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I Introduction :
Let A denote the class of functions of the form
f@)=z+ Xio,a, 2" (1.1)
which are analytic in the unit disc E = {z:|z| < 1|}. Let § be the class of functions of the form (1.1), which are
analytic univalent in E.
In 1916, Bieber Bach ([7], [8]) proved that |a,| < 2 for the functions f(z) S. In 1923, Léwner [5]
proved that |az| < 3 for the functions f(z) &S..

With the known estimates |a,| < 2 and |a;| < 3, it was natural to seek some relation between a; and a,?
for the class §, Fekete and Szego [9] used Lowner’s method to prove the following well known result for the
class 8.

Let f(z) &8, then

[3-4BifB<0;

1+2exp<1_,if0 <BE<1 (1.2)
40— 3,ifd > 1.

las — Ba3| <

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub
classes § (See Chhichra [1], Babalola [6]).
Let us define some subclasses of §.

We denote by S*, the class of univalent starlike functions
g(2) =Z+anz” €A
n=2

and satisfying the condition

<Zg 2
e

9(2)
We denote by ¥, the class of univalent convex functions

h(z) = Z+chz”,z EA
n=2

) >0,z€E (13)

and satisfying the condition
((zh @)
RBW > O,Z € E. (14)

p-VALENT FUNCTION:

Multivalent functions and in particular p-valent functions, are a generalization of univalent functions.In
the study of univalent functions, one of the fundamental problems is whether there exists a univalent mapping
from a given domain E onto a given domain D. A necessary condition for the existence of such a mapping is

that E and D have equal degrees of connectivity. If E and D are simply-connected domains whose boundaries
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contain more than one point, then this condition is also sufficient and the problem reduces to mapping a given

domain onto a disc. In this connection, a special role is played in the theory of univalent functions on simply-

connected domains by the S, class of functions f that are regular and univalent on the unit disc E = {z:|z| <

1}, normalized by the conditions £(0) = 0, f (0) = 1, and having the expansion
f@)=z+az°+a3z3+———,z€E

In the case of multiply-connected domains, mappings of a given multiply-connected domain onto so-called

canonical domains are studied.In particular, p-valent functions can be defined as follow:

Let A, (p is a positive integer)denote the class of functions of the form

ﬂ@—ﬂ+z i 2P

which are analytic in the unit disc E. Clearly, A; = cfl A function f(z) € A,is said to be p-valent in E if it
assumes no value more than p times in E.

p-VALENT STARLIKE FUNCTION:
A functionf(z) € A,is said to be a p-valent starlike function in E if there exists a positive real number p such

that ,
zf (2)
Re( @) ) >0
and

(L (2N
Of [Re <—f(z) )] do = 2pm,z =re” for

p<|z| <1
We denote the class of p-valent starlike functions by S;. By S;(8), we denote the class of functions f(z) €
Apsatisfying the condition

zf (2)
Re(f(z) )>,8,0Sﬁ<p,ZEE
Note: p-valent starlike functions are also called p-valently starlike functions.
f(2) € S;(B) is called p-valently starlike function of order .
We introduce a new subclass as

[z{zf @}]  1+z }
Z) EA,; - — < ;z€E
{f( )€y plzf (@)} 1-z
and we will denote this class as f(z) € H,.
Symbol < stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate
to F(z) in E if there exists a function w(z) analytic in [E satisfying the conditions w(0) = 0 and |w(z)| < 1 such
that f(z) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form

w(z) = Z d, 2", w(0) = 0, |w(2)] < 1.(15)
n=1

It is known that
ldi| < 1,1dy] < 1—dy|%(1.6)

1. PRELIMINARY LEMMAS:

For0 < ¢ < 1, wewrite w(z) = (16:2) so that
118 =1+ 22+ 2(c; + 2)z% + — — —(2.1)
Here
ler]l < Llepl < 1= ey |? (2.2)

1. MAIN RESULTS
THEOREM 3.1: Let f(z) € H, , then
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(P’Cp+1)  4up® fu< (p+1)*
@+2?  @+DF THE 22+ 2y
¥  _ (p+1)* (p+1)
w2 T wepr 2 St S g oy

l4up6 p*(2p+1) (p+1)°

GrDF iz THZ

(3.1)

la (3.2)

p+2—pal g | =

The results are sharp.
Proof: By definition of f(z) € H;, we have
[z{zf (Y] 1+z
plzf ()} 1-2z’
Expanding the series (3.4), we get
PPz’ a0+ 1)°2P + a4y (P +2)°2P T + ——— = (142024 2(c; + )z + — —
S)@*2" 7 +pay(p+ 1?20 + payp(p +2)°2P T + - ——) (35)
Identifying terms in (3.5), we get

a _ chp3
PHLT (p+1)?

w(z) € U. (3.4)

(3.6)

_2¢°p* + (e + )PP 3.7
WS T 2y ©7

From (3.6) and (3.7), we obtain
2¢,°p* + (c; + cD)p® o ’p®
(@ + 2)° SCESE

ap+2—lla;2;+1 = (3.8)

Taking absolute value, (3.8) can be rewritten as
s — | < lealp®  [2p*4p°  4p
A ) M [CE S DR CE VL
Using (2.2) in (3.9), we get

6

leal? (3.9)

A -lg®p®  |2p*+p° 4p®

o2 Tloror M ornral (3.10)

2
|ap+2 - .uap+1| =

2p+1l(p+1)*
Case I.M = 173

(3.10) can be rewritten as

A =la®p®  (2p*+p? 4p®
|aps2 = pal il < leal”

(@ + 22 w+2? "o+t

3 4 6
p 2p 4p
|ay+2 — pag 4| < o +2)7? + ( ) ley |2 (3.11)
Pp+1)*

R CESE
Subcase | (a): u < 20107
Using (2.2), (3.11) becomes

3 6
p*[2p +1] 4p
lay 42 — Hap 4| < - u (3.12)
+2)? +1)*
o (r+2) +1D
Subcase | (b): u = W
We obtain from (3.11
3
p
Apiz — Uy 4| < DY (3.13)
. [2p+1](p+D)*
Case ll::p > 123
Preceding as in case I, we get
3 4 3 6
P 2(p" +p°) 4p
—pat,| < — — 2 3.14
|ap+2 :uap+1| = (p ¥+ 2)2 <2(p + 2)2 o (p + 1)4 |C1| ( )
. ®+1)°
Subcase Il (a): u = 2012253
(3.14) takes the form
1@y sg — Haz| <L B <2(p4 +p3) . 4p° >
P P (p +2)? 2(p +2)° (+D*
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4p® p*[2p +1]

2
|ap+2 _I'lap+1| S u (p + 1)4 - (p + 2)2 (315)
. (®+1)°
Subcase |1 !b! u =< W
Preceding as in subcase I (b), we get
3
p
lay+2 — Hap 41| < G +2? (3.16)

Combining (3.12), (3.13), (3.15) and (3.16), the theorem is proved.

Extremal function for (3.1) and (3.3) is defined by
fi(z) = (1 + az)*where

And

2p3(p+2)2-2(p+ D' +1)
(»+12%(p + 2)?

B 2p°(p +2)°
2+ 22 -(p+D*2p+1)

Extremal function for (3.2) is defined by

P’z \
f(2) = Z<1 + 20+ 27 2)2>

Corollary 3.4: Putting p = 1 in the theorem, we get

(1w, .8
3 4 9
las a2 ! 1 8 <, < 16
~par] | g g =H=T
1 ,u 16
— — >
\m3t k=g
These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex
functions.
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