𝑤1

𝜕𝑧
= 0, (3.11) 

 𝜔
𝜕𝑢1

𝜕𝑡
+ 𝑅𝑒  𝑣0

𝜕𝑢1

𝜕𝑦
+ 𝑣1

𝜕𝑢0

𝜕𝑦
 =  

𝜕2𝑢1

𝜕𝑦2 +
𝜕2𝑢1

𝜕𝑧2  + 𝑅𝑒𝐺𝑟𝜃1 , (3.12) 

 𝜔
𝜕𝑣1

𝜕𝑡
+ 𝑅𝑒𝑣0

𝜕𝑣1

𝜕𝑦
= −𝑅𝑒

𝜕𝑝1

𝜕𝑦
+  

𝜕2𝑣1

𝜕𝑦2 +
𝜕2𝑣1

𝜕𝑧2  , (3.13) 

 𝜔
𝜕𝑤1

𝜕𝑡
+ 𝑅𝑒𝑣0

𝜕𝑤1

𝜕𝑦
= −𝑅𝑒

𝜕𝑝1

𝜕𝑧
+  

𝜕2𝑤1

𝜕𝑦2 +
𝜕2𝑤1

𝜕𝑧2  , (3.14) 

 𝑃𝑟𝜔
𝜕𝜃1

𝜕𝑡
+ 𝑅𝑒𝑃𝑟  𝑣0

𝜕𝜃1

𝜕𝑦
+ 𝑣1

𝜕𝜃0

𝜕𝑦
 =  

𝜕2𝜃1

𝜕𝑦2 +
𝜕2𝜃1

𝜕𝑧2  . (3.15) 

 The  boundary conditions become  

 𝑢1 = 0, 𝑣1 = −cos(𝜋𝑧 − 𝑡), 𝑤1 = 0, 𝜃1 = cos(𝜋𝑧 − 𝑡)      at    y = 0, 
 𝑢1 = 0,   𝑣1 = 0,         𝑤1 = 0,          θ1=0                                at    y = 1. (3.16) 

 We assume  

 𝑢1(𝑦, 𝑧, 𝑡) = 𝑢11(𝑦)𝑒𝑖(𝜋𝑧−𝑡), 
 𝑣1(𝑦, 𝑧, 𝑡) = 𝑣11 (𝑦)𝑒𝑖(𝜋𝑧−𝑡), 

 𝑤1(𝑦, 𝑧, 𝑡) =
i

𝜋
𝑣11

′ (𝑦)𝑒𝑖(𝜋𝑧−𝑡),             (3.17) 

 𝑝1(𝑦, 𝑧, 𝑡) = 𝑝11(𝑦)𝑒𝑖(𝜋𝑧−𝑡), 

 𝜃1 𝑦, 𝑧, 𝑡 = 𝜃11 𝑦 𝑒
𝑖 𝜋𝑧−𝑡 . 

 Substituting (3.17) in (3.12)-(3.15), we obtain   

 𝑣11
′′ + 𝑅𝑒𝑣11

′ − (𝜋2 − 𝑖𝜔)𝑣11 = 𝑅𝑒𝑝11
′ , (3.18) 

 𝑣11
′′′ + 𝑅𝑒𝑣11

′′ − (𝜋2 − 𝑖𝜔)𝑣11
′ = 𝑅𝑒𝜋2𝑝11 , (3.19) 

 𝜃11
′′ + 𝑅𝑒𝑃𝑟𝜃11

′ − (𝜋2 − 𝑖𝑃𝑟𝜔)𝜃11 = 𝑅𝑒𝑃𝑟𝑣11𝜃0
′ , (3.20) 

 𝑢11
′′ + 𝑅𝑒𝑢11

′ − (𝜋2 − 𝑖𝜔)𝑢11 = 𝑅𝑒𝑣11𝑢0
′ − 𝐺𝑟𝑅𝑒𝜃11 . (3.21) 

 The corresponding boundary conditions are  

 𝑢11 = 0, 𝑣11 = −1, 𝑣11
′ = 0, 𝜃11 = 1      at    𝑦 = 0, 

 𝑢11 = 0, 𝑣11 = 0,   𝑣11
′ = 0,   𝜃11 = 0      at    𝑦 = 1. (3.22) 

The Solutions are 

 𝑣1 𝑦, 𝑧, 𝑡 =  𝐴𝑒𝜋𝑦 + 𝐵𝑒−𝜋𝑦 + 𝐶𝑒−𝜆1𝑦 + 𝐷𝑒−𝜆2𝑦  𝑒𝑖(𝜋𝑧−𝑡),     (3.23) 

 𝑤1(𝑦, 𝑧, 𝑡) = 𝑖  𝐴𝑒𝜋𝑦 − 𝐵𝑒−𝜋𝑦 −
𝐶𝜆1

𝜋
𝑒−𝜆1𝑦 −

𝐷𝜆2

𝜋
𝑒−𝜆2𝑦  𝑒𝑖(𝜋𝑧−𝑡), (3.24) 
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 𝜃1(𝑦, 𝑧, 𝑡) =  𝐶1𝑒
−𝜇1𝑦 + 𝐶2𝑒

−𝜇2𝑦 +
𝐴𝐾

𝑖𝜔−𝜋𝑅𝑒
𝑒(𝜋−𝑅𝑒𝑃𝑟 )𝑦   

                     +
𝐵𝐾

𝑖𝜔+𝜋𝑅𝑒
𝑒−(𝜋+𝑅𝑒𝑃𝑟 )𝑦 +

𝐶𝐾𝑃𝑟𝑒−(𝜆1+𝑅𝑒𝑃𝑟 )𝑦

𝜆1𝑅𝑒(𝑃𝑟+1)+𝑖𝜔(𝑃𝑟−1)
  (3.25) 

                     +  𝐷𝐾𝑃𝑟 𝑒−(𝜆2+𝑅𝑒𝑃𝑟 )𝑦

𝜆2𝑅𝑒(𝑃𝑟+1)+𝑖𝜔(𝑃𝑟−1)
 𝑒𝑖(𝜋𝑧−𝑡), 

  

 𝑢1(𝑦, 𝑧, 𝑡) =  𝐷1𝑒
−𝜆1𝑦 + 𝐷2𝑒

−𝜆2𝑦 −
𝑅𝑒𝐺𝑟

(𝑃𝑟−1)
 
𝐶1     𝑒−𝜇 1𝑦

(𝑅𝑒𝜇1−𝑖𝜔)
+

𝐶2     𝑒−𝜇 2𝑦

(𝑅𝑒𝜇2−𝑖𝜔 )
   

 +𝐷3𝑒
(𝜋−𝑅𝑒𝑃𝑟 )𝑦 + 𝐷4𝑒

−(𝜋+𝑅𝑒𝑃𝑟 )𝑦 +
𝐷5𝑒

−(𝜆1+𝑅𝑒𝑃𝑟 )𝑦

𝑅𝑒𝑃𝑟 (2𝜆1+𝑅𝑒𝑃𝑟−𝑅𝑒)
 

 +
𝐷6𝑒

−(𝜆2+𝑅𝑒𝑃𝑟 )𝑦

𝑅𝑒𝑃𝑟 (2𝜆2+𝑅𝑒𝑃𝑟 −𝑅𝑒)
+

𝐷7𝑒
𝜋𝑦

(𝜋𝑅𝑒 +𝑖𝜔)
+

𝐷8𝑒
−𝜋𝑦

(−𝜋𝑅𝑒 +𝑖𝜔)
 

 +
𝐷9𝑦    𝑒−𝜆1𝑦

(𝑅𝑒−2𝜆1)
+

𝐷10𝑦    𝑒−𝜆2𝑦

(𝑅𝑒−2𝜆2)
+

𝐷11     𝑒−(𝜆1+𝑅𝑒 )𝑦

𝜆1
+

𝐷12𝑒−(𝜆2+𝑅𝑒 )𝑦

𝜆2
 

  +
𝐷13     𝑒 (𝜋−𝑅𝑒 )𝑦

(−𝜋𝑅𝑒 +𝑖𝜔)
+

𝐷14     𝑒−(𝜋+𝑅𝑒 )𝑦

(𝜋𝑅𝑒 +𝑖𝜔)
 ei(πz-t),                      for    Pr≠1. (3.26) 

 

𝑢1(𝑦, 𝑧, 𝑡) =  𝐸1𝑒
−𝜆1𝑦 + 𝐸2𝑒

−𝜆2𝑦 + 𝐸3𝑒
(𝜋−𝑅𝑒)𝑦 + 𝐸4𝑒

−(𝜋+𝑅𝑒)𝑦   

+𝐸5𝑒
−(𝜆1+𝑅𝑒)𝑦 + 𝐸6𝑒

−(𝜆2+𝑅𝑒)𝑦 + 𝐸7y𝑒(𝜋−𝑅𝑒)𝑦 + 𝐸8y𝑒−(𝜋+𝑅𝑒)𝑦  
                 +𝐸9𝑦 𝑒−(𝜆1+𝑅𝑒)𝑦 + 𝐸10𝑦 𝑒−(𝜆2+𝑅𝑒)𝑦 ei(πz-t),                    for   𝑃𝑟 = 1  (3.27) 

 

where  

  𝜆1,2 =
1

2
 𝑅𝑒 ±  𝑅𝑒2 + 4(𝜋2 − 𝑖𝜔) ,     

 𝜇1,2 =
1

2
 𝑅𝑒𝑃𝑟 ±  𝑅𝑒2𝑃𝑟2 + 4(𝜋2 − 𝑖𝑃𝑟𝜔) ,     

 𝐴 = −
1

2𝜋
 𝜋 + 𝐶(𝜋 − 𝜆1) + 𝐷(𝜋 − 𝜆2) , 

 𝐵 = −
1

2𝜋
[𝜋 + 𝐶(𝜋 + 𝜆1) + 𝐷(𝜋 + 𝜆2)], 

 𝐶 = [𝜋𝑟2(𝑒𝜋 − 𝑒−𝜋) + 𝑟4(𝑒𝜋 + 𝑒−𝜋)]/2(𝑟1𝑟4 − 𝑟2𝑟3), 
 𝐷 = −[𝜋𝑟1(𝑒𝜋 − 𝑒−𝜋) + 𝑟3(𝑒𝜋 + 𝑒−𝜋)]/2(𝑟1𝑟4 − 𝑟2𝑟3), 

 𝑟1 = 𝑒−𝜆1 −
1

2𝜋
[𝑒𝜋(𝜋 − 𝜆1) + 𝑒−𝜋(𝜋 + 𝜆1)], 

 𝑟2 = 𝑒−𝜆2 −
1

2𝜋
[𝑒𝜋(𝜋 − 𝜆2) + 𝑒−𝜋(𝜋 + 𝜆2)], 

 𝑟3 = 𝜆1𝑒
−𝜆1 +

1

2
[𝑒𝜋(𝜋 − 𝜆1) − 𝑒−𝜋(𝜋 + 𝜆1)], 

 𝑟4 = 𝜆2𝑒
−𝜆2 +

1

2
 𝑒𝜋 𝜋 − 𝜆2 − 𝑒−𝜋 𝜋 + 𝜆2  . (3.28) 

We omite the other constants to save space. 

 

IV. Results and discussion 

We have plotted the velocity field, temperature field, shear stresses and rate of heat transfer  for several 

values of nondimensional  parameters. We have plotted the primary velocity 𝑢 in Figs.2 and 3 for different 

values of Grashof number and Reynolds number. It is found that primary velocity 𝑢 increases with increase in 

Gr . It is also found that u increases near the left plate and decreases away from the plate with increase in Re . 

Variations of secondary velocity w  for several values of Reynolds number is shown in Fig.4. It is observed that 

w increases near the left plate and decreases away from the plate with increase in Reynolds number. 

 

The shear stress at the plate 𝑦∗ = 0 due to the primary flow is given by  

 𝜏𝑥
∗ = 𝜇(

𝜕𝑢∗

𝜕𝑦 ∗)𝑦∗=0 =
𝜇𝑉0

𝑑
(
𝜕𝑢

𝜕𝑦
)𝑦=0 (4.1) 

 
In non-dimensional form it can be written as  

 𝜏𝑥 =
𝜏𝑥
∗𝑑

𝜇𝑉0
= (

𝜕𝑢

𝜕𝑦
)𝑦=0 

 = 𝑢0
′ (0) + 𝜖𝑢1

′ (0). 
 = 𝑢0

′ (0) + 𝜖𝑢11
′ (0)𝑒𝑖(𝜋𝑧−𝑡). 

 = 𝑢0
′ (0) + 𝜖𝐻1cos(𝜋𝑧 − 𝑡 + 𝜙1). (4.2) 

  
 The variations of amplitude and tangent of phase shift of shear stress due to primary flow for different values of 

,Re and Gr are shown in Tables.1 and 2. The amplitude increases with increase in both Re and Gr  but 

it decreases with increase in .  Tangent of phase shift increases with increase in   whereas it oscillates with 
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both Re and Gr .  

 

Table.1: Amplitude and tangent of phase shift of the shear stress due to primary flow for 

Pr 0.71, 5, 0.25Gr     

1H  1tan  

       

Re  

 

4           5          6         7 

 

4        5      6        7 

2 

 

3 

 

4 

 

5 

21.47     18.41     15.47    12.96 

 

23.48     22.60     21.08    19.33 

 

25.27     25.32     24.71    23.72 

 

27.78     27.19     27.72    27.14 

 

.57     .96    1.46     2.25 

 

.30     .56    .84      1.16 

 

.20     .41    .61      .82 

 

.21     .38    .54      .70 

 

 

Table.2: Amplitude and tangent of phase shift of the shear stress due to primary flow for 

Pr 0.71, 5, 0.25Gr     

1H  1tan  

      Gr 

Re 

 

 5          6         7        8 

 

    5         6          7          8 

2 

 

3 

 

4 

 

5 

 18.41   22.09    25.78   29.46 

 

 22.60   27.12    31.64  36.16 

 

 25.32   30.39    35.46  40.52 

 

 27.19   33.59    39.19  44.79 

 

.962255   .962256   .962256   .962255 

 

.566386   .566586   .566586   .566586 

 

.413472   .413472   .413473   .413472 

 

.384586   .384586   .384586   .384587 

 

 

The shear stress due to the secondary flow can be expressed as  

 𝜏𝑧
∗ = 𝜇(

𝜕𝑤∗

𝜕𝑦∗)𝑦∗=0 =
𝜇𝑉0

𝑑
(
𝜕𝑤

𝜕𝑦
)𝑦=0 (4.3) 

 In non-dimensional form the shear stress due to secondary flow at the plate 𝑦 = 0 can be written as  

 𝜏𝑧 =
𝜏𝑥
∗𝑑

𝜇𝑉0
= (

𝜕𝑤

𝜕𝑦
)𝑦=0 

 = 𝑤0
′ (0) + 𝜖𝑤1

′ (0) 

 = 𝜖𝑤11
′ (0)𝑒𝑖(𝜋𝑧−𝑡) (4.4) 

 = 𝜖𝐻2cos(𝜋𝑧 − 𝑡 + 𝜙2) 

          
 Variations of the amplitude and tangent of phase shift of the shear stress due to secondary flow for different 

values of and Re is shown in Table.3. It is found that the amplitude increases with increase in both 

and Re .The tangent of phase shift decreases with increase in   but increases with increase in Re .   

 

Table.3 Amplitude and tangent of phase shift of the shear stress due to secondary flow for Pr 0.71, 0.25   

2H  2tan  

      ω 

Re 

 

2       3      4         5 

 

2        3        4            5 

2 

 

3 

 

4.86  4.88    4.90     4.92 

 

5.58   5.59   5.61     5.63 

 

20.57     13.74     10.34      8.31 

 

25.00     16.70     12.55     10.08 
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4 

 

5 

6.36  6.37    6.38     6.39 

 

7.19  7.20     7.21    7.22 

30.66     20.47     15.38     12.33 

 

37.82     25.23     28.95     15.18 

 

The temperature profile 𝜃 is plotted for different values of Reynolds number and Prandtl number. It is found that 

the temperature 𝜃 decreases with increase in both Reor Pr . 

 

The heat transfer coefficient from the plate to the fluid may be calculated as  

 𝑞 = −𝑘(
𝜕𝑇∗

𝜕𝑦∗)𝑦∗=0 = −
𝑘(𝑇𝑤−𝑇∞ )

𝑑
(
𝜕𝜃

𝜕𝑦
)𝑦=0 . (4.5) 

  
In non-dimensional form it can be written as   

  𝑁𝑢1 =
𝑞𝑑

𝑘(𝑇𝑤−𝑇∞ )
= −(

𝜕𝜃

𝜕𝑦
)𝑦=0 = −𝜃0

′ (0) − 𝜖𝜃1
′ (0), 

 = −𝜃0
′ (0) − 𝜖𝜃11

′ (0)𝑒𝑖(𝜋𝑧−𝑡), (4.6) 
 = −𝜃0

′ (0) − 𝜖𝐻3cos(𝜋𝑧 − 𝑡 + 𝜙3) 
 

Table.4: Amplitude and tangent of phase shift of the rate of heat transfer at the plate 𝑦 = 0 

 

3H  
3tan  

      ω 

Re 

 

2       3      5      7      

 

2         3        5        7  

2 

 

3 

 

4 

 

5 

3.99    3.59     2.94  2.77 

 

5.01    4.73     4.07  3.50 

 

6.04    5.84    5.30   4.61 

 

7.12  6.97    6.54    5.98 

.14      .16       .06      .13 

 

.11      .16       .18      .12 

 

.10      .14       .20      .22 

 

.08      .12       .19      .24 

 

and the heat transfer coefficient at the plate 𝑦 = 1 is given by  

 𝑁𝑢2 =
𝑞𝑑

𝑘(𝑇𝑤−𝑇0)
= −(

𝜕𝜃

𝜕𝑦
)𝑦=1 = −𝜃0

′ (1) − 𝜖𝜃1
′ (1), 

 = −𝜃0
′ (1) − 𝜖𝜃11

′ (1)𝑒𝑖(𝜋𝑧−𝑡), (4.7) 
 = −𝜃0

′ (1) − 𝜖𝐻4cos(𝜋𝑧 − 𝑡 + 𝜙4) 
 
 

Table.5: Amplitude and tangent of phase shift of the rate of heat transfer at the plate  𝑦 = 1. 

4H  
4tan  

      ω 

Re 

 

2       3      5      7      

 

2         3        5        7  

2 

 

3 

 

4 

 

5 

2.07   1.90   1.61    1.52 

 

2.53   2.41   2.10    1.84 

 

3.03   2.93   2.68    2.38 

 

3.56   3.49   3.28    3.01 

.14      .16       .07      .09 

 

.11      .15       .18      .12 

 

.09      .14       .20      .22 

 

.08      .12       .19      .24 

The variations of amplitude and tangent of phase shift of rate of heat transfer at the plate 0y   and 1y   for 

several values of Re and  is shown in Tables.4 and 5. It is found that the amplitude decreases with increase in 

  but increases with increase in Re   at both the plates. The tangent of phase shift oscillates with Re and  

at both the plates. 
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V. Conclusion 

The present paper deals the unsteady flow and heat transfer through the vertical channel subject to the 

time dependent periodic suction when the left plate fluctuates with time. It is found that the primary velocity 

increases with increase in Grashoff number. It is also found that increases near the left plate and decreases away 

from the plate with increase in Reynolds number. The secondary velocity increases near the left plate and 

decreases away from the plate with increase in Reynolds number. The amplitude of the shear stress due to primary 

flow increases with increase in both Renolds number and grashoff number but decreases with increase in 

frequency parameter. The amplitude of the shear stress due to secondary flow increases with increase in both 

frequency parameter or Renolds number. The temperature profile decreases with increase in both Renolds number 

or Prandtl number. It is found that the amplitude of the Nusselt number decreases with increase in frequency 

parameter but increases with increase in Renolds number at both the plates. 
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Nomenclature 

, =1,..3iA i  constants; 

, , ,A B C D ,  constants;  

1 2,C C ,  constants;  

, =1, 14iD i   constants; 

,d    channel width; 

, 1, 10iE i   , constants; 

,g    gravitational acceleration ; 

1 2,H H   amplitude of the shear stresses ; 

3 4,H H   Amplitude of the Nusselt numbers ; 

,K    constant; 

1K , 2K   constants; 

1 2,Nu Nu ,  Nusselt number at the left and right plates; 

p ,   pressure; 

,p    dimensionless pressure; 

,Pr    Prandtl number; 

,q    local heat transfer at the plate; 
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41,=, iri ,  constants;  

,Re    Reynolds number; 

,T    temperature of the fluid; 

,wT    plate temperature ( 0=y ); 

u , 
v , 

w ,  velocity components in , ,x y z  axes                  

,,, wvu   Dimensionless Velocity components in , ,x y z  axes respectively; 

,0V    constant suction velocity; 

x ,
y , 

z ,  Cartesian coordinates system; 

,,, zyx   dimensionless Cartesian coordinate system; 

    viscosity; 

,    coefficient of thermal expansion; 

,    non-dimensional temperature; 

,    kinematic viscosity; 

,    amplitude of the suction velocity; 

,    density of the fluid; 

,    frequency parameter; 

tan , 1, 4i i    tangents of phase shifts 

 

 
Fig.2: Primary velocity u  for Re 5, Pr 0.71, 5, 0.2.t     
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Fig.3:  Primary velocity u  for 5, 5,Pr 0.71, 0.2.Gr t     

 

 
Fig.4:  Secondary velocity w  for 5,Pr 0.71, 0.2.t     
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Fig.5:  Temperature profile   for 5,Pr 0.71, 0.2.t     

 

 

 
Fig.6:  Temperature profile   for Re 5, 5, 0.2.t    

 


